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Comprehensive Modeling and 
Discovery of Mebendazole as a 
Novel TRAF2- and NCK-interacting 
Kinase Inhibitor
Zhi Tan1,2,*, Lu Chen1,2,* & Shuxing Zhang1,2

TRAF2- and NCK-interacting kinase (TNIK) represents one of the crucial targets for Wnt-activated 
colorectal cancer. In this study, we curated two datasets and conducted a comprehensive modeling 
study to explore novel TNIK inhibitors with desirable biopharmaceutical properties. With Dataset I, we 
derived Comparative Molecular Similarity Indices Analysis (CoMSIA) and variable-selection k-nearest 
neighbor models, from which 3D-molecular fields and 2D-descriptors critical for the TNIK inhibitor 
activity were revealed. Based on Dataset II, predictive CoMSIA-SIMCA (Soft Independent Modelling 
by Class Analogy) models were obtained and employed to screen 1,448 FDA-approved small molecule 
drugs. Upon experimental evaluations, we discovered that mebendazole, an approved anthelmintic 
drug, could selectively inhibit TNIK kinase activity with a dissociation constant Kd = ~1 μM. The 
subsequent CoMSIA and kNN analyses indicated that mebendazole bears the favorable molecular 
features that are needed to bind and inhibit TNIK.

Loss of function of the adenomatous polyposis coli (APC), a Wnt signaling pathway inhibitor, and activation 
mutation of β​-catenin are the two major forces driving transformations in colorectal cancers1,2. However, to date 
few druggable targets involved in the Wnt pathway have been identified. TRAF2 and NCK-interacting kinase 
(TNIK) was recently characterized as an essential activator of TCF4/β​-catenin transcriptional programme. It is 
recruited to the promoters of the Wnt target genes and directly phosphorylates TCF43,4. This kinase also regu-
lates cytoskeleton rearrangements and stress responses through the Rap2A and c-Jun N-terminal kinase (JNK) 
pathway, respectively5,6. Knockdown or mutation of the TNIK kinase domain downregulates the canonical Wnt 
pathway and JNK pathway, and thus triggers the apoptosis7. Since the kinase activity is essential for activation 
of the β​-catenin pathway, TNIK is an attractive therapeutic target against colorectal cancer that obtains aberrant 
Wnt signaling.

While numerous clinical-relevant kinase inhibitors have been approved8,9, development of inhibitors targeting 
TNIK is still in the very early stage. Recently, Yamada et al. patented a series of thiazole-4-carboxamide deriv-
atives, including 48 compounds which are able to inhibit TNIK at sub-micromolar concentration (defined as 
Dataset I)10. Similarly, Davis et al. profiled the binding affinities of 72 known, chemically diverse kinase inhibitors 
against 442 kinases, and found a number of compounds exhibited significant binding to TNIK, with dissociation 
constant ranging from 4.7 nM to 8.5 μ​M (defined as Dataset II)11. However, the biopharmaceutical properties 
(bioavailability, pharmacokinetics, etc.) of the Dataset I compounds need to be further optimized, and most of 
the kinase inhibitors in Dataset II are notorious for their known side effects12.

Herein, we conducted 2D- and 3D-QSAR studies based on these two datasets and attempted to identify novel 
TNIK inhibitors with preferred biopharmaceutical properties. With Dataset I, we derived Comparative Molecular 
Field Analysis (CoMFA), Comparative Molecular Similarity Indices Analysis (CoMSIA), and variable-selection 
k-nearest neighbor (kNN) models, from which the 3D-molecular fields and 2D-descriptors critical for TNIK 
inhibitory activity were discovered. Based on Dataset II, a CoMSIA-SIMCA (Soft Independent Modeling by 
Class Analogy13) classification model was obtained and used to screen 1,448 currently marketed drugs. Upon 
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experimental validation using the KINOMEscan platform14 (Ambit Biosciences; http://www.kinomescan.com), 
we found that an anthelmintic drug, mebendazole, could selectively inhibited 91.8% of the TNIK signal at 10 μ​M, 
with a dissociation constant (Kd) of ~1 μ​M. Mebendazole binds to the ATP-binding pocket of TNIK in a similar 
fashion as dasatinib, and both of our CoMSIA and kNN models demonstrated that the compound possesses the 
required molecular pharmacophores and properties to bind TNIK. This study represents a unique ligand-based 
framework for drug repurposing against a specific protein target critical for colorectal cancer treatment.

Results
CoMFA and CoMSIA modeling.  As all compounds in Dataset I are thiazole-4-carboxamide derivatives 
(Fig. 1), it provides a reliable structural basis to perform ligand alignment for quantitative CoMFA and CoMSIA 
studies. Using the Sphere Exclusion (SE) algorithm15, we divided this dataset into a training set (38 compounds) 
and a test set (10 compounds). The statistics of the CoMFA and CoMSIA models are shown in Table 1. Compared 

Figure 1.  Chemical structures of the thiazole-4-carboxamide derivatives (dataset I). The values in the 
parentheses are pIC50.

http://www.kinomescan.com
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to the CoMFA model, the CoMSIA model achieved a slightly better leave-one-out cross-validation q2 (0.685), 
along with comparable rpred

2  (0.774) and standard error of prediction (0.273). Intriguingly, the hydrophobic term, 
rather than the steric or electrostatic term, has the largest contribution to the IC50 prediction (Table 1).

This CoMSIA model also offers structural insights for lead optimization of this thiazole-4-carboxamide series. 
For example, extension of the ring I on the para-position is sterically favorable, as indicated by the S2 region in 
Fig. 2A. In contrast, modifications on the ortho- or meta- position, especially the meta-position, are sterically 
prohibited (S3 in Fig. 2A). One may notice that the S3 region is located at the carboxamide side of ring I, and 
compounds such as 5, 11 and 12, may flip ring I to avoid the sterically unfavorable S3 region when binding to 
TNIK. However, compound 17, which adopts bulky substituents on both sides of ring I, has no means to circum-
vent the S3 region, and thus it obtains the highest IC50. Furthermore, CoMSIA model suggested that the orth-/
meta-position of ring I favors single electropositive and hydrophilic group (e.g., amide in compound 103), and 
disfavors hydrophobic or electronegative group (e.g., Cl or Br as in compound 11 and 12), as indicated by E3, H2 
and H3 regions (Fig. 2B,C).

Further analysis of the S2 and H1 regions showed that a linear, three-heavy-atom para modification of ring 
I contributes positively to the IC50 (Fig. 2A,C). The 4th heavy atom favors an electronegative one, such as oxygen 
(E1 region in Fig. 2B). For example, compared with compound A11, the addition of a hydroxyl group to the 4th 
heavy atom (compound A37) lowers IC50. For the distal modifications of ring I, the sterically unfavorable S1 
region restricts the maximum length of the substituent. To achieve the best TNIK inhibition, the estimated ideal 
length should range from 5.0 Å to 7.0 Å (Fig. 2A). However, it is worth noting that the contributions of S1, E1 
and H1 regions are usually below 0.3 pIC50 units, significantly less than other regions (Supplementary Table 2 for 
comparisons).

On the other side of the core, we observed that a small electronegative substituent on the para-position 
is energetically favorable on ring II, as indicated by S4 and E5 in Fig. 2A,B. This finding is consistent to IC50 
values that follow the ascendant trend: 4-pyridine (X3 =​ N) <​ 3-pyridine or 5-pyrimidine (X1 or/and 
X3 =​ N) <​ Phe (R2 =​ H) <​ Phe-4-OMe (R2 =​ OMe) (Supplementary Table 2). Accordingly, the existence of 
electronegative-favorable E5 region could result in the electropositive-favorable E5’ region.

Molecular docking confirmed CoMSIA model.  As we analyzed, no compound in Dataset I bears 
the pharmacophore of the allosteric inhibitors of TNIK (type 2 kinase inhibitor16) (data not shown). 
Indeed, this chemical series most likely functions as type 1 kinase inhibitors16, which bind the ATP-binding 
pocket without flanking to the allosteric site. The molecular docking confirmed this hypothesis, because the 
thiazole-4-carboxamide core was consistently docked to the adenine site in three difference receptor models, 
including TNIKclose, TNIKopen and TNIKDFG-out. Also the ligand binding mode is in agreement with the aforemen-
tioned CoMSIA model. Figure 2D demonstrated the predicted binding mode for compound A84 in TNIKclose. 
Based on the Traxler model which breaks the ATP-binding pocket into five subcomponents17, the adenine site 
is occupied by thiazole-4-carboxamide forming the hydrogen bonds to the hinge (E106 and C108 in Fig. 2D). 
Ring I is located at the hydrophobic pocket I, while ring II is buried in the hydrophobic pocket II and close to the 
gatekeeper residue (M105).

In particular, the meta-carbon of the ring I (corresponding to the E3 and H2 regions) is only 4.4 Å 
away from the carboxylatic oxygen of D115 (Fig.  2D). Moreover, the sterically-unfavorable S3 and 
hydrophobicity-unfavorable H3 regions are located in the hydrophobic pocket I. These observations buttressed 
the CoMSIA model that a small, electropositive and hydrophilic, meta- substituent of ring I is structurally pre-
ferred. Surprisingly, the electropositively favorable E2 region forms a polar contact with the carbonyl group of 

Statistics CoMFA CoMSIA

q2a 0.622 0.685

SEPb 0.586 0.534

r2c 0.987 0.992

SEEd 0.108 0.084

rpred
2 e 0.779 0.774

SEPpred
f 0.263 0.273

Componentsg 10 10

Fh 216.204 353.298

Pr2i 0.000 0.000

Fraction

  Steric 0.573 0.215

  Electrostatic 0.427 0.330

  Hydrophobic NAj 0.455

Table 1.   Summary of CoMFA and CoMSIA models. aLOO cross-validated correlation coefficient (training 
set). bLOO cross-validated standard error of prediction (training set). cNon-cross-validated correlation 
coefficient (training set). dStandard error of estimate (training set). eCorrelation coefficient for the test set. 
fStandard error of prediction for the test set. gOptimal number of components. hF-test value. iProbability of 
obtaining the F value by chance. jHydrophobic contribution not available in CoMFA.
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G109 (Fig. 2D). Finally, due to the bulky gatekeeper residue M105, the small electronegative modification(s) of 
ring II is apparently more energetically favorable than the large hydrogen-rich ones. This is consistent with the 
above analysis of the S4 and E5 regions (Fig. 2A,B).

Ligand-based kNN modeling.  The best six kNN models are shown in Table 2. All of these models had less 
than five descriptors, and both leave-one-out cross-validated training set q2 and testing set r2 were over 0.74, indi-
cating the high predictive abilities of the resultant models. Of note, the kNN model #1, which contains 27 com-
pounds in the training set and 21 in the test set, was able to accurately predict the pIC50 values with q2 =​ 0.81 and 
r2 =​ 0.78 using only three descriptors. The right plot in Fig. 3 demonstrated that our variable selection method 
particularly determined four types of descriptors that contribute mostly to the kNN models: KierA2 (second 

Figure 2.  CoMSIA model derived from dataset I. The most active inhibitor, A84 (in sticks), is used as an 
example to illustrate the CoMSIA fields (in grids). CoMSIA fields (A) Yellow – sterically unfavorable region; 
Green – sterically favorable region; (B) Blue – electronegative unfavorable (or electropositive favorable) region; 
Red – electronegative favorable (or electropositive unfavorable) region; (C) Cyan – hydrophobicity unfavorable 
region; Black – hydrophobicity favorable region. (D) Overlapping the CoMSIA fields to TNIK kinase domain 
(in lines). Yellow dashed lines indicated the hydrogen bonds with the hinge.
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alpha modified shape index), diameter/radius, GCUT_SLogP/BCUT_SLogP, and PEOE_VSA_HYD (total hydro-
phobic van der Waals surface area).

Intriguingly, we discovered that there are inverse correlations between pIC50 with KierA2 and PEOE_VSA_
HYD for molecules with a radius below 7 (Supplementary Fig. 1). The correlation coefficients for pIC50 with 
KierA2 and PEOE_VSA_HYD are 0.78 and 0.55, respectively. KierA2 represents the overall shape of the mole-
cule. Generally, a linear compound has alower KierA2 than a complex one. PEOE_VSA_HYD describes the total 
hydrophobic van der Waals surface area, in which the partial charges are computed with the partial equalization 
of orbital electronegatives. These two inverse correlations implied that the core scaffold of TNIK inhibitors (e.g., 
radius < ​7) should be linear and hydrophilic in order to maximize the efficiency of design. This is consistent to the 
observation that the steric bulky or hydrophobic unfavorable regions, such as S3, S4, H2 and H4, are located at the 
hydrophobic pockets I and II (Fig. 2D).

Accurate categorization of TNIK-binding kinase inhibitors by CoMSIA-SIMCA.  While the 2D- 
and 3D-QSAR of Dataset I have provided essential structural guidance for computer-aided design of TNIK inhib-
itors, additional studies of Dataset II, which covers much more chemical spaces, can expand the applicability 
domain of our models. To this end, we conducted SIMCA13 analysis with Dataset II. SIMCA is a widely-used 
classification algorithm that develops predictive models using principal component analysis (PCA) based on the 
precategorized training set. Due to the structural diversity of Dataset II, we filtered out all type 2 kinase inhibi-
tors and allosteric inhibitors, leading to 54 type 1 kinase inhibitors (Supplementary Table 1). These compounds 
were then grouped into four categories. According to their respective pKd values, we intentionally name them as 
Category IV: pKd <​ 5; Category V: 5 ≤​ pKd <​ 6; Category VI: 6 ≤​ pKd <​ 7; Category VII: pKd ≥​ 7. We also divided 
the dataset into a training set (48 compounds) and a test set (6 compounds) for model building (Supplementary 
Table 5). The CoMSIA fields were computed based on the receptor-guided alignment using rigorously-designed 
molecular dockings with respect to the available structural data (see Materials and Methods for details).

As indicated by the confusion matrix (Table 3), we derived a robust CoMSIA-SIMCA model in which 91.7% 
of kinase inhibitors were accurately classified (cross-validated) for the training set, while only four compounds 
were misclassified after five-group cross-validation. The predictive ability of this model was further validated 
on the test set, in which only one compound (AZD-2171) was misclassified. It is worth noting that three (out 
of five) misclassified compounds, including SB-203580 (pKd =​ 6.086), TAE-684 (pKd =​ 5.921) and AZD-2171 

Models
Data splitting 

(training/testing) Neighborsa q2b r 2c Descriptors

1 27/21 2 0.81 0.78 KierA2, GCUT_SLogP_0, radius

2 28/20 2 0.82 0.74 KierA2, BCUT_SLogP_3, diameter

3 33/15 2 0.75 0.83 PEOE_VSA_HYD, vsa_acc, radius

4 35/13 2 0.77 0.86 PEOE_VSA_HYD, SMR_VSA6, PEOE_PC+​, radius

5 36/12 2 0.74 0.89 KierA2, b_ar, radius

6 37/11 4 0.76 0.93 KierA2, GCUT_SLogP_0, radius

Table 2.   Summary of kNN models. aOptimal number of nearest neighbors. bLOO cross-validated correlation 
coefficient for the training set. cCorrelation coefficient for the test set.

Figure 3.  Predicted pIC50 values versus actual pIC50 values for CoMSIA model (left) and kNN model 
(right). The predicted pIC50 for both training sets are predicted by leave-one-out cross-validation.
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(pKd =​ 6.092), have pKd values close to the classification margin. As expected, these three compounds were clas-
sified to the adjacent categories: SB-203580 - Category V, TAE-684 - Category VI and AZD-2171 - Category V. 
Furthermore, the distances between categories followed the trend of binding affinities (Table 4), indicating that 
the SIMCA model can semi-quantitatively reflect the strength of TNIK binding. The details of the categoriza-
tion results are available in Supplementary Table 5. To exclude the possibility of overfitting, we also conducted 
Y-randomization as we described previously18–21. It failed to accurately predict the activity (data not shown), 
demonstrating the robustness of our models.

Identification of mebendazole as TNIK inhibitor.  Herein, we have derived predictive CoMSIA-SIMCA 
models that can be utilized to efficiently screen a drug-like database to discover novel TNIK inhibitors. The 
structural insights provided by our modeling can further improve the virtual screening accuracy. To this end, we 
screened 1,448 US Food and Drug Administration (FDA)-approved small-molecule drugs, aiming to identify 
potential TNIK inhibitor from the marketed drugs that have desired absorption, distribution, metabolism, and 
elimination (ADME) properties and already passed the strict safety/toxicity investigations. Not surprisingly, the 
CoMSIA-SIMCA model identified three kinase inhibitors, sunitinib, gefitinib and dasatinib, which could block 
TNIK activities. Such predictions are in agreement with some experimental reports: Sunitinib was classified in 
Category VII (actual Kd =​ 25 nM), whereas gefitinib was classified in Category V (actual Kd =​ 6.9 μ​M) (Table 5).

For the first time, mebendazole (MBZ), which was originally designed as an anthelmintic drug22, was iden-
tified to be a TNIK inhibitor. The CoMSIA-SIMCA model classified MBZ as a potent agent (Category V - Kd 
ranging from 1 μ​M to 10 μ​M). Our follow-up molecular docking indicates that MBZ binds to the adenine site 
of TNIK. The 3-N of benzimidazole forms hydrogen bonding interactions with the C108 amide, whereas the 
carbamate group interacts with C108 via its carbonyl group. This hydrogen bonding pattern of MBZ binding to 
TNIK is similar to that of dasatinib (Fig. 4). When referred to the CoMSIA fields shown in Fig. 2A–D, both dasat-
inib and MBZ circumvent the unfavorable bulky S3 region and minimize the hydrophobicity in the H2 region. 
However, MBZ is even less bulky around the hydrophobic pocket II (corresponding to S4 region) than dasatinib. 
Conforming to our kNN modeling, MBZ has the desired molecular properties as a TNIK inhibitor: Its radius was 
7, whereas the KierA2 (5.24) and PEOE_VSA_HYD (213.47) were significantly below the averages of KierA2 
(8.03) and PEOE_VSA_HYD (297.95) obtained from Dataset I.

Experimental validation of MBZ as a TNIK inhibitor.  We performed experimental studies of MBZ 
using the KINOMEscan platform to evaluate its binding to TNIK and selectivity among different kinases. Our 
result shows that MBZ inhibits 91.8% of TNIK activity at 10 μ​M. Compared with other inhibitors, such as dasat-
inib (89% inhibition at 10 μ​M) and gefitinib (66% inhibition at 10 μ​M), the Kd of MBZ binding to TNIK is likely 
to be ~1.0 μ​M (Table 5). In contrast, MBZ does not exhibit significant inhibitory effect, defined as over 70% 
inhibition of the control, on ABL2, EGFR, MEK1, PDPK1, PIK3CA, and ACK1 at 10 μ​M. Since TNIK acts as an 
activator of the Wnt/β​-catenin/TCF4 pathway3,4, this finding is consistent to some previous study showing that 
MBZ exhibits a potent cytotoxicity against β​-catenin-active colon and non-small-cell lung cancer cell lines23.

Discussion
In the present study, we conducted comprehensive modeling studies of TNIK inhibitors and developed CoMFA/
CoMSIA, kNN, and CoMSIA-SIMCA models, which were then rationally applied to screen and identify an 
approved drug, mebendazole, as a potent TINIK inhibitor for cancer therapy. In particular, CoMSIA and kNN 
model provided valuable structural insights that the TNIK inhibitors usually favor the linear and hydrophilic 
moieties rather than the complex and hydrophobic groups. Meanwhile, CoMSIA-SIMCA classification model 
provided a platform to conduct efficient primary screening of potential TNIK inhibitors. As part of the recent 
polypharmacology and drug repurposing efforts24,25 such comprehensive studies and the resultant models are 
ready to be used for compound repositioning against other targets.

Actual/Predicted IV V VI VII Total

IV 21 1 0 0 22

V 0 8 1 0 9

VI 0 1 9 0 10

VII 0 0 1 6 7

Table 3.   CoMSIA-SIMCA analysis for the training set upon five-group cross-validation. Category IV: 
pKd <​ 5; Category V: 5 ≤​ pKd <​ 6; Category VI: 6 ≤​ pKd <​ 7; Category VII: pKd ≥​ 7.

ActualCat4 ActualCat5 ActualCat6 ActualCat7

ProjectedCat4 201.395 270.533 320.406 381.345

ProjectedCat5 262.338 165.989 241.476 292.651

ProjectedCat6 305.968 231.206 181.780 244.579

ProjectedCat7 377.213 277.938 239.415 170.452

Table 4.   Distance between categories obtained from CoMSIA-SIMCA model.



www.nature.com/scientificreports/

7Scientific Reports | 6:33534 | DOI: 10.1038/srep33534

Mebendazole (MBZ), as a marketed drug, is suited for further clinical study considering its promising safety 
profile22. Several studies have suggested MBZ as a potent antitumor agent. For instance, MBZ was demonstrated 
significant inhibition against the growth and metastasis of the adrenocortical carcinoma, both in vitro and  
in vivo26. In addition, studies have shown that MBZ could cause a mitotic arrest and a time-dependent apop-
totic response in various cancercell lines27,28. However, the mechanism of its antitumor property remains elusive. 
The most well-known target of MBZ is tubulin, in which MBZ directly binds tubulin and impairs the tubulin 
polymerization27,29.

Herein, we identified a novel mechanism of action for MBZ which targets an oncogenic protein, TNIK, in a 
clinical-relevant signaling pathway, particular in colorectal cancer. TNIK phosphorylates S154 of TCF4, and its 
catalytic activity has proved to be essential for the colorectal cancer growth3. According to our experimental test-
ing results, the Kd for MBZ against TNIK kinase domain is around 1 μ​M, which is of the same order of magnitude 
as the reported Kd value to mammalian brain tubulin (0.5 μ​M)30. In addition, mebendazole is a FDA-approved 
drug and can be used at a significantly higher dosage (up to 200 mg/kg with daily use31) without severe side 
effects. In addition, mebendazole may exhibit a synergic anti-tumor effect with other anti-cancer drugs through 
disrupting cytoskeleton because TNIK kinase activity has proven essential to regulate the F-actin fiber forma-
tion32. Such advantages render the possibility of quickly translating the discovery into clinical setting for cancer 
treatment in the near future.

Materials and Methods
Dataset.  We collected a series of potent TNIK inhibitors from a previous study, including 48 patented TNIK 
inhibitors with known IC50 values (Dataset I)10, and 72 kinase inhibitors with known dissociation constant values 
(Kd) (Dataset II)11. All of the patented compounds along with the inhibitory IC50 values are available in Fig. 1. 
The chemical structures and the Kd values were retrieved from the ChEMBL database (ID: 1908790). The kinase 
inhibitors in Dataset II were classified into type 1, type 2 and allosteric inhibitors based on the available literatures 
and protein-ligand complex structures (Supplementary Table 1). –log(IC50) and –log(Kd) values were computed 
as the dependent variable for all analyses. Since Dataset I and II cover different chemical space, they are curated 
herein to achieve different goals and thus we kept them separate during model building.

3D-QSAR by CoMFA and CoMSIA.  3D-molecular alignment were prepared using SYBYL 8.1 (Tripos, Ltd, 
US) and Molecular Operating Environment (MOE 2010.10). For dataset I, molecular alignments were performed 
using substructure overlap thiazole-4-carboxamide core with respect to the docking poses (see molecular dock-
ing for details). The resulting alignment was refined by flexible alignment using MOE. The alignment is available 
from the authors upon request. CoMFA and CoMSIA were performed by SYBYL 8.1 using the default parameter 
(Tripos standard field, 2 Å grid spacing, dielectric distance 1/r2, 30 kcal/mol cutoff) probed by an sp3 carbon 
with a charge of +​1. CoMFA steric energy (Lennard-Jones) and electrostatic (Coulomb) energy were calculated. 
CoMSIA steric, electrostatic and hydrophobic energies were calculated with the attenuation factor =​ 0.3. Pullman 
charges were used for electrostatic field calculations. 3D-QSAR was performed by partial least squares (PLS) anal-
yses. Dataset I was divided into a training set (38 compounds) and a test set (10 compounds) based on the Sphere 
Exclusion (SE) algorithm15. The details of data splitting are available in Supplementary Table 3. Leave-one-out 
cross-validation was used for the training set. The predictive ability the non-cross-validated models were vali-
dated using the test set. The statistics of the resulted CoMFA and CoMSIA models are available in Table 1.

2D-QSAR by variable-selected kNN.  2D-QSAR was performed on dataset I. A total of 186 2D-descriptors 
were calculated with MOE 2010.10. The resulting descriptors were normalized to [0, 1], and the descriptors with 
zero standard deviation were removed. As described previously, dataset splitting was performed using an SE8 pro-
gram implemented with sphere exclusion algorithm15. The details of data splitting are available in Supplementary 
Table 4. The resulting 50 training and test sets which consider the diversity of descriptors were used to build the 

Compound Kinase

% Ctrl

Kd (μM)0.1 μM 10 μM

Sunitinib TNIK 37 0 0.025

Dasatinib TNIK 82 11 2.0

Gefitinib TNIK 100 34 6.9

Lapatinib TNIK 90 93 >​10

Flavopiridol TNIK 92 33 >​10

Mebendazole TNIK 97 8.2 ND

ABL2 100 33 ND

MEK1 100 38 ND

EGFR 100 83 ND

ACK1 100 98 ND

PDPK1 100 100 ND

PIK3CA 100 100 ND

Table 5.   The experimental results from KINOMEscan scanELECT. The values were reported as percentage 
of control, where lower value indicates stronger binding. ND – not determined.
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predictive k-nearest neighbor (kNN) models. The implementation of this variable-selection kNN algorithm has 
been published elsewhere33. Concisely, the simulated annealing algorithm was employed to explore the entire 
descriptor spaces and optimize the descriptor subset based upon the leave-one-out (LOO) cross-validation q2. 
The models whose q2s satisfied the cutoff were validated on their respective test sets (non-cross-validated). Only 
the kNN models satisfying the criteria that “q2 >​ 0.7 and r2 >​ 0.7 and number of descriptors <​10” were kept for 
further analysis.

Molecular docking.  High-resolution crystal structure of TNIK in complex with Wee1 kinase inhibitor was 
obtained from Protein Data Bank (PDB ID: 2X7F). Due to the structural defects in the ATP binding site, we 
aligned all available five chains in 2X7F, and chain B was used as receptor because its ATP-binding site had 
the least number of missing residues (e.g., E29, T35, K41, K54, M56, E69, K155, E163). The missing ζ​-amine 
of K54 and K155 were manually added, and these two ζ​-amine moieties were subjected to energy minimiza-
tion optimization. Considering the dynamics of the TNIK kinase domain, we established three different mod-
els, TNIKopen, TNIKclose and TNIKDFG-out, to represent the lobe-open, lobe-close and DFG-out conformations. 
TNIKclose used the original coordinates in 2X7F. Based on TNIKclose, we built TNIKopen by modeling the TNIK 
lobe (residue 29–41) with respect to a template in which lobe is in open conformation (PDB ID: 3NIZ, residue 
27–39). Similarly, TNIKDFG-out was built by modeling the TNIK activation loop (residue 170–173) with respect 

Figure 4.  The binding modes of dasatinib (white) and Mebendazole (yellow) in TNIK kinase domain. The 
blue ribbons represents TNIK kinase domain, and the hinge residues and D115 side chain are highlighted with 
sticks. The magenta dashed lines represent the hydrogen bonds between Mebendazole and hinge. Chemical 
structures of Dasatinib and Mebendazole are also shown.
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to the sorafenib-bound template (PDB ID: 3HEG34, residue 167–170). GOLD 5.1 (CCDC)35 was used for molec-
ular docking. Based on the expert knowledges on kinase and the crystal structure of p38α​ in complex with an 
isothiazole-4-carboxamdide derivative, CP-547632 (PDB ID: 3L8S)36, we constrained the hydrogen bonds with 
the carbonyl group of M106 localized at the hinge. All of the docking parameters were the same as previously 
described37, except that ChemScore-Kinase scoring function was used because its ability to recognize the acti-
vated CH groups (e.g., the CH group next to the nitrogen in a pyridine) for H-bonds. In addition, the soft poten-
tials on Y36 were employed for TNIKclose to account for the flexibility of the tip of the lobe.

CoMSIA-SIMCA.  A total of 54 type 1 kinase inhibitors were selected from Dataset II for CoMSIA-SIMCA 
modeling (Supplementary Table 1). The selected molecules were aligned by molecular docking to TNIKopen 
and TNIKclose. For each molecule, only the top-ranking pose that was similar to the one crystallized in the 
reference structures (root mean square deviation <​3.0 Å and same H-bond pattern to the hinge) is kept for 
CoMSIA-SIMCA modeling. The CoMSIA fields (steric, electrostatic, hydrophobic, H-bond acceptor, H-bond 
donor) were computed using the parameters described above. These type 1 inhibitors were classified into 
four groups based on their respective pKd values (Table 3), and the dataset was divided into a training set (48 
compounds) and a test set (6 compounds). The SIMCA model derived from the training set was validated by 
five-group cross-validation. The details of data splitting and predictions are available in Supplementary Table 5.

Experimental validation.  We collected 1,448 FDA-approved small-molecule drugs from the DrugBank38. 
These molecules were docked to TNIKopen and TNIKclose using the same procedure described above, and the bind-
ing affinities to TNIK were predicted by CoMSIA-SIMCA model. Ten hits (Amodiaquine, Gefitinib, Sunitinib, 
Mebendazole, Dasatinib, Lapatinib, Imatinib, Sorafenib, Flavoxate, and Flavopiridol) that were predicted to be 
Category V, VI or VII were selected for experimental validation using KINOMEscan (DiscovRx, San Diego, 
CA) against seven kinases (TNIK, Activated CDC42 kinase 1 (ACK1), phosphatidylinositol–4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA), 3-phosphoinositide dependent protein kinase-1 (PDPK1), Abelson 
tyrosine-protein kinase 2 (ABL2), Epidermal growth factor receptor (EGFR), Mitogen-activated protein kinase 
kinase (MEK)). Briefly, this KINOMEscan platform quantifies the amount of DNA-tagged kinase that is unable 
to bind the immobilized reference ligand after adding the testing ligand by qPCR. The selected compounds were 
tested at 0.1 μ​M and 10 μ​M. The results of KINOMEscan testing were reported as the percentage of the control (% 
Ctrl) where lower values suggest stronger hits: % Ctrl =​ (test compound signal − ​positive control signal)/(negative 
control signal −​ positive control signal).
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