
OPEN

REVIEW ARTICLE

Biosynthesis and molecular actions of specialized
1,4-naphthoquinone natural products produced by
horticultural plants
Joshua R Widhalm and David Rhodes

The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many
horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant–plant (allelopathy),
plant–insect and plant–microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of
traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies
conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from
horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding
of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products
originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and
pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for
improving basic knowledge about plant 1,4-NQ metabolism are discussed.
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INTRODUCTION
The 1,4-naphthoquinones (1,4-NQs) are redox active compounds
structurally related to naphthalene that are comprised of a
benzene moiety (ring A) linearly fused with a fully conjugated
cyclic diketone (ring B) in which the carbonyl groups are arranged
in the para orientation (Figure 1a). In living organisms, 1,4-NQs
encompass a class of natural products containing a 1,4-
naphthalenoid ring, often bearing one or more methyl, hydroxyl
and/or methoxy substitutions, and, in some molecules, a
liposoluble side chain.
The 1,4-NQs are synthesized by organisms throughout all

kingdoms of life (described below) and are involved in vital
metabolic processes and/or contribute toward adaptation to
ecological niches. Filamentous fungi synthesize dozens of 1,4-NQ-
based compounds,1 some of which are reported to be responsible
for coloring of sexual fruiting bodies and thought to confer
protection against ultraviolet, desiccation and insects.2 Although
restricted to only a handful of lineages, several animals also
produce 1,4-NQs, such as those found in secretions of a few
tenebrionid beetles3 and in the scent-producing glands of certain
arachnids.4 Moreover, the sea urchin, Strongylocentrotus purpur-
atus, is reported to make a red-colored 1,4-NQ called echino-
chrome in its pigment-producing cells.5,6 Within bacteria, the
Actinomycetes produce numerous 1,4-NQs,7 as well as substituted
5,8-dihydroxy-1,4-NQs called naphthazarins (NZs; Figure 1b) that
form core moieties in the antimicrobial rubromycins.8 Many extant
archaea and bacteria have retained the ability to synthesize
menaquinone (vitamin K2; Figure 1b), a prenylated 1,4-NQ
suggested to be the ancestral quinone involved in anaerobic
respiratory electron transport chains.9 In some cyanobacteria,
rhodophytes (red algae)10 and most diatoms (protists),11

menaquinone fulfills the role of phylloquinone (vitamin K1;
Figure 1b), which is the 1,4-NQ involved in photosynthesis in
plants,12 green algae,13 many cyanobacteria9 and some eugle-
noids (for example, Euglena gracilis14).
Perhaps the greatest diversity of 1,4-NQs is found amongst the

specialized natural products synthesized by plants, particularly
those by horticultural species (see refs 7,15–20 for further infor-
mation on the occurrence of plant 1,4-NQs). Collectively, using
several different metabolic pathways, plants produce hundreds of
specialized 1,4-NQs, NZs and derived metabolites, including
certain anthraquinones (AQs; Figure 1b). Together, these natural
products possess a multitude of biochemical properties modulat-
ing numerous ecological and pharmacological roles, offering new
targets for addressing challenges in modern horticulture and
providing scaffolds for developing novel drugs.
This review summarizes the current knowledge on the different

plant biosynthetic pathways involved in forming simple 1,4-
naphthalenoid rings and on the metabolism of downstream 1,4-
NQs derived from horticultural species. Advances made in
uncovering the molecular mechanisms of action, ecological
functions and pharmacological activities of select specialized
horticultural plant 1,4-NQs are also highlighted. Table 1 sum-
marizes the horticultural species and 1,4-NQ natural products
covered in this review. As the production of some 1,4-NQ natural
products involves intermediates shared in phylloquinone bio-
synthesis, relevant discoveries that have improved the under-
standing of this primary metabolic pathway in Arabidopsis thaliana
will also be described. However, more comprehensive reviews on
this pathway have recently become available,21,22 as have reviews
concerning the metabolism of precursors for each of the 1,4-NQ
biosynthetic pathways (for example, for the shikimate pathway,23
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benzoic acids,24 isoprenoids25 and polyketides26). Finally, this
report will cover future directions for addressing gaps still
remaining in understanding specialized plant 1,4-NQ metabolism.

PLANTS HAVE EVOLVED SEVERAL PATHWAYS TO SYNTHESIZE
1,4-NAPHTHALENOID RINGS
In nature, 1,4-NQs are known to be derived from several metabolic
pathways: the o-succinylbenzoate (OSB; Figure 2) pathway; the 4-
hydroxybenzoic acid (4HBA; Figure 2)/geranyl diphosphate (GPP;
Figure 2) pathway; the acetate-polymalonate pathway; the

homogentisate (HGA; Figure 2)/mevalonic acid (MVA) pathway;
and the futalosine pathway. Except for the futalosine pathway,
which was recently discovered to be an alternative route toward
menaquinone in some bacteria,27 all of these pathways are
present in the plant kingdom. In the OSB, 4HBA/MVA and
HGA/MVA pathways, chorismate, the product of the shikimate
pathway,23 ultimately provides one of the rings in the core 1,4-
naphthalenoid structure, although the chorismate product from
which each pathway starts is different (Figure 2). The precursor for
the second ring is another feature that differentiates these three
pathways (Figure 2). Finally, specialized plant 1,4-NQs synthesized
via the acetate-polymalonate pathway, as the name implies, are
derived from the condensation of acetyl-CoA with multiple
malonyl-CoA molecules (Figure 2).

The OSB pathway
The OSB pathway consists of a core set of seven reactions that
convert chorismate to 1,4-dihydroxy-2-naphthoate (DHNA;
Figure 2), which supplies the 1,4-naphthalenoid ring for mena-
quinone in most bacteria and for phylloquinone in all plants. In
some plants, DHNA is also the precursor for specialized 1,4-NQs,
such as lawsone (2-hydroxy-1,4-NQ; Figure 2) and juglone (5-
hydroxy-1,4-NQ; Figure 2). The first indication for the existence of
the OSB pathway came in the 1960s when it was shown that
[U-14C]-shikimate fed to Escherichia coli and to etiolated maize
shoots labeled menaquinone28 and phylloquinone,29 respectively.
Experiments demonstrating that labeling from [U-14C]-shikimate
could also be retrieved in the benzene moiety (ring A) of
lawsone30,31 and juglone32 soon followed. First evidence for the
origin of the quinone moiety (ring B) in OSB-derived 1,4-NQs came
from tracer studies in Impatiens balsamina (Garden balsam)
showing that [2-14C]-glutamate33 and [U-14C]-α-ketoglutarate34

Figure 1. (a) Basic structure and redox forms of 1,4-NQs and (b)
examples of 1,4-NQ natural products referenced in the text.

Table 1. Major 1,4-NQ natural products produced by horticultural
species highlighted in this review

Common name Scientific name Major 1,4-NQ natural
product(s) present

Medicinal or ethnobotanical
Henna Lawsonia inermis Lawsone
Pau d’arco tree Tabebuia impetiginosa Lapachol
Madder Rubia tinctorum Alizarin
Purple gromwell
(Zi cao)
Arnebia

Lithospermum
erythrorhizon
Arnebia euchroma

Shikonins

Alkanet
Arizona popcorn
flower

Alkanna tinctoria
Plagiobothrys arizonicus

Alkannins

Pipsissewa
One-flowered
wintergreen

Chimaphila umbellate
Moneses uniflora

Chimaphilins

Indian leadwort Plumbago indica Plumbagin

Ornamental
Garden balsam Impatiens balsamina Lawsone
Himalayan balsam Impatiens glandulifera Lawsone, 2-MNQ
Venus fly trap Dionaea muscipula Plumbagin,

droserone
Pitcher plants Nepenthes sp. Plumbagin,

droserone,
7-Methyljuglone

Nuts and seeds
Black walnut
English walnut

Juglans nigra
Juglans regia

Juglone

Pecan Carya illinoensis Juglone
Sesame Sesamum indicum Anthrasesamones

Abbreviations: 1,4-NQ, 1,4-naphthoquinone; 2-MNQ, 2-methoxy-1,4-NQ.
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labeled lawsone in a specific pattern. Extension of this finding led
to further investigations establishing that OSB is an intermediate
and that DHNA is the product from which the OSB pathway
branches toward production of various 1,4-NQs.35–39

Nearly all the plant OSB pathway genes have been identified
and functionally characterized from biochemical and genetic
studies investigating phylloquinone biosynthesis in Arabidopsis.40–44

The OSB route begins with the isomerization of chorismate to
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isochorismate by isochorismate synthase41,42 (ICS; reaction 1,
Figure 2), an enzyme that is shared with plant pathways for
salicylic acid40,41,45 and 2,3-dihydroxybenozic acid46,47 biosynth-
esis. Isochorismate is then the substrate for PHYLLO,42 a
trifunctional enzyme with 2-succinyl-5-enolpyruvyl-6-hydroxy-3-
cyclohexene-2-carboxylate (SEPHCHC) synthase, 2-succinyl-6-
hydroxy-2,4-cyclohexadiene-2-carboxylate (SHCHC) synthase and
OSB synthase domains (reactions 2–4, Figure 2). On the basis of
biochemical characterization of their bacterial orthologs, these
enzymes, respectively, are known to sequentially catalyze the
addition of α-ketoglutarate48 (ultimately providing the succinyl
side chain of OSB) to form SEPHCHC, the 2,5-elimination of the
pyruvyl side chain to form SHCHC,49 and dehydration to produce
OSB,50,51 the aromatized ring of which serves as the benzene
moiety (ring A) in the eventual 1,4-naphthalenoid structure of
DHNA (Figure 2). Next, the succinyl side chain of OSB is activated
to its corresponding CoA-ester by OSB-CoA ligase (reaction 5,
Figure 2)43,52 and cyclized by DHNA-CoA synthase (reaction 6,
Figure 2)53 (formerly misnamed as DHNA synthase) to produce the
quinone moiety (ring B) in the resulting product, DHNA-CoA
(Figure 2). Although no plant DHNA-CoA synthase has been
functionally characterized, a predicted ortholog of the E. coli
DHNA-CoA synthase gene, menB, is present in Arabidopsis and co-
expresses with other known phylloquinone biosynthetic genes.43

Phylogenetic reconstruction has revealed that plant DHNA-CoA
synthases belong to the type I class, which rely on bound
bicarbonate as the catalytic base,54 suggesting the OSB pathway
may be regulated by cellular bicarbonate levels. The final step of
the core OSB pathway is hydrolysis of DHNA-CoA to DHNA
(Figure 2), a reaction that was previously assigned to DHNA-CoA
synthase, then to SHCHC synthase and finally thought to occur
spontaneously.55,56 Only recently was it demonstrated that
cyanobacteria,57 E. coli58 and plants44 contain thioesterases
catalyzing the hydrolysis of DHNA-CoA to DHNA (reaction 7,
Figure 2). Once formed, DHNA is then used to synthesize
phylloquinone in all plants. First, DHNA is phytylated by DHNA
phytyl transferase (reaction 8, Figure 2),59 a reaction that is
accompanied by decarboxylation and spontaneous oxidation of
the 1,4-naphthalenoid ring.60 A demethylnaphthoquinone oxidor-
eductase then reduces the resulting demethylphylloquinone
product to demethylphylloquinol (reaction 9, Figure 2),61 which
is promptly transmethylated by demethylphylloquinone methyl-
transferase to phylloquinol (reaction 10, Figure 2),61,62 the reduced
form of phylloquinone.
One interesting, yet poorly understood, aspect of the plant OSB

pathway is its split between plastids and peroxisomes. Fluorescent
protein fusion experiments revealed that the conversion of
chorismate to OSB by ICS and PHYLLO occurs in plastids.41,42

The site(s) of OSB-CoA formation, however, remains enigmatic as
fluorescent protein fusion experiments showed OSB-CoA ligase is

dual localized in plastids43 and peroxisomes.63 Peptide fragments
of the spinach MenB ortholog, a priori catalyzing the formation of
DHNA-CoA from OSB-CoA, were retrieved in proteomes obtained
from leaf peroxisomes, and the Arabidopsis ortholog was
demonstrated through fluorescent protein fusion experiments to
localize to peroxisomes.63 In Arabidopsis, DHNA-CoA thioesterase
activity was detected in purified peroxisomes, and found to be
absent in plastids.44 Moreover, based on fluorescent protein fusion
experiments and proteomics evidence, the cognate enzymes were
established to localize to peroxisomes.44,64 Together, these data
suggest that OSB and/or OSB-CoA is exported from plastids and
converted to DHNA in peroxisomes. The final three enzymes in
phylloquinone biosynthesis are localized in plastids,59,61,62 defini-
tively indicating that DHNA must be transported from peroxi-
somes to plastids. It is also likely that DHNA is needed in plastids
to synthesize AQs derived from the OSB pathway (Figure 1).
Labeling studies with Rubia tinctorum65 and Cinchona ‘Robusta’66

cell cultures showed that the methylerythritol 4-phosphate (MEP)
pathway, which is localized in plastids, is overwhelmingly the
dominant source of isopentenyl diphosphate/dimethylallyl dipho-
sphate (DMAPP) used to synthesize ring C of their respective AQs
(Figure 2). Similarly, labeling patterns retrieved in the anthrasesa-
mone type AQs produced by sesame (Sesamum indicum) hairy
root cultures fed with [1-13C]-glucose revealed DHNA from the
OSB pathway and GPP produced by the MEP pathway as the
sources of rings A and B, and ring C, respectively.67 These studies
are in agreement with those performed by Leistner showing
that [2-14C]- and [5-14C]-mevalonic acid are negligibly incorpo-
rated into ring C of alizarin (Figure 1b), a red pigment pro-
duced in roots of madder (R. tinctorum).68,69 It still remains an
open question if there are additional subcellular destinations for
DHNA in plants as, as described below, none of the specialized
1,4-NQ biosynthetic enzymes downstream of DHNA have been
identified.
In many members of the Juglandaceae, including black walnut

(Juglans nigra) and English walnut (Juglans regia), DHNA is an
intermediate in the synthesis of juglone and several other related
1,4-NQs.70 Chemical degradation of juglone isolated from J. regia
leaves fed with radiolabeled precursor revealed that the carboxyl
group of shikimate is equally distributed between the keto groups
(C1 and C4) in the quinone moiety of juglone, leading to the
hypothesis that a symmetrical intermediate like 1,4-naphthoqui-
none (Figure 2) must be an intermediate in the pathway.32 Indeed,
1,4-naphthoquinone was found to be present in J. regia leaves and
to be labeled by radiolabeled OSB.39,71 This suggests the existence
of an enzyme that decarboxylates DHNA to 1,4-naphthoquinone.
The subsequent conversion of 1,4-naphthoquinone to juglone is
likely to be carried out by a hydroxylase, perhaps belonging to the
cytochrome P45072 or 2-oxoglutarate/Fe(II)-dependent dioxygen-
ase (2-ODD)73 families.

Figure 2. The plant 1,4-NQ biosynthetic network. Presented is the current understanding of the enzymes and intermediates involved in the
core metabolic pathways for synthesizing 1,4-naphthalenoid rings in plants and for producing some of the major horticultural 1,4-NQs.
Subcellular architecture is not depicted but is discussed in the text. Black arrows indicate the existence of genetic evidence to support
biosynthetic reactions, while gray arrows signify a lack of genetic evidence. Tandem triplicate arrows indicate an unknown number of multiple
steps to go from a given intermediate to the next metabolite. Dotted arrows are used to represent steps to and from postulated
intermediates. White block arrows represent entire metabolic pathways to relevant or noteworthy metabolites not addressed in this review.
Question marks next to arrows indicate that enzymatic activities for those steps have not been described. Numbers next to arrows represent
characterized enzymes or detected enzymatic activities: 1, isochorismate synthase; 2, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-2-
carboxylate (SEPHCHC) synthase; 3, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-2-carboxylate (SHCHC) synthase; 4, o-succinylbenzoate (OSB)
synthase; 5, OSB-CoA ligase; 6, Dihydroxynaphthoyl-CoA (DHNA-CoA) synthase; 7, DHNA-CoA thioesterase; 8, Dihydroxynaphthoic acid
(DHNA) phytyl transferase; 9, NAD(P)H dehydrogenase C1 (NDC1); 10, Demethylphylloquinone methyltransferase; 11, cytosolic geranyl
diphosphate synthase (GPPS); 12, p-hydroxybenzoate:geranyltransferase (PGT); 13, geranylhydroquinone (GHQ) 3″-hydroxylase; 14, polyketide
synthase (PKS). BA, benzoic acid; DHBA, dihydroxybenzoic acid; DMAPP; dimethylallyl diphosphate; E4P, D-erythrose 4-phosphate; G3P,
glyceraldehyde 3-phosphate; IPP, isopentenyl diphosphate; MEP, methylerythritol 4-phosphate; MVA, mevalonic acid; PEP, phosphoenolpyr-
uvate; PKR, polyketide reductase; PP, diphosphate.
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Phenolic compounds are often glycosylated to increase their
solubility and stability, to aide in transport and sequestration, and
to render the compounds physiologically inactive in plants.74 It
should come as no surprise then that in several species, such as
black and English walnut,75 J. major, J. microcarpa76 and a number
of pecan (Carya illinoensis) cultivars,77,78 juglone has been found to
accumulate in many tissues in its glycosylated form, hydrojuglone
glucoside (HJG; 1,5-dihydroxy-4-naphthalenyl-β-D-glucopyrano-
side; Figure 1b). This modification may allow juglone to be stored
in large quantities and to reduce the potential for autotoxicity. In
English walnut leaves, glycosyltransferase activity with a benzo-
quinone substrate has been detected,76 though the responsible
enzyme is unknown and activity with HJG has yet to be
demonstrated. Moreover, glycosylation depends on the quinone
substrate being in its reduced form,76 thus implicating the
existence of an oxidoreductase capable of first reducing juglone
to hydrojuglone (1,4,5-trihydroxynaphthalene; Figure 1b).
Although there have been no reports on the presence of such
an enzyme in Juglans species, a quinone oxidoreductase that uses
NADH or NADPH as electron donors to reduce a variety of
quinones, including juglone, has been identified in roots of the
parasitic plant Triphysaria versicolor.79 Just as reduction followed
by glycosylation inactivates juglone, deglycosylation of HJG by an
unknown β-glucosidase purified from English walnut husks
releases hydrojuglone aglycone, which then spontaneously
oxidizes to generate active juglone.80

Another major specialized 1,4-NQ derived from DHNA is
lawsone, the molecule responsible for the reddish-orange dyestuff
extracted from Henna (Lawsonia inermis) leaves. Lawsone is also
found in the flowering aerial parts and roots of several Impatiens
species.81–83 Similar to juglone, lawsone is a simple hydroxylated
1,4-NQ, though its biosynthesis is quite different. This idea first
emerged after feeding studies with I. balsamina showed that
labeled shikimate incorporated into juglone and lawsone in
different patterns.31,32 Later, using the same model species, Chung
et al.71 demonstrated with stable-isotopically labeled [1-13C]-OSB
that the C1 keto group of lawsone was substantially more highly
labeled compared with the C4 keto group, indicating that OSB is
asymmetrically incorporated into lawsone.71 Therefore, in contrast
to juglone, the biosynthesis of lawsone does not proceed through
a symmetrical 1,4-naphthoquinone intermediate and is instead
likely formed via oxidative decarboxylation of DHNA by an
unknown enzyme (Figure 2). The glucosylated form of reduced
lawsone, 1,2,4-trihydroxynaphthalene-1-O-glucoside (Figure 1b),
has been reported in Impatiens glandulifera (Himalayan balsam),
thus pointing to the presence of an oxidoreductase and a
glycosyltransferase analogous to those involved in metabolizing
juglone.
Lawsone is also precursor to other 1,4-NQ natural products.

An allelopathic methylated lawsone derivative, 2-methoxy-1,4-NQ
(2-MNQ; Figure 2), is found in many tissues of several
Impatiens species,81,83–85 and is almost certainly formed via an
S-adenosylmethionine-dependent O-methyltransferase.86 In
several native Central and South American trees, including the
Pau d’arco tree (Red Lapacho; Tabebuia impetiginosa, syn.
Tabebuia avellanedae)87 and Tabebuia guayacan,15 lawsone is
proposed to provide the hydroxylated naphthalenoid structure of
the prenylated 1,4-NQ lapachol (Figure 2).16 The identity of the
responsible prenyltransferase is unknown and it is still unclear if
the DMAPP moiety of lapachol is predominantly derived from the
MEP or MVA pathway. Lapachol is also thought to be a precursor
for other 1,4-NQ, 1,2-NQ (for example, β-lapachone) and AQ
derivatives (Figure 2) contributing to the resistance of Tabebuia
trees to marine borers88,89 and to their wide range of medicinal
properties.16,87

The 4HBA/MVA pathway
Many boraginaceous species utilize the 4HBA/MVA pathway to
synthesize a subclass of 1,4-NQs called isohexenylnaphthazarins
(IHNs). These compounds are comprised of a NZ ring (Figure 1b)
conjugated with a lipophilic side chain on the quinone moiety.
The IHNs encompass the red-pigmented compounds shikonin,
alkannin and at least 40 other acylated derivatives (Figure 2)
synthesized in roots of medicinal species like Lithospermum
erythrorhizon and Alkanna tinctoria.90 Early tracer experiments
demonstrated that phenylalanine (via cinnamic acid and 4HBA)
and mevalonic acid are precursors for the benzene and quinone
rings, respectively, of alkannin produced in Plagiobothrys
arizonicus.91 This finding, in combination with isolation of 3-
geranyl-4HBA and geranylhydroquinone from cell cultures of
L. erythrorhizon,92,93 led to the hypothesis that alkannin and shikonin
are likely synthesized via a pathway analogous to ubiquinone
biosynthesis with subsequent ring closure reactions (Figure 2).
Biosynthesis of benzoic acids from phenylalanine in plants

involves a complex network of metabolic routes branching off
the core phenylpropanoid pathway.24 Administration of the
phenylalanine-ammonia lyase (PAL) inhibitor aminoindan-2-
phosphonic acid to L. erythrorhizon cell cultures effectively
blocked shikonin formation.94 Yazaki et al.95 demonstrated that
the enzymatic formation of 4HBA from 4-coumaric acid (4CA)
in L. erythrorhizon cell cultures partially proceeds through
the ‘non-oxidative route’ based on the presence of a
4-hydroxybenzaldehyde intermediate, dependence on NAD and
the lack of an ATP or CoA requirement.95 It was later discovered
that L. erythrorhizon cell cultures are also capable of converting
4CA-CoA to 4HBA via the ‘β-oxidative route’,96 which was recently
shown to provide the 4HBA ring for ubiquinone biosynthesis in
Arabidopsis.97 Genes encoding the core phenylpropanoid path-
way enzymes PAL, cinnamic acid 4-hydroxylase (C4H) and
4CA-CoA ligase (4CL) have been cloned and studied from
L. erythrorhizon98,99 and Arnebia euchroma,100 but those involved
in the ‘non-oxidative’ and ‘β-oxidative’ routes have not. Benzoic
acid ‘β-oxidative route’ genes have been identified in other
species, while all but one of the ‘non-oxidative route’ genes
remain unknown across all plants.24 Once synthesized, 4HBA can
be glucosylated by a cytosolic glucosyltransferase and stored
in the vacuole until released to its free form by a cytosolic
β-glucosidase upon stimulation of shikonin production.101

In plants, GPP is predominantly synthesized from isopentenyl
diphosphate and DMAPP derived from the MEP pathway using a
GPP synthase (GPPS) localized in plastids.25 It is therefore
noteworthy that the GPP precursor ultimately providing ring
B of shikonin- and alkannin-type 1,4-NQs was shown to be derived
from the MVA pathway (based on labeling91 and inhibitor
studies94,100) and to originate via the only known cyto-
solically localized GPPS (reaction 11, Figure 2).102,103 Expression
of multiple MVA pathway genes in A. euchroma,100 and the
activity and cognate gene expression of the key MVA pathway
enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in
L. erythrorhizon,104 correlate with shikonin production. Generally,
MVA pathway genes are more highly expressed in non-
photosynthetic tissues, like roots, whereas MEP pathway genes
are primarily active in green tissues.25

The committed step of shikonin and alkannin biosynthesis
begins with the addition of GPP to 4HBA by a GPP:4HBA
3-geranyltransferase (p-hydroxybenzoate:geranyltransferase,
PGT; reaction 12, Figure 2). Activity of this enzyme was first
reported in L. erythrorhizon extracts.105 Later, PGT was shown to
be localized to the endoplasmic reticulum106 and to have a
high affinity for GPP (Km=18.4 μM) and 4HBA (Km=13.8 μM).107

Two cDNAs encoding PGTs with 93% identity were isolated from
L. erythrorhizon cell cultures.108 Subsequent biochemical charac-
terization of one isoform, LePGT1, revealed that the N-terminal
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130 amino acids are responsible for its specificity for GPP109 and
that it is inhibited by aromatic substrates with two phenolic
hydroxyl groups.110

After the PGT-catalyzed reaction, very little is known about the
biosynthesis of shikonin- and alkannin-type 1,4-NQs. It is likely the
next steps entail decarboxylation and hydroxylation of the C1
position of the 3-geranyl-4HBA product of PGT. In bacterial
ubiquinone biosynthesis, the C1 position of the polyprenylated
4HBA product is non-oxidatively decarboxylated using a pre-
nylated flavin cofactor to produce a prenylphenol
intermediate,111,112 which is hydroxylated further down the
pathway.113 It is possible that 3-gernanyl-4HBA is decarboxylated
and hydroxylated in a similar fashion by discrete enzymes to
produce geranylhydroquinone (GHQ), which has been detected in
planta,92,93 via a 2-geranyl-phenol intermediate (Figure 2). Alter-
natively, 3-geranyl-4HBA may be directly converted to GHQ by
oxidative decarboxylation. The next reaction in the pathway is
hydroxylation of the GHQ isoprenoid side chain to produce 3″-
hydroxy-GHQ by a GHQ 3″-hydroxylase (reaction 13, Figure 2). A
GHQ 3″-hydroxylase was partially purified from the microsomal
fraction of L. erythrorhizon cell cultures and shown to require
NADPH and molecular oxygen as cofactors, suggesting it is a
cytochrome P450-dependent monooxygenase.114 Moreover, the
purified GHQ 3″-hydroxylase was found to have a Km for GHQ of
1.5 μM and to be inhibited by the shikonin derivative acetylshi-
konin at a concentration as low as 10 μM.114 It has been proposed
that cyclization of 3″-hydroxy-GHQ to form the quinone moiety of
the 1,4-NQ skeleton occurs via oxidation of the C3″ position to
generate an aldehyde capable of forming the aromatic nucleus via
an electrophilic reaction.114 As deoxyshikonin has been detected
in shikonin-producing species,115,116 it is probable that it is the
final intermediate in the pathway and is converted to shikonin (or
alkannin in alkannin-producing species) by GHQ 3″-hydroxylase or
a similar enzyme. To date no enzymes downstream of GHQ have
been identified.
Production of shikonin and its derivatives is influenced by many

external factors, as has been previously summarized,117–120 and is
in large part modulated by transcriptional regulation of metabolic
genes.100,121,122 Biosynthesis was also shown to be controlled by
auxin,123 methyl jasmonate124 and ethylene.125–127 Overexpres-
sion of the L. erythrorhizon MYB1 (LeMYB1) transcription factor
gene, an ortholog of the Nicotiana tabacum MYB involved in
regulating phenylpropanoid metabolism,128 led to increased
expression of PAL, HMGR and PGT.129 Non-biosynthetic regulators
of shikonin production have also been identified in L. erythrorhi-
zon, including an unknown cell wall protein, LePS-2, perhaps
involved in deploying shikonin,130 and LeDI-2, a small hydro-
phobic dark-inducible protein of unknown function.131 Down-
regulation of LeDI-2 reduced the shikonin pool size, though had
no affect on the expression of PAL or activity of PGT.131 In addition
to increasing expression of biosynthetic genes, LeMYB1 over-
expression also increased expression of the shikonin regulators
LeDI-2 and LePS-2.129

The HGA/MVA pathway
The HGA/MVA pathway (also referred to as the toluhydroquinone
or toluquinol pathway) is widely distributed throughout, although
limited to, plants within the Pyroloideae subfamily of the
Ericaceae. Very little progress has been made toward under-
standing the metabolism of this pathway as labeling experiments
in Chimaphila umbellata (pipsissewa) established that tyrosine132

and DMAPP derived from the MVA pathway133 provide precursors
for chimaphilin (2,7-dimethyl-1,4-NQ; Figure 2). One unique
feature of the HGA/MVA pathway is that shikimate (via tyrosine)
ultimately provides the quinone moiety of the 1,4-naphthalenoid
ring, compared with the OSB and 4HBA/MVA pathways in which

shikimate (via isochorismate and phenylalanine, respectively)
provides the benzene moiety (Figure 2).
Bolkart and Zenk showed that the β-carbon atom of tyrosine is

exclusively incorporated into the 2-methyl position of chimaphilin
via homogentisate and toluquinol intermediates,132,134 and that
the C7 methyl group arises from the C2 of mevalonic acid.133 It
can thus be envisioned that upon decarboxylation of homo-
gentisate, which is also precursor for tocochromanols and
plastoquinone synthesized in plastids (recently reviewed135),
DMAPP is attached to the toluquinol product (Figure 2). The
resulting prenylated intermediate, dimethylallyl-toluquinol, would
then be cyclized to 5,8-dihydro-2,7-dimethylnaphthalene-1,4-diol,
which would subsequently be aromatized to produce chimaphilin
(Figure 2). Support for such a biosynthetic pathway architecture
comes from the isolation of toluquinol, its glucoside (homo-
arbutin) and the glucoside of 5,8-dihydro-2,7-dimethylnaphtha-
lene-1,4-diol (renifolin) from Pyrola media and Pyrola incarnata.136–138

Beyond supporting the postulated pathway leading to chimaphilin,
these findings raise questions about the role of glycosylation in the
HGA/MVA pathway. Similarly, Moneses uniflora produces chimaphilin
derivatives, including 8-chlorochimaphilin, 8-hydroxychimaphilin
and 3-hydroxychimaphilin, that also appear to be subject to
glycoslylation in their reduced forms.139

The acetate-polymalonate pathway
A fourth route to synthesize plant 1,4-NQs, the acetate-
polymalonate pathway (also referred to as the polyketide path-
way), relies on CoA-linked acetate and malonate substrates, occurs
throughout at least half a dozen unrelated families,7 and is most
notably responsible for the production of plumbagin (5-hydroxy-
2-methyl-1,4-NQ), droserone (3,5-dihydroxy-2-methyl-1,4-NQ), 5-
O-methyldroserone and 7-methyljuglone (Figure 2), as well as bis-
1,4-NQs, such as chitranone and diospyrin (Figure 1b).140 Support
for the acetate-polymalonate pathway surfaced from experiments
conducted by Durand and Zenk showing that labeled acetate
precursors were incorporated into plumbagin in young Plumbago
europaea shoots141 and Drosophyllum lusitanicum leaves.142 More-
over, it was revealed that neither shikimate- nor methionine-
labeled plumbagin strongly indicating that its synthesis (and by
extension, the synthesis of droserone, 5-O-methyldroserone and
7-methyljuglone) does not proceed through a juglone intermedi-
ate derived from the OSB pathway (Figure 2).142

On the basis of stable-isotope feeding experiments in
Triphyophyllum peltatum callus cultures, which confirmed the
acetogenic origin of plumbagin and droserone, Bringmann et al.
proposed the involvement of polyketide synthases (PKSs) in the
acetate-polymalonate pathway.143,144 In plants, PKSs belong to the
type III class, which catalyze C–C bond formation in a single active
site through a series of decarboxylation, condensation and
cyclization reactions using a CoA-ester substrate (for example,
acetyl-CoA) and CoA-ester extenders (for example, malonyl-
CoA).26 Recently, cDNAs encoding type III PKSs (reaction 14,
Figure 2) from Plumbago indica roots and D. lusitanicum calluses
have been isolated.145,146 Biochemical characterization of the
cognate recombinant enzymes revealed that both were capable of
accepting acetyl-CoA (Km=31 μM for D. lusitanicum PKS) as starter
and catalyzing multiple sequential decarboxylative condensations
with malonyl-CoA (Km=83 μM for D. lusitanicum PKS).145,146

However, under the tested in vitro conditions, neither formed
expected naphthalene products and instead produced α-pyrones,
which may have been an artifact given the absence of pyrone
metabolites in the tissues from which the cDNAs were
isolated.145,146 Together with the lack of other PKS candidates
and the high plumbagin content in the tissues examined, it is
likely the identified PKSs provide the 1,4-NQ backbone via the
postulated intermediates depicted in Figure 2.145,146 The acetate-
polymalonate pathway is also likely to rely on a polyketide
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reductase to remove the oxygen atom of the third acetate unit
before the initial cyclization.146

That plumbagin, droserone and 5-O-methyl droserone have
been described to co-occur in Nepenthes species147,148 suggests
these compounds may be part of a linear biosynthetic pathway as
depicted in Figure 2. The postulated naphthalene intermediate is
likely oxidized to generate either 7-methyljuglone or plumbagin,
an idea consistent with the fact that many Droseraceae species
exclusively contain one or the other of these 1,4-NQs.149,150

Perhaps using enzymes belonging to the same classes descri-
buned above for juglone, lawsone and 2-MNQ synthesis,
plumbagin may be further oxidized to produce droserone, and
then methylated at the C5 hydroxyl group to generate 5-O-
methyldroserone (Figure 2). Similar to other aforementioned
1,4-NQs, acetate-polymalonate-derived 1,4-NQs are subject to
modifications, including glycosylation.151,152 Certain types of AQs,
such as emodin produced by rhubarb and related species,153,154

are also synthesized via PKSs with acetyl-CoA and malonyl-CoA
precursors. However, their biosynthesis does not proceed through
a 1,4-NQ like those derived from the OSB pathway, so they will not
be covered in this review. Generally, AQs synthesized via PKSs
contain modifications in both rings A and C, while those derived
from the OSB pathway (for example, alizarin) only contain
functional groups on ring C, although exceptions exist.66

BIOCHEMICAL PERSPECTIVES ON THE FUNCTIONS OF
SPECIALIZED 1,4-NQS PRODUCED BY HORTICULTURAL
SPECIES
An understanding of the ecological significance of 1,4-NQ
production in horticultural plants requires recognition of the
biochemical properties of quinones in general and 1,4-NQs in
particular. Quinones undergo redox cycling and alkylation
reactions, generating reactive oxygen species (ROS) and adduct
formation with proteins and DNA.155 Alkylation (also termed
arylation) of reduced glutathione (GSH) or cysteine residues of
proteins is particularly common, leading to depletion of GSH levels
and/or protein cysteine chemical modifications.155,156 The one- or
two-electon reduction of quinones to the semiquinone radical or
quinol, respectively, leads to their autoxidation by molecular

oxygen to the superoxide anion radical (O2
−), which subsequently

disproportionates into O2 and H2O2, promoting oxidation of lipids,
proteins and DNA (Figure 3).155

In the case of 1,4-NQs, the cellular reduction of the quinone
moieties in mammalian cells can be mediated by cytochrome
P450 reductase, forming the semiquinone, or by NAD(P)H:
quinone oxidoreductase-1 (NQO-1, DT-diaphorase), forming the
quinol. Thus, both reactions may occur at the expense of NADH or
NADPH. Quinols may undergo detoxification via coupling of the
hydroxyl moieties to water-soluble molecules,157 such as glycosy-
lation as described above for juglone,80 lawsone,83 7-methyl-
juglone and droserone.152 It is tempting to speculate that such
quinol conjugates are the predominant forms in planta and afford
protection against autotoxicity. However, naphthoquinone glyco-
sides in the genus Drosera usually appear only as minor
components of the total naphthoquinone pool.18 Moreover, the
1,4-NQ glucosides rossoliside and plumbaside A, isolated from
Nepenthes, showed no incorporation after feeding of either
[U-13C2]-sodium acetate or [U-13C3,

15N]-alanine, suggesting these
glycosides are storage forms with very low turnover rates.158

Depending on ring modifications, some 1,4-NQs are also good
electrophiles that react with nucleophiles, including cysteine
residue thiol groups in some proteins, to form adducts in cells
(Figure 3).156,157 Such alkylation reactions can occur when a free
C3 position is present in the 1,4-naphthalenoid structure, though
the C2 substituent must also allow access and sufficient
electrophilicity.157 For example, lawsone, which has a free C3
position, but a hydroxyl group at C2 (Figure 2), is considered a
weak alkylating agent compared with juglone (free C2 and C3
positions; Figure 3) and plumbagin (free C3 position and methyl
group at C2; Figure 3).157 The type and placement of functional
groups in the benzene moiety also influences the bioreactivity and
cytotoxicity of 1,4-NQs. Juglone, plumbagin, NZs and other 1,4-
NQs with at least one hydroxyl group in the benzene moiety are
more potent topoisomerase inhibitors compared with unsubsti-
tuted 1,4-NQs and 1,4-NQs hydroxylated on the quinone moiety
(for example, lawsone).159,160

Given the aforementioned reactivity of 1,4-NQs in biological
systems, it should not be surprising that 1,4-NQs have frequently
been observed to induce marked perturbations of metabolism,

Figure 3. Potential mechanisms of action for 1,4-NQs. Plant 1,4-NQ redox cycling may lead to the generation of reactive oxygen species (ROS),
which can oxidize certain cellular macromolecules. The quinone and/or semiquinone forms of plant 1,4-NQs can react with nucleophiles to
form adducts.
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including ROS production, thiol depletion, alkylation/arylation of
numerous target proteins, DNA damage and genotoxicity in
diverse biological systems. Specific examples of these effects,
induced by 1,4-NQ natural products derived from horticultural
species, in plants, microorganisms, insects and mammals are
described below, with particular emphasis on potential alkylation/
arylation target sites.

Plant–plant interactions (allelopathy)
Allelopathy is the term used to describe the harmful effect one
plant exerts on another via the release of natural products into the
environment.161 This is the definition that will be adopted in the
remainder of this review, though it is recognized that allelopathy
is also used to generally describe any direct or indirect effect,
beneficial or harmful, one plant has another plant.162

The classic example of allelopathy is the release of the
phytotoxic 1,4-NQ, juglone, from black walnut.163,164 Other 1,4-
NQ-producing plants reported to exhibit allelopathy and notable
as noxious invaders include Echium plantaginerum (Paterson’s
curse; produces shikonin and its derivatives)165 and I. glandulifera
(producer of lawsone and 2-MNQ).85,166 Undoubtedly, secretion of
1,4-NQs from the roots and/or leaching of 1,4-NQs from leaves
and leaf litter may have contributed to the ecological success of
these invading species via their phytotoxic effects on native
species by the general mechanisms described above (that is, ROS
production, GSH depletion and/or alkylation of proteins and DNA
of neighboring plants). The best studied plant-derived phytotoxic
1,4-NQs are plumbagin and juglone, which induce ROS production
in tobacco BY-2 cells, ultimately resulting in programmed cell
death.167 In lettuce, juglone induces oxidative damage to the root
apical meristem via ROS and a cascade of cellular changes,
including decreased mitochondrial potential, chromatin conden-
sation and DNA fragmentation.168 Juglone also triggers a large
number of changes in gene transcription associated with cell
growth, cell wall formation, chemical detoxification and abiotic
stress responses via rapid induction of ROS in rice roots.169

Juglone’s specific cellular alkylation/arylation protein targets
have been less intensively investigated in plants than in
mammalian systems (see Pharmacology section below), but a
number of potential targets can be postulated from the literature.
Rapid irreversible growth inhibition of maize coleoptiles and
inhibition of auxin-induced growth in maize coleoptile segments
strongly suggests that the plasma membrane H+-ATPase may be a
juglone alkylation/arylation target.170 Direct arylation of cysteine
residues of jack bean urease by juglone (but not by lawsone) has
been reported.171 Juglone is also a potent inhibitor of Malus
domestica MdPin1, a homolog of a phosphorylation-specific
peptidyl prolyl cis/trans isomerase (PPIase) in humans called Pin1
that has an important role in cell cycle regulation.172

The molecular mechanisms governing the large interspecies
variability within the plant kingdom with respect to the toxic
effects of juglone summarized by Willis164 are virtually unexplored.
It is still unclear whether species unaffected by juglone are
equipped with enzymes that facilitate detoxification and/or
proteins that regulate juglone exclusion, transport and/or
sequestration/compartmentation.

Plant–microbe interactions
The toxicity of plant-derived 1,4-NQs toward various bacteria,
fungi and other microorganisms is widely recognized. Examples of
the growth inhibitory effects that plant 1,4-NQs have on
microorganisms documented to be associated with oxidative
stress and/or disrupted thiol metabolism in the target organisms
include lawsone on E. coli;173 juglone on Staphylococcus aureus174

and Acanthamoeba castellanii;175 plumbagin on Candida
albicans and S. aureus;176 7-methyljuglone on Mycobacterium
tuberculosis;177 and shikonin on Candida albicans.178

Reddy et al.179 investigated the antimicrobial effects of
plumbagin in Bacillus subtilis by identifying differentially expressed
proteins, and found evidence suggesting the 1,4-NQ represses the
tricarboxylic acid cycle, the electron transport chain and the fatty
acid synthesis; however, specific arylation targets have yet to be
defined in this organism. Juglone inactivates the E. coli PPIase by
covalent modification of cysteine residues.180 In yeast, juglone
may not only inhibit the PPIase homolog, ESS1 but also RNA
polymerase II, most likely by modification of sulfhydryl groups.181

The toxicity of plant 1,4-NQs to human pathogens (for example
M. tuberculosis) is of particular interest and has obvious overlaps
with the Pharmacology section below. In M. tuberculosis, 7-
methyljuglone is a subversive substrate for mycothiol disulfide
reductase.177 Moreover, 7-methyljuglone and its bis form,
diospyrin (Figure 1b), produced by Diospyros montana,182 are
potent inhibitors of DNA gyrases of M. tuberculosis, E. coli and
S. aureus.183 DNA gyrase is a DNA topoisomerase that is present
in bacteria and plants, but not in animals, and has been widely
exploited as a target for antimicrobial chemotherapy.183 Whereas
animal DNA topoisomerase of the type II (topo II) class are thought
to be inhibited by formation of cysteine adducts with quinones in
the N-terminal (ATPase) domain, the inhibition of DNA gyrase may
be different. The naphthoquinone-binding site is within the
N-terminal domain of GyrB, but as one of the enzymes examined
(S. aureus gyrase) lacks Cys residues in the ATPase domain, it is
unlikely that covalent adducts with Cys residues form part of the
mode of binding.183 Moreover, there was no evidence of adduct
formation with M. tuberculosis gyrase.183 Microarray analysis of M.
tuberculosis in response to plumbagin challenge identified 103
and 171 up- and downregulated genes, respectively, but it is
presently unknown whether these transcriptional responses were
the sole consequence of DNA gyrase inhibition.184

Being that plants are susceptible to pathogens, it is tempting to
speculate that the production of 1,4-NQs by plants may not only
serve a role in allelopathy (above) but also in plant disease
defense. Supporting this notion, juglone has been shown to be a
potent and specific inhibitor of the growth of the fire blight
pathogen, Erwinia amylovara.185 Similarly, it was reported that
plumbagin is a potent growth inhibitor of a number of
phytopathogenic fungi.186

Certain soil bacteria, such as Pseudomonas putida,187 are
capable of degrading juglone, although little is understood about
the role juglone has in shaping the soil microflora. It has been
proposed that arbuscular mycorrhizal fungal hyphae may have a
key role in transporting juglone in the rhizosphere.188,189 Hook
et al. argue that because the production of antimicrobial 1,4-NQs
is often restricted to specific root cells and elicited by soil-borne
microbes, this suggests their role is in plant defense at the cellular
level in the rhizosphere.20

The production of 1,4-NQs by many carnivorous plants
(especially in the family Droseraceae)150 may have a key role in
maintaining sterility of the digestive fluids secreted by these
organisms, an idea that has been speculated for Nepenthes sp.
(pitcher plants).148,190 Plumbagin secreted by the Venus fly trap
(Dionaea muscipula) also has antimicrobial activity against food-
related pathogenic and putrefactive bacteria.191 Perhaps more
significantly, the chemical composition of the Nepenthes pitcher
fluid may promote a specific microbiome dedicated to chitinolytic,
proteolytic, amylolytic, and cellulolytic and xylanolytic activities for
digesting pitcher-captured insects.192 Resistance mechanisms
used by pitcher-associated microbes to pitcher plant 1,4-NQs
remain unexplored. Clues to the molecular mechanism of bacterial
plumbagin resistance have come from studies with E. coli
demonstrating that two plumbagin-responsive genes ygfZ and
sodA are required for counteracting toxicity.193 Furthermore, it was
found that Cys228 in YgfZ is needed for the degradation of
plumbagin, which may be excreted in a methylated and less-toxic
form.193
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Plant–insect interactions
The toxicity of plant-derived 1,4-NQs toward insects has also been
documented. It appears that plumbagin, juglone and 2-MNQ may
specifically target ecdysone 20-monooxygenase, an enzyme
responsible for converting the molting hormone ecdysone to its
more physiologically active metabolite, 20-
hydroxyecdysone.194,195 Plumbagin is also an inhibitor of chitin
synthetase194 and, similar to other 1,4-NQs, is an effective anti-
feedant defensive agents against insects.195–197 It is also plausible
that certain insects that have gained the ability to feed on 1,4-NQ-
producing plants may utilize these molecules for their own
defense; however, the precise mechanisms of tolerance of these
organisms has been underexplored.198 Piskorski et al.199,200

propose that the larvae of the codling moth, Cydia pomonella,
are able to survive on walnut trees by excreting hydrojuglone in
their frass.199,200 However, this hypothesis is difficult to reconcile
with the observation that hydrojuglone rapidly autoxidizes to
juglone in air.80

Insectivorous plants face a dilemma in both attracting insects
for pollination and as prey. The sundew, Drosera auriculata,
maintains a distinct profile of volatiles emitted from flowers in
comparison with their sticky traps, with plumbagin restricted to
the trap, suggesting a possible role for plumbagin in attracting
insect prey with volatile preferences that are distinct from insect
pollinators.201 It has been suggested that plumbagin may
contribute to oxidative protein modification as a predigestive

Table 2. Additional examples of pharmacological mechanisms of action for plant-derived 1,4-NQs

Plant-derived 1,4-NQ(s) Pharmacological mechanism of action Reference(s)

Shikonin Protection of brain against ischemic stroke damage by attenuated TLR4, p-p38MAPK,
NF-κB, TNF-α and MMP-9 expression, and upregulated claudin-5 expression

255

Suppression of epithelial–mesenchymal transition and downregulation of expression
of Slug and MMP-2, -9 and -14 in thyroid cancer cells

223

Management of inflammatory bowel disease by inhibiting activation of NF-κB and
STAT3

256

Promotion of intestinal wound healing via induction of TGF-β release 257

Inhibition of expression of the pro-inflammatory cytokine TNF-α through selective
blockade of pre-mRNA splicing

258

Inhibition of IFN-γ induced K17 overexpression by interfering with STAT3 signaling in
psoriasis pathogenesis

259

Inhibition of lipopolysaccharide-induced release of HMGB1 via IFN-β and NF-κB
signaling pathways in inflammation

260

Inhibition of STAT3-, FAK- and Src-mediated signaling in breast cancer 261

Suppression of IL-17-induced VEGF expression via blockage of the JAK2/STAT3
pathway in psoriasis pathogenesis

262

Inhibition of c-MYC expression with involvement of ERK/JNK/MAPK and AKT pathways
in leukemia cells

263

Suppression of orphan nuclear receptor Nr4a family gene expression for treating
allergic diseases

264

Shikonin derivatives Inhibition of the transcriptional activation of the human TNF-α promoter in treating
inflammatory diseases

265

Inhibition of tumor angiogenesis via inhibition of VEGFRs 266

Shikonin and alkannin Inhibition of cancer cell glycolysis via inhibition of tumor-specific PKM2 267

Plumbagin Decreased expression of TNF-α, IFN-γ and IL-17 in murine ulcerative colitis 268

Amelioration of autoimmune encephalomyelitis via downregulation of JAK–STAT and
NF-κB signaling pathways

269

Antiproliferative activity against lung epithelium carcinoma cells by disruption of the
microtubule network through tubulin binding

270

Inhibition of cytochrome P450s 271,272

Inhibition of telomerase and induction of cell death in human brain tumor cells 273

Induction of cell cycle arrest and autophagy; suppression of epithelial to
mesenchymal transition involving the PI3K/Akt/mTOR-mediated pathway in human
pancreatic cancer cells

274

Induction of G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/
mTOR-mediated pathways in human tongue carcinoma cells

275

Binding to and inhibition of five cancer signaling proteins (PI3Kc, AKT1/PKBa, Bcl-2,
NF-κB and Stat3)

276

Interference with the binding of ER-alpha to ERE and antagonism at the death
receptor complex in BRCA1 breast cancer cells

277

5-O-Acyl plumbagins Inhibition of mammalian DNA polymerase and suppression of inflammatory response 278

7-Methyljuglone Suppression of PI3K/Akt signaling in breast cancer cells 279

Juglone Inactivation of cysteine-rich proteins required for progression through mitosis 251

Prevention of metabolic endotoxemia-induced hepatitis and neuroinflammation via
suppression of the TLR4/NF-κB signaling pathway

280

Juglone and plumbagin Inhibition of protein tyrosine phosphatases, leading to increased phosphorylation and
activation of epidermal growth factor receptor in HaCaT keratinocytes

219

Acetylshikonin, shikonin, juglone, lawsone,
plumbagin and lapachol

Inhibition of monoamine oxidases regulating neurotransmitter levels and cell
signaling, growth and differentiation

281–283

Abbreviations: ERE, estrogen responsive elements; IFN, interferon; IL-17, interleukin-17; MMP, matrix metallopeptidase; NF-κB, nuclear factor κB; 1,4-NQ, 1,4-
naphthoquinone; PKM2, pyruvate kinase-M2; TGF-β, transforming growth factor-β; TLR4, Toll-like receptor 4; TNF-α, tumor-necrosis factor-α; VEGF, vascular
endothelial growth factor; VEGFR, VEGF receptor.
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mechanism in Venus fly trap.202 Plumbagin production has also
been observed to be induced in response to chitin in Drosophyl-
lum lusitanicum suspension cultures.203 In Nepenthes khasiana,
chitin specifically induces production of droserone and 5-O-
methyl droserone to protect pitcher fluid against microbes
brought by visiting prey and perhaps to act as molecular triggers
in prey capture and digestion.147

Pharmacology (plant–human interactions)
Humans have exploited plants producing 1,4-NQs for centuries as
wound-healing agents. In part this may be a function of the
antibacterial and antifungal properties of 1,4-NQs discussed
above, preventing opportunistic wound infections. Thomson204

and Hook et al.20 have reviewed the numerous bioactive
properties of plant-derived NQs and discuss their cytotoxic,
anticancer, antibacterial, antifungal, anti-inflammatory and anti-
parasitic activities. These and other reviews on the pharmacolo-
gical properties of individual 1,4-NQ-producing species, including
Henna,205–208 Plumbago seylanica209 and Venus fly trap,210 or
individual 1,4-NQs of plant origin, such as the alkannins and
shikonins,90,211–214 plumbagin and its analogs,215 7-
methyljuglone,216 and laphachol,16 demonstrate the considerable
pharmacological interest in this class of molecules in recent years.
As described above for other biological systems, plant-derived

1,4-NQs can elicit oxidative stress and disrupt thiol metabolism in
mammalian cell systems, including juglone in melanoma (B16F1)
tumor cells;217 juglone, shikonin and plumbagin in rat liver
microsomes;218 juglone and plumbagin in HaCaT human
keratinocytes;219,220 plumbagin in human prostate cancer
cells;221 and shikonin in human glioma cells,222 thyroid cancer
cells223 and leukemia HL-60 cells.224,225 Beyond these effects, it is
also evident that plant 1,4-NQs have specific effects on down-
regulating central mediators of mammalian inflammation.156

Plant-derived 1,4-NQs inhibit Kelch-like enoyl-CoA-hydratase
(ECH) associated protein 1 (Keap1) most likely by alkylation/
arylation of key cysteine residues in the protein.156,157 In addition,
it has been proposed that 1,4-NQs promote glutathionylation of
Keap1.226 This may be due in part to accumulation of oxidized
glutathione (GSSG),227 by GSH-mediated S-transarylation,228 and/
or via upregulation of glutathione S-transferase pi, which poten-
tiates S-glutathionylation of Keap1.229 Regardless of the precise
mechanism of Keap1 cysteine modifications, it is well established
that these modifications collectively alter the binding of Keap1 to
transcription factor Nrf2 (NF-E2-related factor-2). Normally, Keap1
sequesters Nrf2 in the cytoplasm and bridges it to a ubiquitin
ligase, cullin 3 (Cul3), to facilitate proteasomal Nrf2 degradation.157

Disruption of the Keap1–Nrf2 interaction by 1,4-NQs results in Nrf2
accumulation, leading to Nrf2 nuclear transport and induction of
genes containing ‘antioxidant response elements’ (AREs).157

Consistent with this, plumbagin and shikonin strongly activate
Nrf2–ARE signaling, and were found to activate genes encoding
heat shock proteins.230,231 The Keap1–Nrf2–ARE pathway has now
emerged as a promising target to develop drugs that upregulate
expression of ARE-controlled cytoprotective oxidative stress response
enzymes to treat a number of diseases and conditions.232

Nrf2 not only regulates oxidative/xenobiotic stress response but
also represses inflammation by opposing transcriptional upregula-
tion of a number of pro-inflammatory cytokine genes.233 Specific
anti-inflammatory effects of plumbagin appear consistent with
inhibiting the activation of the transcription factor nuclear factor-
κB (NF-κB)234 in lymphocytes,235 macrophages and liver cells.236

The underlying mechanism of plumbagin and shikonin inhibition
of NF-κB activation appears to entail suppression of an inhibitor of
κBα (IκBα) phosphorylation and degradation, thus precluding the
phosphorylation of the p65 subunit of NF-κB.237–241 However, it is
still unclear whether the inhibition of NF-κB activation by
plumbagin, shikonin and 1,4-naphthoquinone (see ref. 226) is solely

mediated via Keap1-dependent activation of Nrf2/ARE signaling or
by other mechanisms, especially considering Keap1-independent
mechanisms of regulating Nrf2 have been well documented227

Furthermore, it is well established that 1,4-NQs are inhibitors of
topoisomerases.242–249 Topoisomerase 1 (Top 1) inhibition is
known to suppresses inflammatory genes, including tumor
necrosis factor-α (TNF-α), and to protect against lethal inflamma-
tion in vivo.250 Thus, it seems plausible that anti-inflammatory
effects of 1,4-NQs may also be mediated by Top 1 inhibition.
Similar to the M. domestica, yeast and E. coli PPIases described

above, human Pin1 is inhibited by juglone.180,251 Pin1 is now
recognized as a molecular switch for TNF-α-induced priming of
the NADPH oxidase in human neutrophils,252 as a modulator of
the type 1 immune response of T cells253 and as an enhancer of
the oncogenic activity of the Rel proteins in the NF-κB family.254

Therefore, inhibition of Pin1 by juglone may contribute to the anti-
inflammatory and anticancer actions of this molecule. Additional
pharmacological mechanisms of action for plant-derived 1,4-NQs
are listed in Table 2.
The bewildering array of actions elicited by plant 1,4-NQs listed

in Table 2 are likely just the tip of the iceberg. Proteomics studies
by Lame et al.284 with 14C-labeled 1,4-naphthoquinone indicate
that this molecule targets a number of different proteins in human
bronchial epithelial cells, including nucleophosmin, galectin-1,
protein disulfide isomerase (PDI) and probable PDI, 60 kDa heat
shock protein, mitochondrial stress-70 protein, epithelial cell
marker protein and S100-type calcium-binding protein A14. A
quantitative proteomic study using stable-isotope labeling by
amino acids in cell culture revealed that there were at least 1225
and 267 proteins interacting with plumbagin and 341 and 107
signaling pathways and cellular functions potentially regulated by
plumbagin in human PC-3 and DU145 prostate cancer cells,
respectively.285 These proteins and pathways have critical roles in
the regulation of cell cycle, apoptosis, autophagy, epithelial to
mesenchymal transition and ROS generation.285

The diversity of targets and mechanisms of action of plant 1,4-
NQs have stimulated great pharmacological interest, particularly in
the area of ROS initiation and signaling, cancer therapeutic
strategies and as anti-inflammatory agents.214,286 Moreover,
numerous analogs of 1,4-NQs have been designed and synthe-
sized to enhance their toxicity toward specific human cancer cell
lines,277,287–289 specific proteins (for example, Hsp90),290 selected
pathogenic organisms (for example, Trypanosoma sp)291–293 and
insects.294

CONCLUSIONS AND FUTURE PROSPECTIVES
Plant 1,4-NQs are a diverse class of metabolites possessing a wide
range of ecological functions contributing to plant fitness,
particularly in the horticultural species highlighted in this review
(Table 1). At least four different metabolic pathways to synthesize
1,4-NQs exist in the plant kingdom. The OSB route is present in all
plants to produce phylloquinone, though some species are
capable of synthesizing additional 1,4-naphthalenoid natural
products branching off this pathway. The 4HBA/MVA, HGA/MVA
and acetate-polymalonate pathways are each restricted to certain
families. Regardless of the metabolic origin, however, 1,4-NQs
have key roles in the interactions certain plants have with their
biotic environment. New evidence has also emerged demonstrat-
ing that menadione, a synthetic 1,4-NQ, which is also present in
Juglans,70 is capable of priming crops against abiotic stress.295 This
raises the prospect that other plant 1,4-NQ natural products may
also have similar roles in planta.
Medicinal plants synthesizing 1,4-NQs have been used for

centuries based on the numerous pharmacological applications of
these compounds.7 Today, molecular studies are beginning to
validate these claims (see text and Table 2), making 1,4-NQs
strong candidates for developing novel drugs (for example,
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shikonin against breast cancer296). The 1,4-NQs are also targets for
synthetic strategies to develop more potent therapeutics, though
there is undoubtedly a number of plant 1,4-NQs still undiscovered
in nature that may already offer such drugs.
Beyond the core metabolic pathways (for example, phenylpro-

panoid, benzenoid and terpenoid) providing precursors for
synthesizing specialized 1,4-NQs, there are only a couple identified
1,4-NQ biosynthetic genes. Although there is solid biochemical
support for the involvement of these genes, there is a lack of
genetic evidence to corroborate these results. This is in part due to
the lack of genetically amenable systems in which to study these
pathways. Therefore, there is a critical need to develop methods
for generating transgenics in 1,4-NQ-synthesizing species, thus
allowing for functional screening of candidates identified, for
example, by comparative transcriptomic approaches. With the
decreased costs and increased capabilities of sequencing tech-
nologies, forward genetic screens in existing horticultural models
are also a favorable strategy to consider.
Indications are that biosynthesis of plant 1,4-NQs is highly

compartmentalized and spread across multiple subcellular loca-
tions. This implicates the contribution of undefined transporters
and other protein-mediated trafficking steps to the movement
of metabolic intermediates and 1,4-NQs throughout the cell.
That plant 1,4-NQs are often secreted into the environment
further suggests the involvement of unknown plasma
membrane-localized transporters and/or vesicular exocytosis for
deployment.165,297–299

Despite extensive work over the last several decades, specia-
lized plant 1,4-NQs are clearly an understudied, yet extremely
promising class of metabolites for developing novel drugs and
innovative strategies to address horticultural challenges, especially
in pest management. To harness these metabolites for practical
applications, however, will require a monumental improvement in
the basic knowledge encompassing 1,4-NQ synthesis, transport
and the molecular mechanisms behind their modes of action and
release into the environment.
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