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Abstract
Studies of the defence capacity of ancient hominins against toxic substances may contrib-

ute importantly to the reconstruction of their niche, including their diets and use of fire. Fire

usage implies frequent exposure to hazardous compounds from smoke and heated food,

known to affect general health and fertility, probably resulting in genetic selection for improved

detoxification. To investigate whether such genetic selection occurred, we investigated the

alleles in Neanderthals, Denisovans and modern humans at gene polymorphisms well-

known to be relevant frommodern human epidemiological studies of habitual tobacco smoke

exposure and mechanistic evidence. We compared these with the alleles in chimpanzees

and gorillas. Neanderthal and Denisovan hominins predominantly possess gene variants

conferring increased resistance to these toxic compounds. Surprisingly, we observed the

same in chimpanzees and gorillas, implying that less efficient variants are derived and mainly

evolved in modern humans. Less efficient variants are observable from the first early Upper

Palaeolithic hunter-gatherers onwards. While not clarifying the deep history of fire use, our

results highlight the long-term stability of the genes under consideration despite major

changes in the hominin dietary niche. Specifically for detoxification gene variants character-

ised as deleterious by epidemiological studies, our results confirm the predominantly recent

appearance reported for deleterious human gene variants, suggesting substantial impact of

recent human population history, including pre-Holocene expansions.

Introduction
The capacity to neutralise the adverse health effects of toxic substances is an important asset
which increases “Darwinian” fitness, especially through dietary flexibility, but also by improved
resistance to environmental poisons. The latter has been particularly important for the human
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lineage during the tens, or perhaps hundreds of thousands of years in which it enjoyed the ben-
efits of fire use. Cooking made it possible to utilize a wider range of food resources more effec-
tively by improving digestibility and detoxification, and fire usage enabled survival in colder
regions [1–4]. While its broad range of benefits is widely recognized in palaeoanthropology, it
is rarely acknowledged that fire can also provoke negative health effects including cancers and
reduced reproductive success [5, 6]. This suggests that fire use might have resulted in genetic
selection of new, derived genotypes conferring increased resistance to toxic fire-related
compounds.

Use of biomass-fuelled fires leads to exposure to smoke toxicants, such as polycyclic aro-
matic hydrocarbons [7], significantly affecting human health. This is in particular evident from
the vast amount of epidemiological [8–11] and biochemical [12, 13] research demonstrating
the carcinogenic and adverse reproduction effects of tobacco smoke, which contains the same
major toxicants as any other biomass-fuelled fire [6, 14]. Because of the extensive knowledge of
the biochemical mechanisms causing the toxic effects of habitual (tobacco) smoke exposure
and the role of protective variants of genes in defence against its adverse effects [6, 15, 16], we
focus this study on the evolution of those genes since the divergence between the chimpanzee
(unexposed reference species) and the human lineage. Genetic adaptations concerning the effi-
ciency of dealing with poison exposure provide valuable information about lifestyle and habi-
tat, and study of the evolution of these genes may also contribute to assessing more accurately
at what point(s) regular use of fire emerged following this divergence. Current estimates of the
chronology of habitual fire usage range from very early first use byHomo erectus in Africa at
1.8 million years ago (mya) to significantly later introduction byH. sapiens at the end of the
Pleistocene [2, 17, 18]. Neanderthals and the newly discovered Denisovans, ancient hominins
living in Europe and Asia between about 400 and 40 thousand years ago (kya) [19–24], were
probably habitually using fire from 300 thousand years onward [17], as were their Levantine
contemporaries [25], but whether they were actually able to consistently produce it, rather than
using natural fire sources, is contested by some [18].

The most important toxic compounds produced during combustion of biomass [26], and
through heating of food [27] are polycyclic aromatic hydrocarbons (PAHs) and heterocyclic
amines (HCAs), occurring in concert when cooking on open biomass-fuelled fires. Smoke
inhalation or ingestion of smoke-contaminated heated food triggers biotransformation mecha-
nisms in the human body [28, 29]. During biotransformation of PAHs and HCAs reactive
metabolites are produced, leading to the formation of bulky, covalently bound DNA adducts
[30, 31], which may result in mutation upon DNA replication [32]. Moreover, exposure to
PAHs induces oxidative stress [13, 29] which also has the potential to cause DNAmutation
[33].

Consequently, exposure to smoke toxicants increases the risk of developing various types of
cancer in humans [16] and laboratory animals [34]. More important in terms of evolution, it
may also negatively affect fertility both in women [13, 35] and in men [8, 12, 36], and lead to
an increase in pregnancy complications [5, 6, 37]. For genotoxic food heating products similar
effects are to be expected and, consistent with this expectation, placental transfer of heterocy-
clic amines to the foetus [38], reduced offspring and severe teratogenic effects have been
reported [39]. Significant longevity, and thus diseases of aging such as cancer, may have come
late in human evolution, probably only with modern humans [40]. Therefore, in the earlier
populations discussed here, the toxic effects on reproduction may have played the main role in
genetic selection pressure.

Numerous epidemiological and biochemical studies of toxic compounds from tobacco
smoke or heated food items are available [15, 41–45], making it possible to identify the genes
involved in their detoxification and to categorize the allelic variants observed into low- and
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high-risk variants, the former conferring increased protection from adverse reproduction
effects as compared with the latter. The low-risk variants act either by enhancing the detoxifica-
tion of these compounds [15, 46], by decreasing their bioactivation (enzymatic conversion of
the parent compound into a (more) toxic metabolite) [46], or by influencing the repair of dam-
aged DNA [8, 47]. These studies document the correlation between exposure levels, DNA
adduct formation, toxicity and the ensuing health risk, and modulation of that risk by geno-
type. A well-known example is the increased cancer risk in smokers carrying a deletion of the
entire GSTM1 gene [15], but adverse reproduction effects have been frequently reported as well
[8–11, 48, 49]. These epidemiological data demonstrate that reproductive health risks were
likely associated with biomass-fuelled open fires in prehistoric times, which is further substan-
tiated by contemporary studies on the effects of smoke exposure [5, 6, 37]. Focusing on gene
polymorphisms with an established effect on susceptibility to smoke and food heating toxicants
may therefore yield important information on the evolutionary history of human detoxifica-
tion capacity.

The genes involved in neutralising toxic smoke components and food heating products
mostly display a wide range of target compounds and are representative for the major detoxifi-
cation capacities [50, 51] and their evolution. They act in concert within well-characterised
detoxification pathways [11]. Therefore, these genes are expected to evolve consistently into
the direction of increased detoxification efficiency if under selection pressure from a major
toxic challenge such as smoke exposure. The availability of a number of ancient hominin and
other primate genomes, including a high-coverage genome of a Neanderthal and a Denisovan
hominin [22–24, 52], multiple human genomes from the early Upper Palaeolithic (45 kya) to
the present day [53–58], and the genome-wide variation among 2504 present-day humans
[59], makes analysis of the evolution of detoxification capacity in the human lineage now possi-
ble, even though only a few ancient genomes are presently known.

We postulate that, during human evolution, selection pressure towards increased resistance
against fire-related toxicants was generated once humans started to use fire on a routine basis.
This adaptive evolutionary model also implies that these protective variants are expected to be
new beneficial mutants that will be derived alleles as compared to non-exposed great apes car-
rying the less efficient ancestral variant. Once present, these new beneficial variants will be
under positive selection resulting in adaptation towards improved defence. In this study we
explore the available genomic information for evidence of such genetic adaptations and discuss
the implications of the results for the evolutionary history of human detoxification capacity.
Although our results turned out to be non-conclusive regarding the time depth of fire usage,
they opened a new, surprising perspective on the evolution of the involved detoxification
capacities, the implications of which are discussed.

Methods

Determination of genetic variants in ancient hominins and Pleistocene
and Holocene humans
The genetic variants occurring in Neanderthal and Denisovan genomes were derived from two
high-coverage genomes, one from a Denisovan [22, 23] and one from a Neanderthal individual
[24], both found at Denisova cave in Siberia, and estimated to be at least 50 ky old [60], and
hence predating the earliest known Upper Palaeolithic human fossils in Eurasia. In addition,
six low-coverage Neanderthal genomes derived from fossil bones found at various European
sites [52] and dated between 38 and 70 ky old were analysed. The genetic variants occurring in
Upper Palaeolithic hunter-gatherers were derived from genomes from two individuals, found
at Ust’-Ishim and Mal’ta (MA-1) in Siberia, and respectively dating to around 45 and 24 kya
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[53, 55], and one from North America (Anzick-1), dating to around 12.6 kya [56]. The Holo-
cene examples include a Neolithic (NE1; 7.2 kya) and a Bronze Age (BR2; 3.2 kya) individual
from Hungary [54], an approximately 4,000 year old Palaeo-eskimo (Saqqaq) [58], and a
100-year old Aboriginal Australian [57].

Comparison with modern human and great ape genetic variants
Variant comparisons were performed using the UCSC Genome Browser, or variants were
retrieved from the NCBI Sequence Read Archive. The chimpanzee variants were taken from
the chimpanzee reference genome [61], and from the PanMap project reporting the genomic
sequences of ten chimpanzee individuals [62]. Gorilla variants were derived from the gorilla
reference genome [63]. Allele frequencies of polymorphic sites among various modern human
ethnic groups were retrieved from the 1000 Genomes Project data [64], complemented with
data from the HapMap Project [65]. The variant data of the ethnic individuals were derived
fromMeyer et al. (2012) [23], except for the Yoruba trio, which were retrieved from the March
2010 release of the 1000 Genomes Project [66].

Analysis of complete protein-coding regions
To analyse the complete protein-coding sequence of the CYP1A1 and CYP1B1 genes in ancient
hominins, their genomic sequence was extracted from the corresponding Variant Call Format
(VCF) file and all positions in translated sequences that were different from the human refer-
ence genome were filtered out using Excel.

Statistical aspects
The distribution of the number of low-/high-risk alleles within a global population of 2504
present-day individuals of the 1000 Genome Project [59] was determined to test the signifi-
cance of the different predominance of the low-risk detoxification gene variants observed in
ancient hominins and anatomically modern humans. Details in Section B of S1 Text.

See S1 Text (Supporting Information) for detailed procedure information.

Results

Gene polymorphisms affecting reproduction in modern humans in
interaction with smoking behavior
Nineteen genes relevant for detoxification of toxic smoke components and food heating prod-
ucts were identified on the basis of biochemical knowledge of their detoxification mechanism
(Tables 1–3), and by screening the epidemiological literature for studies reporting an interac-
tive effect of exposure to these poison categories and polymorphisms in a relevant gene, acting
on health parameters affecting reproductive success (details in S1 Table).

The majority of detoxification-related genes in ancient hominins are in
the ancestral state, predominantly being the protective variant
For the majority of gene polymorphisms studied (29 out of 36) we found that both the Altai
Neanderthal and Denisovan genomes were still homozygous for the ancestral variant observed
in chimpanzees and gorilla (Tables 1–3; and S2 Table). In 23 out of these 29 cases this ancestral
allele turned out to be the protective variant conferring a decreased reproductive health risk
from exposure to genotoxic combustion and food heating products (Table 1). In addition,
there are two cases in which only the Denisovan ancient hominin species was carrying the
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ancestral (protective) allele (Table 1), and also two cases where only the Neanderthals display
the ancestral state (Table 1: c.�215A>T in NAT1 homozygous ancestral low-risk; Table 2: p.
Ile105Val in GSTP1 heterozygous ancestral high-risk/derived low risk in the Vi33.26 Neander-
thal). Together, in 33 out of 36 cases at least one of the ancient hominin species studied, Nean-
derthal or Denisovan, displays the ancestral allele (complete overview in S2 Table). The
amount of sequence information obtained from the low-coverage genomes was too low to
allow unequivocal determination of their zygosity, but we found only one instance (p.Ile105Val
in GSTP1) where one of the low-coverage genomes clearly displayed another allele than the
Altai Neanderthal (in the heterozygous state) (see S2 Table). Therefore the low-coverage
genome data in general corroborated the representativeness of the Altai Neanderthal genome.
That the ancient hominins predominantly carried the ancestral alleles suggests that there was
no need to adapt their detoxification capacity, which might still be in agreement with our work-
ing hypothesis, if regular use of fire did not start in the ancestral line of the ancient hominins
studied here. However, it is unexpected and contradictory to our working hypothesis, that in
the majority of cases (at 26 out of 33 loci being ancestral in any of both ancient hominin spe-
cies), the ancestral allele turns out to be the allele that is more protective against (tobacco)
smoke- and food heating-related toxins in modern humans (Tables 1 and 3). For CYP1B1 this
tendency was also confirmed on the haplotype level, as all informative Neanderthals, chimpan-
zees, and the Denisovan were found to carry the ancestral haplotype (Gly48, Ser119, Val432,
Asn453), the haplotype with the highest catalytic efficiency observed in modern humans and a
3.4 times higher catalytic efficiency than the modern human wild-type [67]. Altogether, our
observations imply that for the majority of “smoke-protective” gene variants it is not possible
to demonstrate genetic adaptation, as they appear to be the ancestral alleles.

The emergence of derived variants in ancient hominins
For 7 out of 36 loci we observed a derived allele in Neanderthal and/or Denisovan. (Tables 1–3,
S2 Table). In 3 cases this derived variant is the one associated with relatively low-risk for
adverse effects of tobacco smoking in modern humans (Table 2). In 4 cases the derived allele
emerging is the high-risk variant (Tables 1 and 3). Since these data did not show a clear bias for
the appearance of either new low-risk or high-risk alleles (3 against 4) in the Neanderthal and
Denisovan lineages, they do not present a clear signature of positive selection that could be
driven by smoke exposure, consistent with the conclusion that no major adaptation in this
direction occurred in this group of genes as compared to great apes.

Table 2. Polymorphisms for which the low-risk gene variant observed in Neanderthal and/or Denisovan is a derived allele. Column headers and cell
shading as for Table 1.

Gene Function1) Extant Humans AncientHominins Great Apes Modern Humans

Polymorphism2) Low3) High3) Nea Den Chimp Gor Ust'-
Ishim

MA-1 Anzick-1 NE1 Saqqaq BR2 Aus

RefSNP Number HGVS Name2) (45 kya) (24 kya) (12 kya) (7.2 kya) (3.9 kya) (3.2 kya) (0.1 kya)

EPHX1 Detox 1 rs2234922 p.His139Arg A G A A G G A ─ A A A G A G

GSTP1 Detox 2 rs1695 p.Ile105Val A G A4) G A G G A G A A G G A A A

ERCC1 Repair rs3212986 c.*197G>T G T G G T T G G G G T G T G G

1. Detox 1 = Detoxification phase 1; Detox 2 = Detoxification phase 2; Repair = Repair of DNA damage.

2. SNP nomenclature as recommended by the Human Genome Variation Society (HGVS) (http://www.hgvs.org/mutnomen/recs.html).

3. Allele associated with a relatively low-risk, respectively, high-risk of adverse reproduction effects based on epidemiological or biochemical studies (details

in S1 Text of the Supporting Information).

4) Neanderthal individual Vi33.26 is possibly heterozygous low-/high-risk (A/G) based on a single, high-quality read of each type; the high-coverage Altai

Neanderthal and possibly Vi33.25 (one high-quality G read) are homozygous for the high-risk G allele.

doi:10.1371/journal.pone.0161102.t002
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Low-risk versus high-risk alleles in ancient hominins
Out of the 35 loci studied (p.Val381Ala in AHR1 was not included here because its risk status
was not confirmed in a human background), 25 carried the protective (low-risk) allele in both
Neanderthal and Denisovan hominins, whereas the high-risk variant was found consistently in
both species at only 6 of these loci (Table 3) (note that all 35 loci were found homozygous; S2
Table). Furthermore, there were 4 cases where the results were contradictory in the sense that
either the Denisovan or the Neanderthals had the high-risk allele, whereas the other hominin
species studied showed the protective allele (Tables 1 and 2), or both the high- and low-risk
allele seemed to occur (p.Ile105Val in GSTP1 in the Neanderthals; Table 2). Per separate locus,
we have only information from a very limited number of ancient hominin individuals. How-
ever, in all cases where the low-risk allele was found as the ancestral allele, it is highly unlikely
that the high-risk allele would also be present in the ancient hominin population at a consider-
able frequency for reasons explained in detail in Section H of S1 Text. Moreover, we compared
the two representatives from different ancient hominin species (Altai Neanderthal and Deniso-
van) to the global population of the 1000 Genomes Project (Fig 1), which showed that the
probability of finding a pair of individuals with an equal or more pronounced predominance
of the low-risk alleles in the present-day human population is very low (about 1.6%). These
arguments corroborate that it is very unlikely that the derived high-risk alleles would have
reached a substantial frequency without appearing in our ancient hominin sample. Altogether,
we conclude that our data support a predominance of the low-risk over the high-risk alleles in
Neanderthal and Denisovan hominins over the 35 polymorphic loci within a group of 19
detoxification genes studied here, where in the present-day human population the high-risk
allele is always found next to the low-risk allele.

Fig 1. Distribution of the number of low-risk loci (0 high-risk alleles) and loci with 1 or 2 high-risk
alleles within the global population of the 1000 Genome Project [59]. The average number of loci
carrying 0/(1 or 2) high-risk alleles was 16/16 and coincided with the median of this distribution. The relative
position of the Altai Neanderthal and the Denisovan hominin high-coverage genomes are indicated, as well
as the genome of the oldest available anatomically modern human, that of a 45,000 year old individual from
Ust’-Ishim. Three SNPs (rs2292596, rs56318881, and rs9282861) analysed in this study were not covered by
the 1000 Genome Project variant data and were therefore not included in this analysis. For each of the
GSTM1 and GSTT1 loci in the ancient hominin genomes, being possibly homozygous or heterozygous low-
risk (S2 Table), a contribution of 1 high-risk allele was conservatively counted in. Details in Section B in S1
Text.

doi:10.1371/journal.pone.0161102.g001
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Neanderthals and Denisovans carry the ancestral variant of AHR, a key
regulator of detoxification genes
The AHR1 gene encodes the aryl hydrocarbon receptor (AHR), the key regulator of CYP1A1,
CYP1B1, and other important phase 1 and 2 detoxification enzyme genes. The modern human
AHR has a valine residue at position 381 in the ligand-binding domain, resulting in lower bind-
ing affinity for prototype AHR agonists [68], a shifted ligand selectivity [69, 70], transcription
activation agonist efficiency [71] and target gene range [72] as compared to the mouse homo-
log Ahr, which carries Ala at homologous position 375 [68]. Surprisingly, both Neanderthals
(Altai and Vi33.16; S2 Table) and the Denisovan carry the high affinity AHR1 gene with an Ala
residue at position 381 (Table 3), and are thus again similar to the chimpanzee and gorilla in
this respect, and different from modern humans.

In modern humans high-risk variants are already present in early Upper
Palaeolithic hunter-gatherers
At all 25 loci where exclusively the low-risk allele was observed in Neanderthals and the Deni-
sovan, both allelic variants, the low-risk as well as the high-risk, were observed in present-day
humans, suggesting an increase in number and/or frequency of the high risk alleles at these
loci. Therefore, we determined the distribution of the number of loci carrying zero or at least
one high-risk alleles within the global population of 2504 modern humans studied by the 1000
Genomes Project Consortium [59]. Comparing the Altai Neanderthal and the Denisovan with
this distribution showed that the Altai Neanderthal with 10 loci carrying 1 or 2 high-risk alleles,
is at the far end of the distribution, with only 2.0% of contemporary humans having an equal
or lower number of such loci, over the 32 loci that were covered by the 1000 Genomes genetic
variant data (Fig 1). The Denisovan, with 8 of such loci, even falls at the extreme end of the
contemporary human distribution (0.24% has also 8, none has less).

The earliest sequenced anatomically modern human genome from an early Upper Palaeo-
lithic hunter-gatherer from Ust’-Ishim (western Siberia), dated to approximately 45,000 years
ago [53], is clearly shifted towards a higher number of loci carrying 1 or 2 high-risk alleles (Fig
1), although this individual, with 15 of such loci, is still slightly below the median of the con-
temporary human population (Fig 1). Indeed, Tables 1 and 2 specify, that at eight loci high-
risk variants are observed in the Ust’-Ishim individual that were not observed in the studied
Neanderthal, Denisovan, chimpanzee or gorilla genomes. Because all of these eight loci are het-
erozygous high-/low-risk loci, the increase is less pronounced at the allele level (see also Section
B of S1 Text). There is a distinctive increase in the number of high-risk alleles within the
Group A loci of the Ust’-Ishim genome as compared to the ancient hominin genomes (details
in Section I of S1 Text). An overall increase in number over all loci investigated could not be
unambiguously demonstrated, although the data suggest a small increase, most probably
through the emergence of new derived variants. In view of the high global allele frequencies
attained by a number of high-risk alleles in present-day humans (Tables C-E in S1 Text), an
increase in the frequency of many derived high-risk alleles in Ust’-Ishim as compared to Altai
Neanderthal and Denisovan becomes more likely and cannot be excluded as well. In younger
genomes, some derived high-risk variants present in older genomes are absent, but also some
derived low-risk variants, and there is no clear indication that the frequency of occurrence of
high-risk variants gradually increases in AMHs over time (Tables 1–3; S2 Table). Altogether,
these data indicate that in the evolutionary lineage leading to AMHs more high-risk alleles
might have emerged than on the lineage leading to Neanderthal and Denisovan.

In present-day humans, however, the high-risk variants occur at all 35 loci investigated,
attain global allele frequencies up to 81%, exceed the 5% limit to become a common variation
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at 29 of these 35 loci, and are the major allele at 11 loci (Tables C-E in S1 Text; S2 Table). For a
group of 21 loci found ancestral and homozygous low-risk in both high-coverage ancient
genomes studied (Group A) and less clearly for the remaining 14 loci, our data indicate an
increase in the number of high-risk alleles in present-day humans as compared to Neander-
thals and the Denisovan (details in Section I of S1 Text). In addition, the high contemporary
global allele frequencies for the mainly derived high-risk alleles provide a strong indication for
an overall increase in frequency in modern humans as compared to Neanderthal and Deniso-
van hominins (Tables C-E in S1 Text). The Ust’-Ishim data are consistent with an early start of
this increase in number and frequency before 45 kya (Tables 1–3).

Geographical distribution
Both high- and low-risk variants of the polymorphisms studied are present in many contempo-
rary populations throughout the world (S2 Table). Overall, there are no strong differences in
the number of high-risk variants observed in various populations and individuals all over the
world, although for specific gene polymorphisms only one allele is observed in particular
regions. However, one large-scale regional difference suggests itself: three polymorphisms can
be identified (AHR1/c.66-3946A>G; CYP1A1/p.Ile462Val; GSTP1/p.Ala114Val) for which the
high-risk variant is (almost) absent (range 0–2%) in Africa, while both high- and low-risk vari-
ants are observed outside Africa (range of high-risk allele frequency (3–40%). Grouping the
results in terms of the function of the gene product in detoxification did not strengthen any
pattern or indicate any additional pattern.

Discussion
For the majority of gene polymorphisms (29 out of 35) affecting sensitivity to the adverse
effects of genotoxic combustion and food heating products we observed that Neanderthal and/
or Denisovan hominins carried the protective (low-risk) allele. Since we analysed 35 loci in 19
functionally related genes in at least 2 ancient hominin genomes (the high-coverage Denisovan
and Altai Neanderthal, and up to 6 low-coverage Neanderthal genomes) coincidence because
of the low number of ancient hominin genomes analysed can be excluded as the explanation of
the significant genetic pattern observed. Four population-genetic principles provide support to
this conclusion (details in Supporting Information, Sections H-I of S1 Text): (I) The high-risk
variants were found to be derived in most cases, and derived alleles tend to occur at lower fre-
quencies than ancestral alleles [73]. (II) Neanderthals and Denisovans have experienced popu-
lation bottle-necks [74] and (III) display an unusually low genetic diversity [23] or are very
much inbred [24], and (IV) are both mostly homozygous at the loci studied here (S2 Table).
Each of these arguments makes it less likely that another allele would have existed at substantial
frequency next to the ancestral low-risk alleles predominantly observed in the ancient hominin
populations studied here. This is also corroborated by the fact that, compared with the distribu-
tion in modern humans, the ancient hominins are outliers regarding their low number of loci
displaying a high-risk allele (Fig 1; see also Section B of S1 Text). As such, this pattern would be
consistent with regular use of fire, since the postulated genetic selection pressure, driven by the
adverse effect of fire-borne toxicants on reproductive success, would favour an increase in fre-
quency of the low-risk genotypes. However, in 26 out of 29 cases the low-risk gene variant in
ancient hominins appears to be the ancestral allele also found in chimpanzee and/or gorilla
(Tables 1 and 2). This is contradictory to our hypothesis, that the low-risk alleles are expected
to be newly derived alleles. The 3 cases where we did observe a new derived protective allele
(Table 2), to the best of our knowledge, are not exceptional for biological reasons and are there-
fore outweighed by the 26 cases of ancestry. That the protective variants are ancestral means
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that no adaptation of these genes could be demonstrated and does not allow us to conclude to
what extent genetic selection pressure plays a role in the high prevalence of low-risk alleles in
ancient hominins. Hominins have undergone major changes in diet and habitat since the
human and chimpanzee lineages split, minimally 7–8 million years ago [75]. The fact that, nev-
ertheless, the majority of the gene loci studied here did not diversify by genetic drift since the
gorilla and (chimpanzee–hominin) lineages diverged is consistent with the sustained functional
importance of these protective gene variants, and it is possible that genetic selection plays a
role in their maintenance [76, 77].

Previous studies demonstrated that the deviation of Neanderthal genomes from the modern
human reference genome generally falls within the variation among modern humans [52]. Over a
total of about 19,000 human genes [78] only a few hundred prominent non-synonymous substitu-
tions were found in which the modern human variant has reached a prevalence above 90% [24].
Consistent with these observations, the Ala381 variant of AHR1was among the polymorphisms
studied, the only variant found in ancient hominins which was not covered by modern human
genetic diversity. Moreover, we confirmed that the coding region deviation in the CYP1A1 and
CYP1B1 genes of ancient hominins, two key players in the detoxification of PAHs, falls within the
range observed in modern humans (Section E of S1 Text; S3 and S4 Tables). These observations
by us and other research groups confirmed the low sequence divergence between modern and
ancient hominins and justify extrapolation of the classification of modern detoxification gene vari-
ants into high- and low-risk to the ancient hominin genomes studied here.

For all 35 risk-classifiable loci studied here, a high risk variant was observed next to the low-
risk variant in modern humans, whereas the studied genomes of both ancient hominin species
displayed a predominance of the low-risk alleles. In addition, the pair of high-coverage
genomes studied were clear outliers when compared to the present-day human population, in
particular regarding their low number of loci carrying 1 or 2 high-risk alleles (Fig 1). implying
that ancient hominins very probably had a distribution shifted towards a lower number of such
loci. Therefore, we argue that the presented data indicate an overall increase in high-risk allele
numbers along the modern human lineage and provide strong evidence for a concomitant
increase in certain allele frequencies, which is also supported by the substantial allele frequen-
cies, up to the 80% range, often attained by the high-risk variants in contemporary humans
(see Tables C-E in S1 Text), suggesting a shift of the population median towards a lower effi-
ciency of the encoded detoxification capacities.

Since the use of fire must have become common practice at some point during the evolution
of modern humans, the unexpected recent relaxation in the defence against toxic smoke com-
ponents may suggest that the genetic variants studied were less important than expected. How-
ever, in view of the epidemiology of tobacco smoking a more likely explanation is that,
compared with earlier hominins and great apes, the total toxic burden decreased recently, in
spite of the additional challenge provided by the exposure to smoke. It is tempting to speculate
that this could be due to the increased detoxification of foods by cooking, and/or the decreased
exposure to UV-induced hazardous compounds (discussed below) due to cultural adaptations,
such as clothing and housing. Alternatively, the increase in high-risk detoxification gene vari-
ants could be part of a larger phenomenon. One recent study found that a high proportion of
single nucleotide variants are rare, and of those predicted to be deleterious 86% are estimated
to have arisen during the last 10,000–5,000 years [79]. This could reflect one or more recent
population expansions, particularly during the Neolithic [79]. Population expansion can cause
an increase in the proportion of rare and deleterious variants, because the effect of purifying
selection on less favourable variants is reduced [80]. Furthermore, fewer predicted deleterious
alleles were observed in African Americans compared with European Americans, a geographi-
cal pattern that is consistent with weaker purifying selection due to the “Out of Africa”
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dispersal [80]. The presence of high-risk variants in the oldest modern human in our sample,
(from Ust’-Ishim in Siberia), suggests that niche changes associated with the introduction of
agriculture are not responsible for the increase in high-risk variants in modern humans. Fur-
ther insight into this issue will come from future analyses of a larger sample of prehistoric
human ancient DNA. The fact that we found three polymorphisms for which the high-risk var-
iant is observed outside Africa, but is (almost) absent in Africa could be read as supporting the
role of an ‘Out of Africa’ or subsequent dispersal. However, clear patterns do not emerge from
the geographic distribution data visualized in S2 Table.

At the other end of the chronological spectrum, our study raises the question of the evolu-
tionary origins of the low-risk variants. Answering this question will require more extensive
phylogenetic comparison, which is complicated by the greater difficulty of establishing similarity
in the haplotype context of the alleles. Since chimpanzees and gorillas are not exposed to smoke
and cooked foods, there must be another reason for the early predominance of the low-risk alleles.
One possible factor is that the diet of extant great apes contains deleterious compounds that
deploy biotransformation mechanisms similar to toxic combustion products. Many plant species
contain substantial levels of flavonoids [81] and other polyphenols [82], which play a role in
defence against pathogens. Particularly at higher doses, these compounds may induce oxidative
stress when metabolised by the animal body [83] supporting the argument that these detoxifica-
tion capacities may have been required to efficiently neutralise them. A second factor may be that
under the influence of UV light dioxin-like compounds are formed from the amino acid trypto-
phan, for example 6-formylindolo[3,2-b]carbazole (FICZ) [84, 85]. These photo-oxidation prod-
ucts turn out to be highly potent activators of AHR, the key mediator of dioxin-like toxicity
(including PAHs) [86]. [87], and this appears to be evolutionarily conserved [88, 89]. FICZ is
formed in vivo in humans in significant quantities [84, 85] and besides photo-oxidation, plant
food components such as indole-3-carbinol may also give rise to similar indolocarbazole com-
pounds in the acidic environment of the stomach [90]. Moreover, during photo-oxidation of tryp-
tophan oxygen radicals are formed [91] leading to oxidative stress and DNA damage [92], and
AHR activation by itself was observed to produce oxidative stress [93, 94]. Altogether these obser-
vations provide compelling evidence that indolocarbazoles are potentially hazardous metabolites.
On the other hand, these products were found to play a role as endogenous AHR-mediated regu-
lators of important physiological processes such as circadian rhythms and adaptation to UV expo-
sure [95, 96]. Apparently, they need to be kept at a low, physiologically balanced level. Since their
fur is relatively thin [97], this might be an important reason why chimpanzees and gorillas need
an efficient CYP1A1 enzyme variant and related biotransformation capacities, as well as efficient
gene variants to combat oxidative stress. Since Sandel et al. [97] found a significant negative corre-
lation between body size and hair density in primates, this would suggest that the low-risk variants
are adaptive in the large-bodied great apes, and plausibly for that reason be ancestral in hominins
(already present in a chimpanzee-sized common ancestor). Denisovans and Neanderthals were
certainly exposed to sunlight, were eating wild plant foods, while also eating more animal products
[98], and may also have had to deal with additional toxicants from fire. Circumstances were prob-
ably not much different for early Upper Palaeolithic hunter-gatherers, suggesting that other expla-
nations than environmental factors for changes in the modern human lineage have to be found.

Conclusion
We studied the evolution of detoxification capacity by determining the genetic variants found
in Neanderthal and Denisovan hominins for genes known to have an impact on the sensitivity
to reproductive impairment, when exposed to genotoxic combustion and food heating prod-
ucts. We hypothesized that selection occurred in favour of lower risk genotypes in the human
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lineage after the most recent common ancestor of humans and great apes. We observed a pre-
dominance of protective alleles not only in Neanderthal and Denisovan hominins, but also in
chimpanzees, showing that these protective variants are mainly ancestral. Therefore, our results
turned out to be non-conclusive regarding the time depth of fire usage and our hypothesis did
not find any support in our study. However, our results do show that high-risk detoxification
gene alleles became more numerous in modern humans, an increase which may have already
started in early Upper Palaeolithic hunter-gatherers, suggesting that it preceded the major
behavioural and dietary changes of the Neolithic. This finding supports previous studies [79,
80, 99] indicating that increases in population size led to the accumulation of alleles with a neg-
ative health effect in human populations worldwide. Apparently, extant human smoke detoxifi-
cation capacity is to a large degree hitchhiking on detoxification capacities developed in our
primate past which had nothing to do with fire. This ancestral primate capacity is possibly
directed towards the detoxification of plant polyphenols and indolocarbazole compounds orig-
inating from the diet and UV-mediated oxidation of tryptophan in the skin. Hominins must
have undergone major dietary changes adapting to different habitats in the millions of years of
dietary and niche change since our last common ancestor with chimpanzees. It is surprising
that these changes apparently did not lead to major changes in the genes under consideration
here, an inference that can be tested more robustly when more high coverage Pleistocene
genomes become available. Finally, our study provides unexpected insights into the health
risks facing our ancestors as well as extant humans and raises some interesting questions for
future research, in particular regarding the distant origins and driving forces of the evolution of
detoxification mechanisms, and the role of multiple recent population expansions.
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