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Abstract

Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in
recent years. Using a variety of neuroimaging modalities such as structural, functional and
diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out
for accurate classification of patients with heterogeneous mental and neurodegenerative disorders
such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during
the past quarter century on single subject prediction focused on a multiple brain disorders. In the
first part of this study, we provide a survey of more than 200 reports in this field with a focus on
schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders,
autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed
information about those studies such as sample size, type and number of extracted features and
reported accuracy are summarized and discussed. To our knowledge, this is by far the most
comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the
second part, we present our opinion on major pitfalls of those studies from a machine learning
point of view. Common biases are discussed and suggestions are provided. Moreover, emerging
trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease
subtype classification and deep learning are also discussed. Based on this survey, there are
extensive evidences showing the great potential of neuroimaging data for single subject prediction
of various disorders. However, the main bottleneck of this exciting field is still the limited sample
size, which could be potentially addressed by modern data sharing models such as the ones
discussed in this paper. Emerging big data technologies and advanced data-intensive machine
learning methodologies such as deep learning have coincided with an increasing need for accurate,
robust and generalizable single subject prediction of brain disorders during an exciting time. In
this report, we survey the past and offer some opinions regarding the road ahead.
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1. Introduction

Neuroimaging has opened up an exciting non-invasive window into the human brain over the
past few decades. This interdisciplinary field has attracted scientists from areas such as
medicine, engineering, mathematics, physics, statistics, computer science, and psychology
(Epstein et al., 2001). Imaging modalities such as magnetic resonance imaging (MRI) and
magnetoencephalography (MEG) along with more traditional methods such as
electroencephalography (EEG) have made it possible to noninvasively study various aspects
of the human brain with unprecedented accuracy. MRI-related techniques such as structural
MRI (sMRI), functional MRI (fMRI) and diffusion MRI (dMRI) have the benefit of
providing localized spatial information about the brain structure and function as well as
functional and structural connectivity. These techniques have provided new insight into the
human brain and have brought hope to researchers trying to unravel the secrets of one of the
most complex systems in the universe, the human brain.

Structural MRI has made it possible to visualize the brain at high spatial resolution (one
cubic millimeter or less) (Liang and Lauterbur, 2000). SMRI high resolution images of the
brain are ideal for studying various brain structures and also for detecting physical
abnormalities, lesions and damages. DMRI is an imaging technique for visualization of
anatomical connections between different brain regions (Le Bihan et al., 2001; Merboldt et
al., 1985). Functional MRI measures brain activity by detecting changes in the blood
oxygenation (DeYoe et al., 1994; Ogawa et al., 1990). FMRI makes it possible to study
functional regions and networks of the brain as well as temporal associations among them.

Unfortunately, brain disorders are major health problems in US and the rest of the world that
not only impair lives of millions of people but also impose huge financial burdens on
societies (DiLuca and Olesen, 2014; Ernst and Hay, 1994; Rice, 1999). Moreover, there are
no clinical tests to identify many brain disorders such as schizophrenia. One of the major
hopes underlying the advanced neuroimaging tools mentioned above is to provide new
understanding of brain disorders such as schizophrenia, bipolar disorder, autism spectrum
disorder (ASD), Alzheimer's disease (AD), major depressive disorders, attention-deficit
hyperactivity disorder (ADHD) and mild cognitive impairment (MCI). Brain disorder
research aims at understanding the impact of each disease on the brain's function and
structure from the cellular to system level, as well as the pathogenesis of these complex
disorders. As a result, thousands of studies have been published on different aspects of brain
disorders to show aberrations of some features (structural or functional) in a patient group
usually in comparison with a healthy cohort (Jack et al., 1997; Jafri et al., 2008; Lorenzetti
et al., 2009; McAlonan et al., 2005). While these studies are valuable in terms of finding
relevant disease biomarkers, they are not sufficient for direct clinical diagnostic/prognostic
adoption. The main reason is that many of these findings are statistically significant at the
group level, but the individual discrimination ability of the proposed biomarkers is not
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typically evaluated. Since classification provides information for each individual subject, it
is considered a much harder task than reporting group differences.

In recent years, there has been a growing trend in designing neuroimaging-based prognostic/
diagnostic tools. As a result, there have been a lot of efforts using neuroimaging tools to
automatically discriminate patients with brain disorders from healthy control or from each
other (Kléppel et al., 2012). Many of these studies have reported promising prediction
performances with the claim that complex diseases can be diagnosed robustly, accurately
and rapidly in a automatic fashion. However, until now, these tools have not been integrated
into the clinical realm. We believe the main reason for this is that many of the studies of this
nature, despite the promising results on a specific research dataset, are not designed to
generalize to other datasets, specifically the clinical ones.

The purpose of this study is two-fold. First, we reviewed a large number of MRI-based brain
disorder diagnostic/prognostic studies in schizophrenia, ASD, ADHD, depressive disorder,
MCI and Alzheimer's disease. These studies are compared in a number of key aspects such
as type of features, classifier and reported accuracies. Next, we formed our opinion on the
issues associated with how machine learning is applied in neuroimaging and have suggested
solutions that might address these pitfalls. Considering the immense potential of
neuroimaging tools for clinical adoption, careful implementation and interpretation of
machine learning in neuroimaging is crucial. Machine learning is a relatively new domain
for many neuroimaging researchers coming from other fields and therefore pitfalls are
unfortunately not rare. We attempt to identify and emphasize some common mistakes that
result in these shortcomings and biases. At the end, we discuss emerging trends in
neuroimaging such as data sharing, multimodal brain imaging and differential diagnosis.

1.1 Group Difference vs. Classification

As pointed out in the introduction, many brain disorder studies have shown abnormality in
the average sense in one or more brain features in a patient cohort in comparison with a
healthy group using statistical tests. The success of such methodology is usually measured
by the means of p-values. On the other hand, the goal of single subject prediction is to
automatically classify each subject into one of the groups in the study (e.g., healthy vs.
patient). The success of classification studies is usually measured by accuracy.

These two problems are very different in essence as they try to address varying research
questions. In general, showing group differences is much easier compared to single subject
prediction. To better illustrate the difference between these types of analysis, we show an
example in Figure 1. Suppose there are two groups each with 100 samples (subjects) and we
have measurements of one brain feature for each subject. Figure 1A shows a case where the
mean of two groups is different as measured by a two-sample t-test. The difference is
statistically significant (p-value=0.001). However, if one tries to classify subjects based on a
threshold on this brain feature (the dotted red line placed between the mean of two groups),
a weak classification rate of 60.0% will be achieved. The reason for this is the range of
values for that specific feature is highly overlapping for the two groups. So, a highly
significant group difference does not necessarily translate into a strong classification result.
But the opposite is also true, as high classification based on a feature doesn't necessarily

Neuroimage. Author manuscript; available in PMC 2018 January 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Arbabshirani et al.

Page 4

mean that group-level mean differences exist. Figure 1B shows a case where the two-sample
t-test on the two groups is not significant (p-value= 0.86) but the classification based on two
thresholds (red dotted lines placed between each mode of group 2 and mean of group 1) is
very strong (94.5%). In this case, the abnormality is bidirectional, which does not cause
significant mean differences but makes it possible to separate the groups with two thresholds
(dotted lines). Interestingly, bidirectional abnormalities are observed in neuroimaging
studies (Mohammad R. Arbabshirani and Calhoun, 2011; Calhoun et al., 2006b). Figure 1C
shows a case where strong group differences and successful classification go hand in hand.
The abnormality is one-directional and the mean difference is very significant (p-
value<2e-16). The mean of two groups is so far apart that the values of most of the samples
of the two groups do not overlap. Therefore, a strong classification rate of 93.5% is achieved
(based on one threshold).

The main purpose of example in Figure 1 is to show that group level analysis and
classification are two different methods for different problems. We will return to this
example later for criticism of selecting features based on p-value.

2. Survey of MRI-based Single-Subject Prediction of Brain Disorders

Based on a search on Pubmed from 1990 to 20151, more than 500 papers on MRI-based
single subject prediction of brain disorders were found. Figure 2 summarizes the paper
selection procedure for this study. More than 200 papers were eventually selected for this
survey (112 AD/MCI, 63 schizophrenia, 19 depressive disorders, 20 ASD and 22 ADHD

papers).

We limited our search to journal papers in English published up to December 2015. In a few
instances, the full paper was not found and therefore those studies were excluded from this
survey. Also, in cases of very similar papers from the same authors, only one was selected.
Key aspects of each study such as modality, machine learning method, sample size and type
features were investigated. A list of all abbreviations used in the tables and the manuscript
itself is provided in Table 1.

2.1 Mild Cognitive Impairment/Alzheimer's Disease

MCI entails cognitive decline more than what is expected for an individual's age and
education level, but not to the extent that it interferes notably with activities of daily life
(Albert et al., 2011). Unfortunately, more than 50% of the MCI patients progress to
dementia within 5 years (Gauthier et al., 2006). So, it is considered a prodromal phase to
dementia especially the AD type (Gauthier et al., 2006). The heterogeneous etiology of MCI
includes degenerative diseases (AD, fronto-temporal lobe degeneration, dementia with Lewy
bodies) as well as vascular and psychiatric disorders (Petersen and Negash, 2008). AD is the
most common neurodegenerative disorder, which is increasingly prevalent among adults

1search Term: (“Machine Learning” OR SVM OR “automatic Classification” OR “discriminant analysis” OR “neural Network” OR
“Logistic Regressions” OR “decision tree”) AND (MRI OR “Magnetic Resonance” OR fMRI OR “functional MRI” OR “structural
MRI” OR “Diffusion MRI” OR DTI OR DSI) AND (schizophrenia OR bipolar OR Alzheimer's OR “Mild Cognitive Impairment” OR
MCI OR autism OR *“autism spectrum disorder” OR ASD OR depression OR “depressive disorder” OR ADHD OR “Attention Deficit
Hyperactivity Disorder”) concluded on 12/08/2015.
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aged 65 years and older. AD is characterized by the progressive impairment of neurons and
their connections, which result in decline and loss of cognitive functions. In 2007, it was
estimated that more than 26 million people suffer from AD worldwide (Brookmeyer et al.,
2007). In 2001 it was predicted that AD will triple in prevalence by 2050 (Hebert et al.,
2001). The detection of AD is based on clinical examinations and an evaluation of the
patient's perception and behavior. Considering the prevalence and severity of MCI/AD, the
largest number of neuroimaging-based, automatic prediction/classification publications has
been devoted to these conditions. Table 2 summarizes the 112 studies that we reviewed in
this survey.

2.2 Schizophrenia

Schizophrenia is among the most prevalent mental disorders and affects about one percent of
the population worldwide (Bhugra, 2005). This devastating, chronic heterogeneous disease
is usually characterized by disintegration in perception of reality, cognitive problems, and a
chronic course with lasting impairment (Heinrichs and Zakzanis, 1998). Considering the
absence of standard clinical test for schizophrenia, there is a growing interest in automatic
diagnosis of schizophrenia based on neuroimaging features. We surveyed 65 papers, which
are tabulated in Table 3.

2.3 Depressive Disorders

Major depressive disorder (MDD) or unipolar depression characterized by a pervasive low
mood, self-esteem and lack of interest in enjoyable activities is a common mental illness
affecting adolescents. The lifetime prevalence of MDD is approximately 15-20% (Kessler et
al., 2003; Lewinsohn et al., 1986). It is estimated that by the year 2020, depression will
account for 15% of the disease burden in the world ranking second after heart disease
(Kessler et al., 1994). We reviewed 19 studies that used neuroimaging for automatic
diagnose MDD. Those studies are listed in Table 4.

2.4 Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a serious neurodevelopmental condition characterized
by impaired social communication, deficits in social-emotional reciprocity, deficits in
nonverbal communicative behaviors used for social interaction and stereotypic behavior
(Association and others, 2003). Although the causation of autism is still largely unknown, it
has been suggested that genetic, developmental, and environmental factors could be involved
alone or in combination as possible causal or predisposing effects toward developing autism
(Minshew and Payton, 1988; Wing, 1997). ASD has an estimated prevalence of 1:68 in the
U.S. (Baio, 2012). We surveyed 20 papers in automatic diagnosis of ASD using MRI-based
features. Those studies are listed in Table 5.

2.5 Attention Deficit Hyperactivity Disorder

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most commonly found
functional disorders affecting children. Approximately 3-10% of school aged children are
diagnosed with ADHD (Biederman, 2005; Dey et al., 2012). Currently, no biological-based
measure exists to detect ADHD and instead behavioral symptoms are investigated to identify

Neuroimage. Author manuscript; available in PMC 2018 January 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Arbabshirani et al.

Page 6

it. Despite all the research efforts, the root cause of ADHD is still unknown. In 2011, a
global competition called ADHD-200 was held in order to use neuroimaging as well as
phonotypic measures to automatically detect ADHD (Consortium and others, 2012). Most of
the studies reviewed in this survey were responses to that challenge. The main characteristics
of those studies are tabulated in Table 6.

2.6 Analysis of the Survey

In Figure 3 we illustrate a couple of key aspects of this survey. Figure 3A shows the number
of papers published in each year for each disease type. The number of studies has been
growing significantly since 2007. There is a peak for ADHD studies in 2012-2013 mainly
due to ADHD-200 competition (Consortium and others, 2012) which attracted many
scientists. The total number of studies for each modality and each disorder is illustrated in
Figure 3B. It is clear that structural MRI is the most popular modality especially for
MCI/AD studies thanks to Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset.
Combined rest and task fMRI studies are most popular for ADHD and schizophrenia
studies. Surprisingly, multimodal studies are more common compared to either task fMRI or
diffusion MRI studies. Figure 3C shows the overall accuracy against the total sample size
used in the studies. Interestingly, almost all studies that reported very high accuracies, had
sample sizes smaller than 100. The reported overall accuracy decreases with sample size in
most of disorders such as schizophrenia and ADHD. This pattern raises a serious concern
regarding generalizability of many of those studies with small sample sizes. Figure 3D
shows the sample size distribution. The dashed lines represent mean (red) and median (blue)
sizes, which are 186 and 88 respectively. Finally Figure 3E illustrate the distribution of
reported accuracy for each disorder. On average (red dashed lines) MCI/AD and ADHD
studies reported the highest and lowest accuracies respectively.

Based on Tables 2-6, the most common extracted features in the surveyed studies are volume
and cortical thickness from structural MRI, the activation maps and functional connectivity
among ROIs or ICA components from fMRI data and fractional anisotropy from dMRI data.
Most common feature reduction methods (not reported in the tables) were based on PCA or
univariate statistical tests.

In terms of classification methods, support vector machine (SVM) was by far the most
popular method. Different flavors of SVM such as linear, non-linear with different kernel,
SVM with recursive feature elimination, SVM with L1 regularization and SVM with L1 and
L2 regularization (elastic net) have been used for classification of various disorders. Linear
discriminant analysis (under different names) and logistic regression were also popular
classification methods among the surveyed studies.

2.7. Predicting Continuous Measures

Most of the studies surveyed above, conducted the diagnosis of a disorder (i.e., assigning a
categorical label to each subject) using classification techniques. Pattern regression
considers the problem of estimating continuous rather than categorical variables, which can
be more challenging as compared to classification. Clinically, pattern regression can be used
to estimate the disease stage and progression. Therefore, there is a growing interest in
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estimating continuous variables such as cognitive scores for brain disorders using
neuroimaging measurements. We didn't survey those papers, but we will point out to some
of those studies in this section.

Wang et al. proposed a general methodology for estimating continuous clinical variables
from high-dimensional imaging data (Wang et al., 2010). Sato et al. used interregional
cortical thickness measurements to estimate Autism Diagnostic Observation Schedule
(ADQS) score in ASD patients (Sato et al., 2013). Stonnington et al. used relevance vector
regression (RVR) to predict number of cognitive scores such as Dementia Rating Scale
(DRS) and Alzheimer's Disease Assessment Scale (ADAS) based on structural MRI
measures (Stonnington et al., 2010). Tognin et al used RVR to predict Positive and Negative
Syndrome Scale (PANSS) scores of subjects at high risk of psychosis based on gray matter
volume and cortical thickness measurements (Tognin et al., 2013). Yue et al. showed
relationship between functional connectivity and neuropsychological assessment scores such
as Rey-Osterrieth Complex Figure Test (CFT) in amnestic MCI patients (Yue et al., 2015).
Zahng et al. used MRI, PET and CSF data to predict Mini Mental State Examination
(MMSE) and ADAS scores in MCI and AD patients (Zhang and Shen, 2012a).

2.8 Detecting/characterizing at Risk Healthy Subjects

The majority of studies surveyed above tried to automatically diagnose one or more
disorders in patients. However, detecting or characterizing healthy individuals who are at
high risk of brain disorders could potentially delay or prevent future symptoms. There has
been a lot of such studies using genetics information but detecting or characterizing at risk
subjects based on neuroimaging data is rare. Mourdo-Miranda et al. used functional MRI to
detect subjects at high risk of mood disorders (Mourdo-Miranda et al., 2012). Guo et al.
characterized activity of default-mode network in unaffected siblings of schizophrenia
patients using resting-state functional data (W. Guo et al., 2014). In another study, Fan et al.
studied structural endophenotypes in unaffected family members of schizophrenia patients
using machine learning methods (Fan et al., 2008a).

3. Common Machine-learning Pitfalls in Neuroimaging

In this section, common pitfalls among the surveyed papers are discussed.

3.1 Feature Selection Bias

Most of the papers we surveyed consisted of two consecutive parts: group difference
analysis and classification. Usually, statistical tests such as t-tests are used to show group
differences on a set of extracted features in the first part of the study, which is followed by a
classification approach to assess the discrimination ability of those features on a single
subject basis. Unfortunately, it is not rare to see that the results of first part (group
differences) are used to select features for the classification part. In general, any use of test
samples in any part of the training (such as feature extraction, feature selection and classifier
training) poses a bias. Selecting features for classification based on the results of group tests
that were conducted on the whole dataset is a form of double dipping and therefore leads to
a biased (inflated) result (Bishop, 2006; Demirci et al., 2008b).
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This form of feature selection also has another major problem. The significance of group
statistical tests, which are the basis of feature selection in some of the studies, is mostly
based on p-values. However, the relationship between p-value and discrimination power is
not straightforward. Figure 1 shows the p-value of a two-sample t-test as well as overall
accuracy based on one or two thresholds in three different scenarios. It is seen that low p-
value doesn't necessary mean a strong feature (Figure 1A) and high p-value doesn't mean a
weak feature (Figure 1B). However, if the abnormality is one-directional, then a very low p-
value might translate to high classification accuracy (Figure 1C). So, by discarding features
just based on the result of statistical tests sensitive to group mean, valuable discriminatory
information could be lost.

Instead of feature selection based on univariate group-level statistical tests, more common
filtering and wrapper methods should be used (Blum and Langley, 1997; Hall and Smith,
1998; Kohavi and John, 1997). Filtering methods assign scores to each feature from which a
number of top ones can be selected. A good filtering method should be sensitive to the
discriminative power of the features. Most of these methods are univariate and therefore
each feature is treated independently from other features. Filtering methods have the
advantage of low computational cost, but their main drawback is ignoring the relationship
among features.

Wrapper methods, on the other hand, consider selection of a set of feature as a search
problem. Different combinations are evaluated and finally the best set of features is selected.
A popular wrapper method is the recursive feature elimination (RFE) algorithm (Guyon et
al., 2002). Wrapper methods are computationally much more expensive than filtering
methods, but can result in superior performance by considering interaction among features.

There are methods that aim at combining both filtering and wrapper methods. Minimum-
redundancy maximum relevancy (mMRMR) is one the methods popular for genetic feature
selection. MRMR tries to select features with maximum mutual information with class
labels while minimizing the mutual information among those features (G. Brown et al.,
2012)

Finally, there are embedded feature selection methods (Guyon and Elisseeff, 2003). These
methods combine classification and feature selection into one unified step. Embedded
methods learn the features that contribute the most to the accuracy of the model during the
training phase. One of the common categories of the embedded methods is using
regularization to enforce the learning algorithm to find more parsimonious models with
lower complexity and therefore with fewer parameters. A post training analysis of the model
coefficients, determines the selected features. Examples of regularization algorithms used in
embedded feature selection methods are LASSO, elastic net and ridge regression (Hastie et
al., 2004; Ng, 2004; Park and Hastie, 2007; Zou and Hastie, 2005).

3.2 Overfitting

Overfitting happens when a model describes noise in the data rather than the underlying
pattern of interest. Overfitting results in very good performance on the observed data and
very poor performance on unseen data. Using models that are very complex or have many
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parameters on datasets with small number of samples and large number of features are more
susceptible to overfitting. Neuroimaging datasets have limited number of samples and
millions voxels per sample. Based on Figure 3D, the majority of surveyed studies built
predictive models based on a very small number of subjects. It is evident from Figure 3C
that overall reported accuracy decreases with sample size in our survey. Therefore, it is
plausible that many surveyed studies suffer from overfitting problem. It should be noted that
by definition, overfitted models work well on the training data and poor on the test data.
However, if the process of training and testing is repeated (by varying the model parameters)
until a desirable performance on the test data is achieved, the model will likely overfit both
the train and test datasets. Cross validation and regularization are common methods to
control overfitting. As mentioned earlier, more complex models have a greater chance of
overfitting the data. For example, non-linear SVM is more powerful compared to linear
SVM but has many more parameters and therefore is also potentially more capable of
explaining noise in the data. As discussed in the previous section, proper feature selection
can also help to avoiding overfitting.

3.3 Reporting Classification Results

The result of classification is basically a confusion table/matrix also known as a contingency
table. The confusion matrix summarizes the results in a table layout where each column
represents the predicted class and each row represents the actual class. Confusion matrix is
mx mwhere mrepresents the number of classes. In the case of binary classification, many
statistical measures can be computed from the 2 x 2 confusion matrix, such as sensitivity (or
recall), specificity, positive predictive value (or precision), negative predictive value, F1
score, odds ratio, kappa and false negative rate. Confusion matrix and some of the
performance measures are shown in Figure 4. In order to understand the performance of a
classifier, it is important to report at least sensitivity/specificity or precision/recall along with
the overall accuracy. We highly encourage reporting the confusion matrix itself as well.
Some of the studies in this review just reported the overall accuracy, which can be very
uninformative especially when classes have unequal sample sizes (Alberg et al., 2004).
Suppose there are 20 patients and 80 controls in a test dataset. Reporting 80% accuracy is
completely uninformative since the classification of all subjects as healthy could result in
80% (one of the scenarios). This problem is easily detectable by looking at the confusion
matrix or sensitivity and specificity measures. In unbalanced sample size cases, balanced
specificity and sensitivity is more desirable than higher overall accuracy; therefore, measures
such as F1 score (harmonic mean of precision and recall) are preferred for evaluating the
classifier. The other very common way of reporting results for a binary classifier is by
showing “receiver operating characteristic” (ROC) curve. The ROC curve is the plot of
sensitivity against “1-specificity” by changing the discrimination threshold and therefore
provides a complete picture of classifier's performance. The ROC curve is usually
summarized by an area under the curve (AUC), which is a number between 0 and 1 (ideal
classifier).

The other common reporting issue is unjustified comparison of the achieved overall
accuracy with the random chance. This issue is critical in this field due to small sample
sizes. For example, an 80% achieved overall accuracy might not be significantly different
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from a 50% random chance in a statistical sense in a two-class problem if the sample size is
too small. Any achieved accuracy in a test sample is just one estimate of the population
accuracy. Like any other statistics, a confidence interval can be computed for that measure.
In the case of a two-class problem, a binomial confidence interval can be computed for
overall accuracy that serves as the basis for comparison with random chance, or any other
accuracy. In our example (80% accuracy), if the test sample size is 10, then the 95% exact
binomial confidence interval would be [0.444 0.975], which includes the random chance
probability (0.50) and therefore is not statistically above chance. Calculating this interval is
straightforward using most of statistical and technical computing software such as R and
Matlab. This approach should be employed when repeating the classification experiment for
number of times is not feasible. However, in most cases, the null distribution of chance is
empirically computable by randomly assigning labels to test samples and repeating
classification for a number of times. This method, known as a permutation or randomization
test, makes it possible to calculate the desired confidence interval of the chance, which
consequently can be compared against the achieved classification accuracy using the correct
labels (Collingridge, 2013; Fisher et al., 1960; Good, 2006; Mehta et al., 1988) . Recently,
for special cases such as SVM, fast analytical estimation of permutation testing has been
proposed (Gaonkar and Davatzikos, 2013). Also, it has been shown that p-value for
permutation testing can be written in the form of an infinite series whose terms are
efficiently computable (Gill, 2007).

3.4 Comparison of Accuracies Across Studies

It was frequently observed that authors claim that their proposed classification framework
outperformed some other studies (and sometimes all other studies) just on the basis of
overall accuracy. Considering the number of variables in each study—such as sample size,
scanner parameters, sample age distribution, patients’ status (e.g., severity, medication),
modality, length, type and design of study (for fMRI studies), preprocessing parameters,
number and type of extracted features and type of classifier—such a comparison is
essentially meaningless. Even in the case of standard neuroimaging datasets, the statistical
comparison discussed in the previous section, should be employed to compare the results.

3.5 Hyperparameter Optimization

Hyperparameter optimization or model selection is choosing a set of parameters for the
learning algorithm in order to maximize the performance of the algorithm. Hyperparameters
should be chosen during training, usually via an inner loop cross validation inside the
training data. SVM, which is one of the most popular classifiers in this review and in
neuroimaging in general (Orru et al., 2012), has at least one hyperparameter (linear SVM)
called soft margin. In addition to soft margin, non linear SVM has one or more
hyperparameters depending on the kernel (e.g. sigma/gamma for RBF kernel and degree for
polynomial kernel). Some of the studies that we reviewed just used the default values for
these parameters. A lack of parameter optimization can degrade the classification
performance significantly. To show this, a toy example is illustrated in Figure 5. SVM with
three different kernels is used to classify this simulated two-class problem. In the top row,
1.0 is chosen for soft margin hyperparameter (which is the default of most machine learning
software packages) for all kernels, degree of 3 was chosen for the polynomial kernel and
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gamma of 0.01 was selected for RBF kernel. In the second row, the hyperparameters are
optimized. First, it is evident that the linear kernel failed to learn the non linear pattern under
both settings. Increasing the polynomial kernel degree by one, dramatically improved the
classifier. Also, increased soft margin value, significantly improved SVM with RBF kernel.
So, both the choice of kernel and hyperparameters are crucial for building a successful
SVM-based classifier. SVM hyperparameters are usually selected based on a grid search
over plausible values.

4. Machine Learning in Neuroimaging: Shortcomings and Emerging Trends

Machine learning has more than two decades of history in neuroimaging and despite all of
the promising results of numerous studies, it is still immature and not ready for integration
into clinical healthcare. In this section, we review some of the challenges and emerging
solutions.

4.1 Sample Size in Neuroimaging Studies

The most limiting factor in this field is by far the limited sample size issue. As summarized
in Figure 3B, the majority of studies in this review and in general have sample size of less
than 150. This sample size is miniscule in comparison with other fields in which machine
learning is used. As an example, ImageNetZ, which is commonly used as standard computer
vision dataset, has over one million samples and 1000 classes. As a result of such big
datasets, dramatic improvement has been achieved in the field of computer vision in the past
few years. However, sample size limitations in neuroimaging pose several problems. First,
the classifier performance is directly affected by the sample size. It is shown that large
training data sets increase classification accuracy (Franke et al., 2010; Kl6ppel et al., 2009).
Small sample size does not represent the patient population and therefore promising results
may not generalize to other patient groups. In a study conducted by Nieuwenhuis et al., it
was shown that for small training sample sizes (N<130) the predictive model for
classification of schizophrenia patients based on SMRI was not stable (Nieuwenhuis et al.,
2012). More than 63% of the studies we reviewed didn't meet this criterion. Large datasets
may reduce problems with disease heterogeneity as they can represent the whole spectrum
of the disorder. Although there are some machine learning methods that are less sensitive to
data, a limited number of data samples can cause model overfitting, resulting in poor
generalization of the method to independent data sets (Pereira et al., 2009).

To understand the etiology of complex conditions such as mental health, we must develop a
better understanding of the structure of the signals and measurements we make of the brain.
Thanks to advances in imaging and assaying technology, we can gather increasingly detailed
information about individuals, but the cost and complexity of these techniques means that
individual researchers may not have sufficient data to build a compact and informative
representation of the data. For example, a single SMRI may have tens of thousands of voxels,
but a single site may have only a hundred subjects in their study. With increasingly complex
data, the classical “curse of dimensionality” would seem to indicate that there is no way to

2http://image—net.org/
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determine signal from noise in this setting. To address the “small A’ problem in other
settings, many researchers have proposed open sharing of data to leverage data from
multiple sites as well as commercial cloud computing infrastructures to handle the additional
computational burden. In the past few years, several multi-site data sharing initiatives such
as FBIRN, MCIC and COBRE for schizophrenia, ADNI for Alzheimer's disease, ABIDE for
ASD, ADHD-200 for children with ADHD and Functional Connectomes project for healthy
have been started.

In neuroscience, measurements often come from human subjects; in some cases legal,
ethical, and sociological concerns may preclude or prohibit such open sharing. In particular,
local administrative rules, concerns about re-identification of study participants, and a desire
to maintain control over data in ongoing research projects may prevent individual research
sites from sharing the data (Sarwate et al., 2014). The status quo is a patchwork of
institution-to-institution data use agreements whose complexity stymies automated analyses
across more than a handful of data sets.

4.2 Operating on Decentralized Data

We believe a more convenient and scalable solution will come from design and
implementation of algorithms which learn from data distributed across research groups.
These algorithms shall include feature learning as well as classification, prediction and
inference. Dropping the requirement of moving the data, these algorithms will better match
the current decentralized and efficient organization of research society and substantially
lower barriers to entry for collaborative work. The resulting network effect will enable new
innovative opportunities for research that we cannot envision today. The need for such
approaches to general data computation is realized by some researchers (Bai et al., 2005) but
not yet fully appreciated by the neuroimaging field. The field is currently in the state of
establishing central repositories of anonymized raw data (Bockholt et al., 2009; Buccigrossi
et al., 2007; Di Martino et al., 2014; Jack et al., 2008; Keator et al., 2008; Landis et al.,
2015; Marcus et al., 2007; Poldrack et al., 2013; Scott et al., 2011; Turner, 2014; Van Essen
et al., 2013). In the past 10 years, release of multi-site neuroimaging datasets such as:
FBIRN, MCIC for schizophrenia (Ford et al., 2009; Gollub et al., 2013), ADNI for
Alzheimer's disease (Jack et al., 2008), ABIDE for ASD (Di Martino et al., 2014),
ADHD-200 for children with ADHD (Consortium and others, 2012) and Functional
Connectomes project for healthy subjects (Biswal et al., 2010) have been started.

Certainly, access to raw data is the best way to drill down to the finest details and resolve
any inconsistencies due to data handling. However, even in the centralized repositories, it is
often more convenient to start analysis from a point in the processing pipeline where less
detailed but possibly more informative features are generated. Furthermore, there are three
categories of data that pose challenges for public availability for easy access: (1) data that
are non-shareable due to obvious re-identification concerns, such as extreme age of the
subject or a zip code/disease combination that makes re-identification simple; (2) data that
are non-shareable due to more complicated or less obvious concerns, such as genetic data or
other data which may be re-identifiable in conjunction with other data not under the
investigator's control; and (3) data that are non-shareable due to the local institutional review
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boards (IRBs) rules or other administrative decisions (e.g., stakeholders in the data
collection not allowing sharing). For example, even with broad consent to share the data
acquired at the time of data collection, some of the eMERGE sites were required to re-
contact the subjects and re-consent prior to sharing within the eMERGE consortium, which
can be a permanent show-stopper for some datasets (Ludman et al., 2010). An extensive
account of the problems that go along with these concerns is given by Sarwate et al.
(Sarwate et al., 2014). An example of how a decentralized data feature learning algorithm
could use decentralized data joint ICA in given by Baker et al. (Baker et al., 2015). In short,
the algorithm performs a joint ICA on datasets distributed across research sites which
enables one to perform temporal ICA on fMRI data as an increasingly large data sample
becomes available when many research groups join the collaboration. Importantly, Baker et
al. have demonstrated (on synthetic data) that with their approach the estimated components
are virtually identical for the pooled data (i.e. a central repository), two sites with data split
in half, multiple sites with data evenly split across, and even a very large number of sites
with very few subjects at each of them. Once globally consistent features are available they
may be used in building classification algorithms.

Nevertheless, decentralized data computation under serious privacy concerns will need
additional protection besides simple protection from only sharing summaries and not the raw
data samples. A solution for this setting has been offered in the e-differential privacy model
and explained extensively in the neuroimaging context with published examples (Dwork,
2006; Sarwate et al., 2014). This approach defines privacy by quantifying the change in the
risk of re-identification as a result of publishing a function of the data. Notably, privacy is a
property of an algorithm operating on the data, rather than a property of the sanitized data,
which reflects the difference between semantic and syntactic privacy. Importantly for our
applications, it can be applied to systems which do not share data itself but instead share
data derivatives (functions of the data). Algorithms that guarantee differential privacy are
randomized in how they manipulate the data values (e.g., by adding noise) to bound the risk.
Enabling individual subject prediction in the classification framework is one of the
applications where the above-described approaches can provide the most benefit—especially
for rare conditions that are easy to identify by cross referencing when raw data is openly
shared and hard to collect enough data at a single site to provide high generalization. The
former is perfectly addressed by applying e-differential privacy approach to classification
(Chaudhuri et al., 2011), while the latter can be addressed by running decentralized
algorithms over multiple sites. As mentioned already, differentially private algorithms
provide guarantees by necessarily lowering the quality of the solution due to the required
noise addition. The same happens to differentially private classifiers (Chaudhuri et al., 2011)
and the effect is an undesirable increase in prediction error (Sarwate et al., 2014).
Fortunately, combining the approaches (differential privacy and decentralized algorithms)
can improve the situation considerably by dropping classification error from 25% to 5%
while preserving all privacy guarantees (Sarwate et al., 2014).

In these “big data” times, the need for computation on large-scale datasets creates the best
climate for software for distributed computation. Many useful and powerful projects came to
the scene such as Apache Spark (Zaharia et al., 2010) and H20 (“H20,” 2015). On closer
inspection, these implementations are essentially striving for the efficiency of computation
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given a big data overload (typically easy to get data stored centrally). They suggest
optimization toward an environment that is quite orthogonal to what we have to deal with—
hard to get to and expensive to collect data spread across research labs around the nation and
the world. The goal of decentralized approaches that we are describing here stands
principally as preserving correctness of the computation while minimizing the data passed
around and reducing the number of iterations. The tools and methods are not conflicting and
decentralized data algorithms can and shall take advantage of what is being developed for
large-scale computation in the distributed computing community.

4.3 Differential Diagnhosis and Disease Subtype Classification

Using machine learning methods, promising results have been reported for automatic
diagnosis of various cognitive and neurodegenerative disorders, usually from healthy
controls based on neuroimaging features. However, one of the main challenges in psychiatric
and neurology diagnoses is to differentially diagnose a disorder that shares symptoms with
multiple other disorders. Examples of such overlapping disorders are schizophrenia, bipolar,
schizoaffective, unipolar and mood disorders. Except for differentiating MCI for AD, only a
few considered much needed automatic differential diagnosis in the studies we surveyed.
Costafreda et al. used fMRI with a verbal fluency task to classify schizophrenia, bipolar and
healthy controls (Costafreda et al., 2011b). Calhoun et al., and Arribas et al. both used fMRI
with an auditory oddball task and an ICA approach to extract features from the default
model network and the temporal lobe of the brain (Arribas et al., 2010; Calhoun et al.,
2008). Both of these studies reported high differential accuracy between schizophrenia and
bipolar disorder. Pardo et al. used a combination of volumes of 23 ROIs derived from
structural MRI along with 22 neurophysiological test scores to automatically classify
schizophrenia, bipolar and healthy controls (Pardo et al., 2006). Recently, Schnack et al.
proposed using gray matter densities for classification schizophrenia, bipolar and healthy
controls (Schnack et al., 2014). Koutsouleris et al., used gray matter maps from structural
MRI to classify schizophrenia from mood disorder (Koutsouleris et al., 2015). Ota et al.
combined volumetric measures derived from structural MRI with fractional anisotropy from
dMRI in selected ROIs to classify schizophrenia from MDD (Ota et al., 2013). Sacchet et al.
proposed using gray matter volumes of caudate and ventral diencephalon to differentiate
MDD, bipolar and remitted MDD patients (Sacchet et al., 2015).

Pathologies like autism and schizophrenia are spectrum disorders with multiple etiologies
under the umbrella of the same diagnostic category. While classification of these disorders
using the generic category is commonly used to find diagnostic biomarkers, one of the key
issues in mental healthcare is the differential diagnosis of patients across several disease
subtypes. Common binary patient-control classification ignores the underlying heterogeneity
of the disorder. Usually, the treatment path used for these subtypes differs from each other
and therefore the correct subtype diagnosis is very important. For example, several cognitive
deficits are observed in schizophrenia patients, but the magnitudes of such symptoms are
highly variable among the patients. To reduce this phenotypic heterogeneity two major
subtypes named “cognitive deficit” and “cognitively spared” have been defined (Green et al.,
2013; Jablensky, 2006). These two subtypes exhibit different genetic and cognitive profiles
(Green et al., 2013; Morar et al., 2011). An automatic classification of schizophrenia
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subtypes has been rarely studied. Ingalhalikar et al. proposed unsupervised spectral
clustering of multi-edge graphs built from a structural connectivity network among 78 ROIs
be usedto identify subtypes of autism and schizophrenia (Ingalhalikar et al., 2012). Gould et
al. proposed using whole brain, voxel-based morphometry to classify schizophrenia patients
with cognitive deficit from those that are cognitively spared (Gould et al., 2014).

There are several studies on automatic differentiation of stable MCI from progressive MCI
(those that convert to AD within a certain amount of time). Most of these studies reported
modest accuracies around 65-80% (Plant et al., 2010; Salvatore et al., 2015a; Tangaro et al.,
2015; Tong et al., 2014; Wolz et al., 2011; Zu et al., 2015). ADHD subtype studies are
scarce and limited to few studies such as the one by Sato et al. with the intent to
automatically differentiate ADHD-IA, ADHD-HI and ADHD-C using resting-state fMRI
(Sato et al., 2012).

Again, one major limitation in differential diagnosis and disease subtype classification is the
limited sample size. In most of the current datasets, the number of subjects in each diseases
subtype is small and therefore provides limited ability to develop robust single-subject
predictor to accurately differentiate them.

4.4.1 Multimodal Neuroimaging Studies—Each imaging modality provides a different
view of brain function or structure, and data fusion capitalizes on the strengths of each
imaging modality/task and their inter-relationships in a joint analysis. This is an important
tool to help unravel the pathophysiology of brain disease (Calhoun et al., 2006a; Sui et al.,
2012). Recent advances in data fusion include integrating multiple (task) fMRI data sets
(Kim et al., 2010; Sui et al., 2015, 2009) from the same participant to specify common
versus specific sources of activity to a greater degree than traditional general linear model-
based approaches. This can increase confidence in conclusions about the functional
significance of brain regions and of activation changes in brain disease. In addition, the
combination of function and structure may provide more informative insights into both
altered brain patterns and connectivity in brain disorders (McCarley et al., 2008; Michael et
al., 2009; Sui et al., 2011). These findings suggest that most studies favor only one data type
or do not combine modalities in an integrated manner, and thus miss important changes
which are only partially detected by each modality (Calhoun and Adali, 2009). On the other
hand, multimodal fusion provides a more comprehensive description of altered brain
patterns and connectivity than a single modality, which has shown increasing utility in
answering both scientifically interesting and clinically relevant questions.

4.4.2 Single-Subject Prediction using Multimodal Neuroimaging Data—There is
increasing evidence from multimodal studies that patients with brain disorders exhibit
unique morphological characteristics, connectivity patterns, and functional alterations,
which could not have been revealed through separate unimodal analyses as typically
performed in the majority of neuroimaging experiments. Hence, applying classification
techniques to these characteristics could identify biomarkers for psychiatric diseases. This
could expedite differential diagnosis, thus leading to more appropriate treatment and
improved outcomes for patients with brain disorders. There has been number of studies
showing the benefits of combining both rest and task fMRI data for group differences in
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functional connectivity between schizophrenia patients and controls (Arbabshirani and
Calhoun, 2011; Cetin et al., 2014). The change of functional connectivity from rest to task
contains novel information present in neither of the states, which could be beneficial for
single subject prediction (Mohammad R Arbabshirani and Calhoun, 2011). Based on these
evidences, future studies might benefit from combining resting-state and task-based data for
classification of brain disorders.

As another example, MCl is difficult to diagnose due to its rather mild and nearly
insignificant symptoms of cognitive impairment. Wee et al. integrated information from DTI
and resting fMRI by employing multiple-kemel SVM, yielding statistically significant
improvement (>7.4%) in classification accuracy of predicting MCI from HC by using
multimodal data (96.3%) compared to using each modality independently (Wee et al., 2012).
There are additional studies that demonstrate the potential of the fusion of structural and
functional data combined with multi-modal classification techniques to provide more
accurate and early detection of brain abnormalities (Fan et al., 2008b). By taking advantage
of these two complementary approaches, Sui et al. proposed a framework based on mCCA
+jICA, that allows both high and weak connections to be detected and shows excellent
source separation performance (Sui et al., 2011). It enables robust identification of
correspondence among N diverse data types and enables one to investigate the important
question of whether certain disease risk factors are shared or are distinct across multiple
modalities, which can also serve as multimodal feature selection method for schizophrenia
(Sui et al., 2013a, 2013b). Similarly, Jie et al. adopted SVM-FoBa to classify between
bipolar versus unipolar disorders by combining GM and ALFF features, achieving an
accuracy of 92% This suggests that using complimentary multimodal biomarkers may be
more informative and effective to discriminate brain disorders (Jie et al., 2015).

There are number of recent studies looking at combined biomarkers of SMRI, FDG-PET,
and CSF (mostly for ADNI dataset) to discriminate between AD, MCI and HC (Gray et al.,
2013; Xu et al., 2015; Yu et al., 2015; Zhang et al., 2011, 2014). Similarly, a few studies
combined functional and structural data to build such predictive models (Z. Dai et al., 2012;
Dyrba et al., 2015). Most of those studies reported superior performance of models built
based on multimodal features compared to those based on a single modality (Calhoun and
Sui, 2016).

4.5 Deep Learning in Neuroimaging

In recent years, deep learning methodology has made significant improvement in
representation learning and classification in various areas such as speech recognition, natural
image classification and text mining. Two main features have made deep learning very
attractive to machine learning researchers. First deep learning in contrast with traditional
machine learning methods is capable of data-driven automatic feature learning. This
important capability removes the subjectivity in selecting the relevant features especially in
cases where too many features exist or prior knowledge in selecting features is not
conclusive. The second important feature of deep learning is the depth of models. By
applying a hierarchy of non-linear layers, deep learning is capable of modeling very
complicated data patterns in contrast with traditional shallow models.
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Typical approaches in single subject prediction in neuroimaging consist of selecting features
sometimes from thousands of voxels. As reviewed in this report, the basis for such a feature
selection is usually inefficient univariate statistical tests. Recently, deep belief networks, a
class of deep learning, has been applied to both structural and functional MRI data (Plis et
al., 2014). Plis et al. showed that deep learning methods could produce physiologically
meaningful features and reveal relations from high dimensional neuroimaging data (Plis et
al., 2014). Hjelm et al., applied restricted Boltzmann machines (RBM) to identify intrinsic
networks in fMRI data (Hjelm et al., 2014). They showed that RBMs could extract spatial
networks and their activation with the accuracy of traditional matrix factorization methods
such as ICA. Provably, deep models need exponentially smaller number of parameters in
order to model the same thing shallow models can model (Bengio, 2013, 2012). Moreover,
deep learning structures such as RBM are generative models and therefore it can be sampled
from. This way it is easy to access uncertainty in the estimates compared to the point
estimates of matrix factorization models. Furthermore, for deep learning RBM could be
stacked to obtain deeper models as needed. This cannot be readily done with ICA, NMF, or
sparse PCA.

Recently, deep learning is employed in classification of patients using neuroimaging data.
Suk et al. used stacked autoencoder (another class of deep learning) to discriminate patients
with AD from those with MCI (Suk et al., 2013). Kim et al. used deep learning for
classification of schizophrenia patients from healthy controls based on functional
connectivity patterns. They showed that their approach outperforms SVM by a significant
margin (Kim et al., 2015).

Deep learning is a very promising tool for understanding the neural basis of brain disorders
by extracting hidden patterns from high-dimensional neuroimaging data (Kriegeskorte,
2015). In our opinion, this method has the potential to improve brain disorder diagnosis—
especially if larger neuroimaging datasets become available and/or improved methods of
training based on existing data are developed (Castro et al., 2015).

4.6 Standard Machine Learning Competitions in Neuroimaging

The machine learning field has benefited hugely from standard competitions in many
applications. In such competitions, usually the participants are provided with a labeled
training dataset and an unlabeled testing dataset. The participants try to develop the best
predictive model based on the training dataset, predict the labels of the provided testing
dataset and submit the results. Such a setting ensures that the results are not biased. These
competitions usually attract many groups, even those with less domain knowledge and
expertise. By providing a standard dataset and some initial preprocessing, the participants
can primarily concentrate on the machine learning aspect of the analysis.

Due to all of the data sharing problems previously discussed, such competitions are rare in
neuroimaging. The ADHD-200 competition was held in 2011 with the goal of predicting
ADHD from healthy controls in children and adults, using resting-state fMRI along with
anatomical and phonotypical data of 776 subjects (491 TDC and 285 ADHD) for training
along with additional 197 subjects for testing (Consortium and others, 2012). The
competition was a successful example of large-scale ADHD data sharing among several
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sites. However, the ‘winning’ team of ADHD-200 competition didn't use the imaging data in
their predictive model (just the phenotypical data), which caused discussion in the
community about usefulness of brain data in diagnosing a brain disorder (M. R. G. Brown et
al., 2012; Consortium and others, 2012).

More recently, The IEEE MLSP workshop held a schizophrenia classification challenge with
the goal of automatic classification of schizophrenia patients from healthy controls using just
brain imaging features (Silva et al., 2014). Functional network connectivity values of
resting-state fMRI along with ICA loadings of source-based morphometry of SMRI were
calculated from 144 subjects (75 healthy controls, 69 schizophrenia patients) and shared
with participants. Interestingly, 245 teams participated in the competition and the winning
team achieved an AUC of around 0.90. Moreover, by combining the top three models, an
AUC of around 0.94 was achieved (Silva et al., 2014). In our opinion, sharing ready to use,
well-defined features as opposed to imaging data itself, was one of the success factors of the
MLSP competition in both attracting numerous groups and also achieving high accuracy
results. That experience shows that imaging data has a lot of predictive potential at least in
the case of separating schizophrenia patients from healthy controls.

We believe that the field of neuroimaging can benefit a lot from standard machine learning
competitions such as the ones discussed above. Such competitions can assess the realistic,
unbiased, discriminative power of brain data for detecting brain disorders. Also, by
attracting a large number of participants, a variety of machine learning methods will be
examined for the specific problem. By providing brain features, machine learning experts
with less neuroimaging domain knowledge can participate and develop predictive models.

5. Summary and Conclusions

5.1 Previous Single-subject Prediction Surveys

In this study, we comprehensively reviewed past efforts in neuroimaging-based single
subject prediction in several brain disorders such as MCI, AD, ASD, ADHD, schizophrenia
and depressive disorders. Previous reviews include disease-specific surveys such as
schizophrenia (Calhoun and Arbabshirani, 2012; Dazzan, 2014; Demirci et al., 2008b;
Kambeitz et al., 2015; Veronese et al., 2013; Zarogianni et al., 2013), autism spectrum
disorder (Retico et al., 2014, 2013), Alzheimer's disease (Falahati et al., 2014; Kléppel et al.,
2008) and in general (Kloppel et al., 2012; Orru et al., 2012) as well as modality-specific
reviews such as machine learning based on fMRI (Sundermann et al., 2014). Also, there are
few children specific reviews such as a recent one by Levman et al. on multivariate analyses
studies in neonatal and pediatric patients (Levman and Takahashi, 2015). Probably the most
comprehensive review so far is the recent one by Wolfers et al., where they reviewed about
120 single subject prediction studies in schizophrenia, mood disorders, anxiety disorders,
ADHD and ASD (Wolfers et al., 2015). While there is some overlap among the mentioned
studies and this survey, to our knowledge, this is by far the largest survey in the field based
on the number of papers reviewed (about 240 papers). Moreover, as discussed previously,
the majority of single subject prediction studies have been published in recent years;
consequently, an updated survey is much needed. In this work, several pitfalls such as
feature selection bias, incomplete reporting of results, unfair comparison across studies and

Neuroimage. Author manuscript; available in PMC 2018 January 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Arbabshirani et al.

Page 19

improper hyperparameter selection were discussed and suggestions to address those issues
were provided. Moreover, emerging trends in this exciting field such as decentralized data
sharing, differential diagnosis and disease subtype classification, multimodal neuroimaging,
applications of deep learning in neuroimaging and merits of standard machine learning
competitions were discussed in detail.

5.2 Limitations

There are several limitations in this work. We limited our search to MRI-based English
journal papers in specific disorders. There are other single subject prediction studies that are
based on other modalities such as EEG and MEG. Also, other brain disorders such
Parkinson disease and anxiety disorders were not reviewed in this work. From the studies we
reviewed, we tried to extract the key features as it relates to the machine learning. Many of
those studies contained multiple experiments under different scenarios but we just reported
one of them (usually the most successful one) here. Also, there are many important details in
each study and for that reason interested readers should always refer to each reference for
full information on experiment setup and other details.

In terms of common pitfalls, we mostly focused on the potential problems from the machine
learning point of view. There are many other important potential issues in topics such as
experimental design, effect of head motion and other factors such as the impact of draining
veins on fMRI studies (Boubela et al., 2015; Power et al., 2015, 2014, 2012), wakefulness of
subjects during rsfMRI (Tagliazucchi and Laufs, 2014) and the selecting of preprocessing
steps (Vergara et al., 2015). Effect of those potential issues on single subject prediction
deserves a full paper by itself.

In conclusion, we are optimistic about the use of brain imaging for single subject prediction,
and many of the issues we recommend are within reach. Larger studies are available and
repositories with pooled data across studies are growing rapidly (Eickhoff et al., 2016).
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Highlights
. Past efforts on classification of brain disorders are comprehensively
reviewed.
. The common pitfalls from machine learning point of view are
discussed.
. Emerging trends related to single-subject prediction are reviewed and
discussed.
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Figure 1.

Comparison of group difference analysis and classification in three different scenarios using
toy data. Group difference is analyzed by two-sample t-tests and classification is performed
by simple thresholding (red dotted lines). Each group/class has 100 samples. A: Significant
group difference (p-value<0.001) but poor classification (60.0%). B: Insignificant group
difference (p-value=0.865) but high classification accuracy (94.5%). C: Significant group
difference (p-value<2e-16) and high classification accuracy (93.0%). Significant group
difference doesn't necessarily cause high classification and vice versa.
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Figure 2.
The literature review procedure, the inclusion criteria and the number of surveyed studies for

each modality.
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Visual summary of Table 2-6. A: Total number of papers for two-year intervals for each
modality. The inset legend shows the color code for each disorder. This legend also applies
to figures in part B and C. B: Number of publications per modality for each disorder C:
Scatter plot of overall reported accuracy versus the total sample size. D: Histogram of
number of samples used in the surveyed studies. Vertical dashed lines show mean (red) and
median (blue) sample size among all studies, which are 186 and 88 respectively. E: Disorder
specific histograms of reported accuracies of all surveyed papers. Red dashed line indicates
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the mean accuracy. Black curves represent the estimated distribution of overall accuracy
based on kernel density estimation.
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Performance Measures
Sensitivity (Recall)=TP/(TP+FN)
Specificity=TN(TN+FP)
Precision=TP/(TP+FP)
Accuracy=(TP+TN)/(TP+TN+FN+FP)
F1=2TP/(2TP+FP+FN)

Figure 4.
Confusion matrix and common performance measures for binary classification. Measures

such as sensitivity, specificity, precision, accuracy and F1 score are easily computable based
on the four elements of the confusion matrix.
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Feature 1 Feature 1 Feature 1
Classl: e 00 Classified as Class 1

Class2: 000 . Classified as Class 2

Figure 5.
An example to show the effect of SVM hyperparameter optimization on classification

accuracy for linear, polynomial and RBF kernels. Top row: un-optimized, Bottom row:
optimized. Since the underlying pattern is non-linear, SVM with linear kernel fails to
perform well in both scenarios. Performance of SVM with both polynomial and RBF kernels
significantly improve when the parameters are optimized.
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Table 1

Glossary

Abbreviation | Full Term

AAL Automated anatomical Labeling

ABIDE Autism brain imaging data exchange

AD Alzheimer's disease

ADAS Alzheimer's Disease Assessment Scale

ADHD Attention Deficit Hyperactivity Disorder

ADHD-C ADHD Combined

ADHD-HI Hyperactive/impulsive ADHD

ADHD-1A Inattentive ADHD

ADNI Alzheimer's disease neuroimaging initiative

ADOS Autism Diagnostic Observation Schedule

AG Angular Gyrus

ALFF Amplitude of low frequency fluctuations

aMCl amnestic MCI

ANN Artificial Neural Network

ANOVA Analysis of variance

AOD Auditory Oddball

ASD Autism Spectrum Disease

AUC Area under curve

AX-CPT AX version of continuous performance task

BOLD Blood-Oxygen Level Dependent

BP Bipolar Disorder

CFT Complex Figure Test

cMCI MCI converter

CN Cognitively normal

CSF Cerebrospinal fluid

DA Axial Diffusion

DAT Dementia of the Alzheimer's Type

DLPFC Dorsolateral prefrontal cortex

DMN Default-Mode network

dMRI Diffusion Magnetic Resonance Imaging

DR Radial Diffusion

DRS Dementia Rating Scale

EC Elderly Controls

EEG Electroencephalography

ELM Extreme Learning Machines

EMCI Early MCI

ERC Entorhinal Cortex
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Abbreviation | Full Term

FA Fractional anisotropy

FALLF Fractional Amplitude of low frequency fluctuations
FBIRN Functional Biomedical Informatics Research Network
FC Functional Connectivity

FDG Fluorodeoxyglucose

FDG-PET Fluorodeoxyglucose Positron Emission Tomography
FFT Fast Fourier Transform

fMRI Functional Magnetic Resonance Imaging

FNC Functional Network Connectivity

FTD Frontotemporal Dementia

GLM General Linear Modeling

GM Gray matter

GMD Gray Matter Density

HC Healthy controls

ICA Independent Component Analyses

ITG Inferior Temporal Gyrus

jICA Joint Independent Component Analysis

LBD Lewy body dementia

LDA Linear Discriminant Analysis

LDDMM Large Deformation Diffeomorphic Metric Mapping
LLD Late-life Depression

LLE Locally linear embedding

LMCI Late MCI

MA Mean anisotropy

mCCA Multi-set Canonical Correlation Analysis

MCI Mild Cognitive Impairement

MCIC Multi-site Clinical Imaging Consortium

MD Mean Diffusitivity

md-aMCl Multiple Domains MCI

MDD Major Depressive Disorder

MEG Magnetoencephalography

MLSP Machine Learning for Signal Processing

mMLDA Modified Maximum Uncertainty Linear Discriminant Analysis
MMSE Mini Mental State Examination

MPFC Medial Prefrontal Cortex

MRI Magnetic Resonance Imaging

MRMR Minimum Redundancy Maximum Relevancy

MRS Magnetic Resonance Spectroscopy

MTL Medial Temporal Lobe
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Abbreviation

Full Term

MTR Magnetization Transfer Ratio

MVPA Multi voxel pattern analysis

N/A No Answer

ncMCI MCI non-converter

NDD Non-refractory Depressive Disorder
NMF Non-negative Matrix Factorization
OCD Obsessive Compulsive Disorder
ODVBA Optimally-Discriminative Voxel-Based Analysis
orPLS Ordinary Partial Least Square

PANSS Positive and Negative Syndrome Scale
PCA Principal component analysis

pPCC Posterior Cingulate Cortex

pdf Probability Distribution Functuion
PET Positron Emission Tomography

pMCI Progressive MCI

PPI Psychophysiological Interaction

QDA Quadratic Discriminant Analysis
RAVENS Regional analysis of brain volumes in normalized space
RBF Radial basis function

RDD Refractory Depressive Disorder

ReHo Regional Homogeneity

RMD Remitted MDD

ROC Receiver Operating Characteristic
ROI Region of interest

rsfMRI Resting-state fMRI

RSN Resting-state Networks

RVM Relevance Vector Machine

RVoxM Relevance Voxel Machine

RVR Relevance Vector Regression

SACC Subgenual Anterior Cingulate Cortex
SBM Surface based morphometry

sd-aMClI Single Domain amnestic MCI
sd-fMCI Single Domain frontal MCI

SIFT Scale-invariant Feature Transform
sMCI Stable MCI

SMRI Structural Magnetic Resonance Imaging
SN Salience Network

SNP Single Nucleotide Polymorphism
SSD Schizophrenia Spectrum Disorders
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Abbreviation

Full Term

StD Late-Life Subthreshold Depression

SUVr Standard Uptake Value Ratio

SVM Support Vector Machine

SVM-FoBa Support Vector Machine with a Forward-Backward search
strategy

SVM-RFE Support vector machine with recursive feature elimination

Sz Schizophrenia

SZA Schizoaffective

TD Typically Developing

TDC Typically Developing Children

uMcCl Unknown MCI

VaD Vascular Dementia

VBM Voxel-based Morphometry

VMHC Voxel-mirrored Homotopic Correlations

VOI Volume of Interest

WM White matter

WMD White Matter Density

WMT Working Memory Task

Neuroimage. Author manuscript; available in PMC 2018 January 15.

Page 52



Page 53

Arbabshirani et al.

TOT=[®10L
‘9=eljuaWap JNUBWSS
(6002 "“[e 39 4311IN) %LL '8e=AV 'L5=0H val 6 saunseaw oswoydiow sndwesoddiH av 1dINS
ve=leloL
(0T0Z "2 18 BAIBNIIO) %2'88 ‘¥T=AV '02=0H NAS G S2.NSEa d1IBWIN|OA av 14NS
¢9=[e10L sainseawl
(zT0Z “12 19 1R10d) %6.-v. ‘Te=Aav '1€=03 NAS VIN INgA sndwesoddiy pue ureiq 3]0y av 14N
S9011IBA
(zT0Z ‘Indwse (onv) oog=[eloL ysauw SOOI
UBA pue nounges) %0°'€6 ‘0ST=PV '0ST =OH INXOAY 00028 ysaw Buofe sainsesw ssaud Iy} [e1I0D av 1dINS
08e=[e10L adA1ouab pue Japuab ‘abe yym
(800Z ““[e 18 LINW?aA) %€'68-9'58 ‘06T=AV ‘06T=0H NAS 0vZ-1€2 Buoje sanisusp anssi 452 pue ‘M ‘IND av 1dINS
[CETITRNIf)
aur Aq
SEIRETEN
7€) S}
usuodwod
ry=le10L fedioutid VvOd pue WINQQT
(2002 “"Ie 10 Buepn) %9'178-T'T8 ‘8T=1vd ‘92=2H uoissaibay onsibo] 0z Buisn sainseaw adeys sndwedoddiHq avy 1HINS
(TT0T 'so¥izieneq 00T=[e10L
pue Bueyz) %06 '05=AV '0§=0H NAS VIN sdew SNIAVY 40 VAAAO av 1dINS
9zT=[e101L
(§T0Z “re 18 Bueyz) %EZ6 ‘82=AV ‘86=0N NAS 01 s901s A&y J0 sureiq ushig av 14INS
Ov=le0L s10Y Buowre
(STOZ ““[e 10 80RZRY ) %00T ‘0z=aV ‘02=0H NAS St sisA[eue D4 uo paseq sainseaw ydelo av (PE|TS]
TE=le10L S)I0MIaU drels-Bunsal
(€TOZ "2 38 NAN) %00T ‘ST=AV ‘9T=0H 20y sreleAl N 12 pa10ajes 40 sanisualul [9X0A pabeleny av 1dINISA
ano
000'T8T
pue QM
000'TY
‘an
000'82T
08z=[e101 ‘v 1HINIS Woiy ANM
(€T0Z “[e 19 BQIAQ) %T'T6-9'€9 '/€T=AV ‘€¥T=0H NAS 00092 pue QI pue [HINP Wols QN Pue Y4 av 1HINS pue [HINP
Gp=leloL
(TTOZ “[B 19 BYRID) %00T ‘02=AV '5z=0H NAS 0121 V4 av 14AIP
ERIEYETENS| Aoeanday [le1sno $193[gns o JaquinN J181y1sse|D saanjesd # Saanjesq JapJiosiq Anjepony

"8]qealjdde y1 ANOD

-10N Aq paredipul st (1DIN9U) 10N woly (IDIND) IDIAIS 40 A9eINdde UOHEBIIISSE]D [[ISAQ "SIPNIS UOIBIIISSEID [DIN/AY Pased-1dIN ZTT 40 Arewwns

Author Manuscript

¢ dlqeL

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 54

Arbabshirani et al.

¢T¢=Ie0L
‘8Z=cQV '86=¢OH
(#1702 "1e 38 U3YD) %.8-0L ‘02=1AV ‘99=TOH SINAS 40 d|quissuy €eT sainesd 14IS av TdINS
00T=Ie10L X81109 [eulyIoIud
(ct0Z “1e 38 9dn0D) %EB ‘05=AV '0$=0H vao VIN pue sndwesoddiy Jo susened alydony av SIS
66¢ =[€10L SaWaYIs paseq
(€702 “'1e 32 12uBuIND) %T6-€8 ‘L€T=QAV ‘29T=ND INAS pazuenfiey  8|qeLIeA ~SS3UX{DIU} [83110D PUR P3SEq-|3XOA [eJaNsS av 14INS
09=Ie10L sisAjeuy aWnN[oA 4SD
(S66T “[e 312 111eD2Q) %00T ‘T€=1vda '62=0H JUeUIWLIOSI ¥ pue Ja)ewW 3go] [eJodwia} ‘aWnjoA ureig av 1HINS
Gg=[e101 89.) UOISIO8p 8l sndwresoddiy
(¥10Z “Ie 10 Uueyled) %L'€6 ',€=AV ‘87=0ON pue ‘41N ‘INAS S J0 92IS pue saWn|oA 4SJ pue NM ‘ND av TdINS
09=[e10L
(STOT "8 18 UBZIRS) %/L'T6 ‘0£=AV ‘0£=ON WAS e safueyd awn|oA ureiq Jo abejuadiad av 14INS
uonauny
(866T 99=[e10]. JURUIILIOSIA
‘X0 pue yBnologasi) %T6 'v2=av ‘0r=0H Jeaur 092 SaINyead aInixal av 1dINS
sIsAeuy
(Awnnisuas) L1=[e10L JuBUIWLSSIA
(966T “'Ie 38 1UOSLIL) %/8-T8 ‘9y=QV ‘TE=0OH Jeaur] T S3INJANIIS [BISASS JO SIUSWIINSEIW Jeaul] av 14INS
(Aunmsuas) GG=[e10]. UoNeWIo)
(zo0z "Ie 10 JadureH) %96-68 '/2=AaV '8Z=0H Buipjoysaiy L T ejepbAwe—sndwesoddiy Jo sswnjoA av 14INS
(v10z 0Le=le10L
“Ie 38 zoun|\-0B[epIH) %T'S6-€'76 ‘G8T=AV ‘S8T=0H NAS a|qeleA J4Y-INAS Ag pa1ds)as S[aX0A NS pue N av 14INS
sjuresisuod [eneds
UM SIBYISSEe|D
BaM 8SIM
(onv) -|aX0A 10 Bunsooq
(6002 “*[e 33 SY2LIUIH) %028 €8T=[e10L weiboid sesurn 3|qeLieA sdeyy Ajigeqoid NS av 14INS
LTT=[e10L adeys
(¥10Z |8 19 997) %S'.8 ‘€€=aV '¥8=0N val VIN sndweooddiy pue ejep ssauxdIy} (2911100 av 14NS
9g=[e10L uoissaifial onsifo]
(8002 “'1e 38 yosa) %007-06 ‘6T=AV 'LT=0H pue vad ‘vai VIN SSAUXIIY) (221400 av 14N
6E=[EI0L
(200Z "re 32 17) %6'76-9'78 ‘6T=AV '0¢=0H WAS VIN sndwesoddiy Jo saunsesw paseq-sdepng av 14INS
8e=le10L
(6002 "|e 18 UluBeN) %S'v6 ‘9T=aV ‘'zz=03 NAS 06 S10Y 40 UoNNGLISIP NO av 14INS
YI0MIBN UONRIO| |
(zT02 09=[e10L 92In0say anndepe
“|e 13 pueueyeN) %.'66-1'L6 '0£=AV '0€=0H -H18S ‘INT3 'INAS Sy-0T sdeNy WO av 19INS
ERTEIETEN| A9eandy |[edsnQ s393[gns jo JequnN SETTTN: o) sainyead # sainyead JspJosig Aurepo

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 55

Arbabshirani et al.

9TT=[e10L '/2=AV

uolssaibal
ansiBoj ssadoud

(GTOZ “1e 18 StIeyD) %06-GL ‘0S=1DINB'6E=0H ueissnes) ueisakeg €0ve suolfal vy parosjes Buowe O 1OW/aV 1HINISA
00Z=[®10L ‘STT=1ON
(STOZ "2 319 1IN) %6'78-€'89 ‘/€=AV '0§=03 NAS 080T-2T sanjeA N pue v 1DW/aV 14AP
S=Ie101 ‘9T=A1d sisAfeuy
(L66T "2 18 Jayned|) %16 ‘LT=AV '¢1=03 ueUIILIOSI 4 S10Y Pa103|3s JO sainseal dL3aLoydIoN ald/av 1dINS
99=[e10L SalewWIse
(6002 "[e 38 BunoA) %96-18 '6T=A14 ‘vz=AV £2=NO val V/IN A31xa1dWiod pue SSaUMIIY} Ue BLUNJOA ND ald/av 14N
g6T=le101 '6T=A1d
(8002 “[e 18 13ddQI>) %96-.8 'G8=AV 'T6=0H AS VIN sdey IND ald/av 1dINS
9g=[e101 ‘2T=aA.d dew NS
(0t0Z "I 38 NOYZ) %26 ‘2T=AV ‘¢T=0H val 44 pue NINQ Usemiag 8oualaglp pased-104 ald/iav (PE]TS]
(TT02 000%T
“|e 19 ueubinobiag) %00T 02=QV ‘2T=dg ‘S¢=0H WAS -00ST sde\ v4 dg/av 14INP
yZ=[e10L (>se1 Buiwreu
‘€T =OH std AV UbIH (s ubry uo11eIUO04JU0D)
(2T0Z “[B 18 UBSIBPUY) %E'€8 ‘TT=0H sid AV M0 S1di0+va 0 10Y sabuey [eubls [euonoelqy  pue mo) AV 14N
14N} W0y
(onv) £G=[e10l SaInsesaw [ea118108y3-ydesd pue [YINP woiy 14IAP pue
(gT0Z “IE 18 BQIAQ) %G8-v7L '‘82=AV 'GZ=0H AS VIN AuBaiun 10813 J8qly ‘|HINS WO BWNJOA NS av 1dINSSI ‘THINS
|9A3] puU0Ias pue
ge=lel0L Va1 Aurensoun 14IASI Woly O pue (P TS]
(zTOZ "2 18 TRQ 2) %568 ‘9T=AV ‘2Z=0H WiNWIXeln 3|qeLeA 0HOY 4471V PUB [HIAIS WOI) BWNJOA IND av pue 14INS
06=[e10L
‘1¢=2AV ‘€T=Z0H
(€T0Z 12 18 U&YNQ) %00T-98 ‘82=1AV '8¢=TOH NAS 4 1S8131U1 JO SAWN|OA av 13d pue 14IAS
9e=[e10].
(avToz "2 38 17) %E V6 ‘T¢=AV ‘ST=ON INAS Wi SBLINJOA IND pue 4 av THIAIP pUR 1HINS
(TT02 LTy=[e10L
“le 18 J1peXINPaY) %.8 ‘16=AV '92¢=0H AS 93¢ sdewy Anjiqeqoud Jeneiy Aeio av 1dINS
8iy=[ei01
(eToz ‘€02=10N
“[e 19 DISMazsepY) %€"08-L'€9 ‘80T=AV ‘LET=OH INAS G90'78¢ INEA uo paseq sdew ND av 14N
yG=le10L
(800Z “[e 18 BANWLY) (0NV) %6°06 '6¢=AV ‘SZ=0H INAS VIN $8.NSEALU DLIBWINJOA pUR SS3UXDIY} [8011I0D av 14NS
(zToz LTT=[e10L so91L sdew NIAVY Uo paseq
“[e 39 yataybuelyeg) %68-.8 '¥S=AV ‘€9=0H [3POIA 2181607 05-08 $10J03A SISeg SAIJRUIWILIOSIQ-3AINRIBUD av 14NS
(sT0Z 092
‘laliwaq pue nysayag) %98 -[e101 ‘0£T-AV '0£T=0H NAS 00T INGA U0 paseq |OA 40 4ad av 14NS
ERIEYETENS| Aoeanday [ledsno $193[gns o JaquinN J181y1sse|D saanjesd # Saanjesq JapJiosiq Anjepony

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 56

Arbabshirani et al.

(uoistanuo) 1/=[®101
(¥10Z “[e 19 ®10) ION) %L°LL ‘6E=IDIAIY '8E=IDINAU NAS VA S10Y 40 Ausua@ NO 1oW/av IHINS
Z.T=[e101 ‘G9=ID0N sisAJeuy uonoun4
(¥00z " 12 uaueuUad) %L'06-6'G9 ‘8y=AV '66=0H JueUIWLOSIQ a4 O¥3 pue sndwedoddiy ay) o sswnjoA IDWN/aV I4INS
% S[eAJslul ainjesy
0'SL:ANOD ¥/=Ie101 ‘vz=10N Bunon pue onsiels
(010Z “|E 19 JUEId) -1DN-%¢6 '2€=AavV ‘8T=0H sakeqd ‘INAS 8|qeLien sdew N pue ND 1DW/av IHINS
€6=le0l
‘6=SI91I9ALUOD
(800z "B 32 MID) %0°'L8-0'LL -1va ‘8T=1va '9Z=0H vani 6T SINSeal Uoljew.oyap adepns [edwesoddiH 1DWN/aV 14INS
%
L'0L:ANOD G€9=[e10L
-IOIN ‘9ET=IDIND ‘99T=IDINU
(STOZ “[e 18 0018Y) - %008 ‘Y¥T=AV '68T=0H INAS 0009 sdey IND IDN/AVY THINS
%
0'99°ANOD 60G=Ie10L
(agtoT 10N ‘9/=1DIND ‘YET=IDNOU
“[e 19 ai0KeAeS) '%9L-2L '1€1=0V '29T=0H WAS L2T-vE sdew N pue D Urelq Joym IOW/QY (STAR
¥G/=[e101 ‘69€=I0N sainseaw adeys
(¥10Z I 10 Buel) %98 'G/T=AV ‘0T¢=0H val VIN 31oLIUaA pue ‘efepbAwe ‘sndweooddiy 1DN/AY 19AS
% L09=[e10L
0'LL:ANOD ‘/8=1DINU ‘GET=IDIND S2IN1ONAIS JR|NOLIJUSA pue
(ST0Z "8 18 Buel) -ION ‘G/T=AV ‘0T¢=0H vai 2" [ea11409qns Jo sulaned Answoydiowosyiq IDN/QY 14INS
%0.L:ANOD 7£8=e10L (1omawrel4
-1IDIN- ‘19T=I1DIND ‘8EZ=IDINU ydelo-aaueisul sayaled sndwresoddiy
(¥10Z “[e 30 Buol) %68-6'¢8 ‘86T=AV ‘T€¢=ND a|diynw ur) WAS 0ST-0€T punoue s|OY pajag|ss o sayored Ansusiul IDN/AVY IHINS
%
T'SL/ANOD 865=[€10L SaWIN|oOA
-IOIN ‘68=IDN2 ‘TTT=IONdU N\ pUE SS3UXJIUY] [elgalad pue [ed11i0d
(€T0T "I 18 93/ %Y’L6-C'6L ‘86T=AV ‘00¢=0ON INAS [BUIRX-INIA VIN Uo paseq sainjes) aAle|94100 pue paseq-10Y IDN/AV THINS
%
0'89°ANOD €8=Ie10L salnyeay Bulules| paseq-plojiuein
-1ON ‘19T=1DINd ‘8EZ=IDIN'S pue SS8UX21Y} 12911109 ‘Answoydiow
(TT0Z "I 30 ZIOM) %0'68-0'78 ‘86T=AV ‘T€¢=0H INAS pue va- Y11-¢11 paseq-losua} ‘awnjoA [eduresoddiH IDN/AVY IHINS
‘008=¢le10L
‘007=I0N ‘002=2AaV
‘002=20H ‘9Ty=T[eI0L sabeuw
(TT0Z “"[e 18 Buep) %66-G'L9 ‘86=TAV ‘9TE=TOH NAS V/IN Urelq pazi[ewliou Uuo Dl 40 1310800 IDN/aV 14INS
25=I®101 ‘8T=IDN INAS Uoneziwndo adeys a]a1juaA pue
(€T0T “[e 18 BueA) %T1'176-6'88 ‘/T=QV 'LT=0H WIeMS 8d11ed 8T $3INseaw d1IBWN|OA 4SO pue M ‘IND IDN/AVY THINS
(eTT02Z %08 29z=[e10l ‘T/=aVv
e 19 epaifelsod) ‘ANOD-ION ‘€0T=IOIN ‘88=0H NAS VIN ABojoyd.iow adeys [edweooddiy ae 1oW/av 14INS
ERIIEIETEN] Aoeanddy |[edano s193[gns Jo JaquinN 1811sse[D saunyead # sainyeaq JapJosig ArepoN

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 57

Arbabshirani et al.

605=[e10L ‘FET=1DNDU sainyeay paseq-sndwesoddiy
(NOshav ‘9/=IONY'LET=aV pUE Sa1nJea) SSaUMDIY) [eD11100
(TT0Z "2 39 30UbUIND) 10)) %G6-18 ‘29T=NO NAS a|qeLien ‘Sa.N]ea) Paseq-|aXoA :SaWaYIS aIy L IDN/aV 1dINS
T/=[e10L ‘€Z=1DN®
(6002 e 19 UIpIeIRD) %¥6-€8 '€2=AV '6z=0H NAS 9792 1duresoddiy o sojuowrey [eatiayds 1DW/aV 1dINS
G8e=[e10L (saunyeay
(sT0C ‘T6=IOW1 ‘¥TT=IDH ureiq
“Ie 13 e[emeA109) %S 76-8'06 'G6=AV 'GZT=ND val GTT) 02T $3NSed|Al J1IBWN|OA IDN/aV 1dINS
(¥T0z ‘wnopexnog ge=[e10L ‘TI=ION
pue HiwyeT) %S L6-T'L6 ‘TT=AV 'TT=0H NAS V/N 3105 JuBIBYIP Je syusuodxe sIsINH IDN/AY 1dINS
% s10Y
£'08:ANOD ZST=le10L JUBJIaIp Jo sabueyd SSBUXDIYY [euIpnlIbuol
-IOW ‘,€=AV ‘6E=1oWd UO paseq Sainjea) %I0M1au pue SolWeuAp
(zTOZ “1e 38 1M) %T1'96-L'T8 ‘9€=IDINS ‘0r=0N NAS 292 Buruuiy x81109 ‘seInseaw SSBUNDIYY [BIII0D IDN/aY 1dINS
€9€=[e10L ‘TFT=10N
(eyT0Z "[RO 17) %8'28-G'T9 ‘08=AV ‘¢¥T=0ON NAS V/N saunyeay usaned Aseulq [eao| pasodoid IDN/aY 1dINS
(onw) ¥2S=Ie10L ‘0vZ=10N SI9XJewW Ssew Jo Jsjusd pue
(¥10Z e 39 Sewsy|1T) %L'/8-9'9L ‘¥T1=aV ‘0LT=0ON val V/N K11An98UU0d 82eNg 1DN/AY 14INS
ERRRU]
paonpai
%89 ETy=IeloL salnjes}
‘ANOOD-1ON '98=AV '/6=I0N9 Va1 pue WAS [eutbuo s10d
(eToz "R 3O NIT) %68-TS ‘€6=IDINS ‘LET=ND ‘uoissaibal onsi6o] 29T 40 SBNJeA SSaUXDIY} [e2110D pue SWN|OA 1DW/AV 1HINS
% 6S=le10L ae|dway
6'08:ANOD ‘LTT=I0Nd ‘LTT=IONS yoes
(§T0Z “re 30 NI) -IOIN %8'€6 ‘,6=AV '8ZT=0ON SINAS JO 3jqwiasug 10} 00ST sore|dwia) ajdninw oy passisiBal sdew NS IDN/aY 1dINS
259=[e101 'G2Z=10N
(¥10Z "1 3 NITT"IN) %0°26-€'S8 ‘86T=AV '6¢Z=0N SINAS J0 3|quiasul V/N sdew ND IDN/aY 1dINS
86€=[e10L ‘G/T=I0N
(6002 “'[e 12 AoAZIN) %¢6-68 ‘¥8=AV '6€T=0H val V/N S8.NSeaLl SSaUX1Y] [e91140D PU. JLIBWN|OA IDN/aV 1dINS
¥89=[€10L ‘ZTE=ION salnsesw
(1102 “I8 38 AOAZIN) %G8 ‘¥9T=AV £02=0H vao VIN BuiBewr YAl aLI8WIN|OA [euIpnIbuo IDW/AV 14INS
%V 6SGY=I€l0L ae|dway
‘ANOD ‘LTT=1DINd ‘LTT=IDINS Yoes seye|dwsa)
(¥702 “1e 30 UIN) IO '%9'T6 ',6=AV '8ZT=ON NAS wolj 00ST JUBJRYIP WO} IND |0Y UsALIp-eled IDN/aV 1dINS
JETITSSCTB)
(onw) GZ8=[e101 ‘0ET=IDIAN pasinladns
%0'06-9'9.L ‘¥9T=10d ‘'00T=IDINIS -1Was uonesedss
(STOZ “Ie 19 IpEION) ‘ANOOD-1ON ‘002=AV ‘T€2=0ON Ansuap mo 60€ saunseaw aAnIuBod pue sanjea ANsusp NO IDN/aY 1dINS
T6=I€30L ‘0¢=10N
(0T0Z e 30 43119NIN) %G'LL-L'EL ‘8T=AV '€5=0H val S Sainseaw 21113WN|oA [edwedoddiH IDN/QVY 14INS
ERIEYETENS| Aoeanday [ledsno $193[gns o JaquinN J181y1sse|D saanjesd # Saanjesq JapJiosiq Anjepony

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 58

Arbabshirani et al.

(saunyeay
J0 Jaquinu
20Z=Ie101 '66=10N [eutfrio) 13d Wwody s10Y Jo Aususjui abelane
(¥T0Z “re 19 NI ) %8'76-8'8L ‘16=AV ‘26=0ON INAS [uIX-1INN 98T pue [HIAIS WoJy S|OY 4O SWN|OA ND 1oN/av 13d pue 1dINs
uolyewnlsa
6¥z=1e101 ‘TTT=IDN 99UBLIBAOD 8SI9AUI asJeds Buisn sainseaw
(ST0T “1e 30 Z1IO) %26-78 ‘0/=AV '89=0H NAS ¥8 A1IA1I193UU0D [2JNONIS PUE [euoIlounS IDN/aV 13d pue 1dINS
20z=[e10L
%Y'6. ‘95=1DINOU ‘EY=IDND INAS
(§T0Z e 38 BUsyd "Q) ‘ANOD-ION ‘76=AV '¢5=0ON Jaysuel | urewoq €6 SI0Y P2133]3s JO ANssI} IND JO SSUWNJOA IOW/aV 13d pue 1dINS
2/=Ie101 8ET=ION AiBajur Jaew ayym
(5T0Z “1e 18 Bunr) %€'96-G'0L ‘1Z=QaV '1Z=INS NAS Sz pue 3WNJOA [€211109GNS ‘SSBUMDILY [€I110D 1OW/av 1HIAIP pue 1HINIS
UoISIsAu0D
10N (ONV) €9=[e10L ‘'Z2=I0N
(TT0Z I8 18 1USIO) %0'€'6 '6T=AV '¢Z=0ON val VIN s34 [erreds ol10ads-aseasiq 1DW/aV 1HIAIP pue 1HINS
00z=leloL
‘8E=IDNT ‘v/=IDINT S3INSLaW Paseq-Moly pue ALIAIIIBUUOD
(STOZ “[e 10 peseld) %2'8L-2'65 ‘8e=AV '05=ON NAS V/N AydeiBojoesy ‘ABojodo) somioN IDN/aV 1HINP pUe 1HINS
Gye=e101 ‘6TT=ION
(€702 "1e 30 Je|INbY) %T'88 9TT=AV '0TT=0H NAS LS S9INSBALU DLIIBWN|OA pUE SSAUXIY} [€d110D 1DW/aV 14NS
uoneayens y30dy pue
(¥102 Z8T=I10N ‘sjana] ney-d pue
"'|e 13 en0|0isody) %8L-¥9 ‘66=AV ‘TTT=ON NAS VIN nel-} ‘g 450 pue swnjoA [edwedoddiH 1DW/aV 14NS
09=[e101 ‘6E=AV sIsAJeue uonouny snJAB jedwedoddiyesed pue ‘sndwresoddiy
(2002 “*1e 18 oumog) %T°88-G'08 ‘TZ=10N ‘02=03N jueUIILIOSI VIN ‘e[epBALLIe JO saInsesW dLIBWN|OA 1DW/aV 14N
laylsse|
uoissaifay Jeaul]
L2/ =[e0l ‘T.T =aVv ‘uoissaifiay onsibo]  000'05.
(2T0Z "|e 19 BAOUESED) %06-08 ‘TS€=10 ‘S02=0H pazienfay ‘INAS -000'0S deN WO 1OW/aV 14NS
(onv) %
07.:ANOD
(TT0Z IO vrT=AV '9€T=I1DN? 11N
“[e 39 JuLedUIYD) %¥6-G9 ‘99T=IDINOU ‘68T=0H  SINAS J03jqwasug  000'00T< Ul SIOA P8103|3s JO 81mixal pue ANsusiu| 1DW/aV 14N
%S9
‘ANOOD-10N 1€T=aVv sdew N9
(zT0Z "B 39 NYD) %G8-0L ‘092=I0I\ ‘88T=0H NAS T€0'TT snJAB redweaoddiyesed pue sndwesoddiH IDN/aY 1dINS
salnjes}
Jeaibojoy
aAsdoinau
ose=leoL vT
%T'L9 '96=AV 'TTT=IDNU pue 450 S10Y pe1os|es
(TT0Z “12 38 IND) ‘ANOD-1ON ‘9G=100 ‘TTT=0H INAS A\ WA J0 3B 0BLINS PUB SSBUMDIL} ‘BWINJOA 1OW/aV 14NS
ERIEYETENS| Aoeanday [ledsno $193[gns o JaquinN J181y1sse|D saanjesd # Saanjesq JapJiosiq Anjepony

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 59

Arbabshirani et al.

6e=[e10L ‘0T=lenuswia

PINA ‘ZT=ensulwag sainseawl
(T00Z “Ie 18 310M) %6°9. 8|qeuonsend ‘L 1=0H vai 14 auawnoA Apog pue pesy fedwesoddiH enusWaQ 14NS
TG=[®10L ‘€T=QeA 21098
(6002 “[e 19 101€7) %S'L8 ‘9T=AaV ‘2Z=0H val 4 Sex39ze4 pue 4 [eluoljaid [esojjeasues L aen/av 14N ‘THINP
(oNv) % €8GT=[e101
0'€L:ANOD ‘8ZT=1DIND ‘06Z=10IN0U
10 (ONV) ‘/2=a47 '1=ald el
(STOZ “1e 18 |3ddo>) %.6-€L ‘€8y=AV 'v09=0H NAS VIN sdew M pue NSO wswWIQ/IDN/AY 14NS
(dNS)
1196 pue
(4s0) €
68T=[810L ‘€6=I0N ‘(13d)e6 saneay dNS pue 450 yum Buoje dNS pue 450
(#1702 “Ie 18 Bueyz) %8'%6-0'TL ‘6y=aV ‘Ly=0H NAS ‘THINS)EB S10Y Jo Aususjul sBesane pue awnjoA INO IOW/AV ‘13d ‘T4NS
(oNv) %
0'G.-8vL 08=[€10L S|0Y J0 8s09n|6 10}
(5T0Z “Ie 18 ®10) ‘ANOD-IO ‘07=12N0 ‘0p=1DIN2U NAS 2.1-89T 8eJ 01]0qeIBW [e4g9190 dAIeIa) ANSusp IND 1OW/aV 13d ‘TS
JuRUIWLIDSIQ
%219 £6S=Ie101 Butwwelboid SIOY Pa129|8s 40 1 3d wouy Alsusiul
(¥10Z “1e 18 NA) ‘ANOD-IO ‘L9T=12INd '92Z=IDINS JTeaurT ysel-nIny 98T abelane pue |HINIS Wolk N JO sWinjoA 1DW/aV 13d ‘TS
% 6.¢=Ie10L adAousb 304V
T¥L:ANOD ‘L7=1DINO '96=1DIN2U Jalisse| 13d pue ‘4s2 ‘13d
(€TOZ ““[e 18 BUNOA) -ION '€9=AV '€/=0H $5900.d UeISSnes) s10d 02 woly AiAnoe uesw ‘sdew QIND pased-10d IDW/aV ECENEINE
salnseaw 4SO Yim elep
66T=Ie10L '/6=10N Buiuses) siser-pnw Buoje s|0Y pa1o8|as 40 13d woly Ansusiul 4SO pue ‘13d
(ST0Z "1 18 NA) %9°26-0'08 ‘05=AV ‘26=0N papinB-ydeio 68T afielane pue [HINS Wolk N JO sWinjoA 1OW/av -9a4 ‘TdINS
%
ZT8=ANOD z0z=le10L
IO ‘EF=1DINO '9G=IDINOU 13d woyy Aysusiul abesane pue [YINS Woly 4SO pue ‘134
(TT0Z “Ie 18 Bueyz) ‘%Z'€6-79L ‘16=AV ‘'26=0H NAS 68T $3WNJOA 4SO pue NM ‘IND Pased-10d 1OW/AVY -9a4 ‘1dINS
UOIIeI1ISSe|d paseq
% -uolyeuasaidal
8'LL:ANOD ove=leloL asleds S10Y pe1os|as 13d side1sqaol4
IO ‘,Z=10INd ‘€8=10NS Anjepow Anijepow 1oy 13d J1deI8gioly JO aNfeA IANS PUe 14d pue 13d
(ST0Z “Ie 38 NX) ‘%8'76-G v ‘€TT=aV ‘LTT=0ON -ninuw paiybrspa Jad 06 -904 J0 8N[eA IANS ‘IND JO 3WNJOA UBSIA IOW/AV -9a4 ‘1dINS
€ez=le101 ‘6TT=ION Buuses sebew! 13d 13d
(TTOZ **e 38 SYdLUIH) %9°.8 ‘8y=AV '99=0H [auay BN 3|qeLIBA -9Q4 pue [YINS Woiy sdew N pue IND IOW/aV -9ad ‘1dINS
6TE=IeI0L ‘€9T=ION van sayeldn 9 Q4 paseq adepns 13d
(STOZ “Ie 19 UNA) %T'06-G'9L ‘T/=AV ‘S8=0ON arenbs 1ses| [erJed vz pUE S3INSEaLW dLII3LUN|OA PUB [83110D 1OW/av -9a4 ‘TdINS
%
8'69:ANOD z0z=le10L
-IDIN ‘SP=1DIN? ‘9G=|DJNoU 13d woly Ausuajul abesane
(gT0Z “Ie 18 NZ) ‘%66'G6-€08 ‘76=AV ‘'26=ON INAS [3uIX-NINA 98T PpUE [HIAIS WOy SSWNJOA ‘NS Paseq-10Y 1OW/aV 13d-904 ‘IdINS
ERIEYETENS| Aoeanday [ledsno $193[gns o JaquinN J181y1sse|D saanjesd # Saanjesq JapJiosiq Anjepony

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 60

Arbabshirani et al.

(9zT0Z 88=[e101 Buiuiea] 13d wouy Ausuaiul abesane pue [HIAS Wolj
‘uays pue Bueyz) %V'8L ‘8E=IDIAIY '0G=IDINdU [auiay ajdnniA SI0Y €6 SaLNJoA 4SO pue N ‘IND pased-10Y 1O 13d ‘TdINs
%
0'85:ANOD LyT=[e10L saunyeay o1oush pue 459 yum Buofe 13d RMIENELS)
-ION ‘ve=10d ‘TY=I10INS w0y sainsesw ANsusiul 8SIM-|8X0A ‘[HINS pue 4SO ‘13d
(eT0Z 2 18 ARID) ‘%0'68-9'77L '/€=QV 'GE=ON 153104 wopuey G3aT< W04} saunseaw JLIIBWN|OA paseq-10y 1O -9d4 ‘T4INS
€8¢=lei0L sonfen
(zT0Z "2 38 D) %T'TL ‘6/=1D0INE ‘70¢=0H NAS 89 /4 pue sainseaw JLIIBWN|OA [ed11103gNS 1D THIAP pUe IHINS
6TT=lel0L S10Y Pa123|8s
(STOZ “[e 18 BIBIZURID) %SL ‘Tr=I0N ‘L/=0H NAS S10d L 10§« PUE Y1 N ‘TL UBSW ‘BLUNJOA IOIN THINS
ZTT=[e101 ‘ZE=IDNE Bulures SS3UXDIY} [911409 JO UOKBLIRA
(#10Z “[e 10 BUBLIERY) %0°29-0'95 -pw ‘ge=10NE-pS'cy=0N [auiay ajdnniA 8|qeleA 09 [euolfal-sajul uo paseq saruadoud ydeso 1O 1dINS
(stoz 09=[e10L
“|e 18 uIyorI|eg) %956 '62=10 ‘TZ=0H VIN S9Y VIN 1D [RSIATE3]
1€=[e10L Buiuies] saiuedoud
(v10Z “re 19 310) %6°T6 ‘TT=ION ‘GZ=0H [aulay ajdnniA (017 [ea1bojodo} [eqo|f pue AuAndBUUOD [e20] 1D [RSIAIR3]
sain)ea)
¢0T=[e10L AInisngip
(0T0Z “Ie 10 J49]1eH) %S'L6-7'T6 ‘19=10 ‘GE=0H NAS VIN ueaw pue ‘felpes ‘feutpnibuol ‘v4 1O 14INP
99=[e10L
‘GE=IDINe-pe ‘ET=IDN}
(€T0Z “[e 10 J49][8H) %.6 -ps ‘8T=IDIN®e-ps NAS 000T sdew v4 1O 14IAP
¥8=[€10L uoibal paos|as
(eT0Z "re 10 9977) %00T ‘6€=10 ‘Gv=0ON NAS 00St7-00T wiouy sAemuyyed Jaquy JO BLUNJOA 3Y} pue 4 1O 14INP
€/=[e10l
(zT0Z "B 18 18AMA.0) %0°€6 ‘€€=10N ‘0v=23 NAS 005 AW pue ¥d ‘va ‘v4 1O 14INP
(sio0d sanAIsnyIp fediourid
JZ=1e101 PEIREIEN pue g ‘w4 ‘unod Jaqiy uo paseq sdew
(TT0Z “[e 18 33MW) %688 ‘0T=I0 ‘LT=0H NAS 1S0) € AA1198UU0D I 4O JUBIONB00 BuLaIsn|D 1O 14INP
EIIEYETEN| A2eanaoy |[edanO s109[Qns Jo JequinN a911sse|D saunyesd # saunjesd JapJaosig Afepo

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 61

Arbabshirani et al.

se|le
vy
o1 pare||dared sdew [ereds NTO
(1702 90T=Ie10L s|au.ay a)sodwod pue (1521
“|e 18 oniseD) %S6 26=ZS 'vS=0H aNISINOBY 91T (>pomisu NINQ pue [esodwsy) oI  eluaiydoziyos aov) 14
elep
¥102 Z5=Ie101 Bulules) aseyd pue (se1
“Ie 19 0seD) %58 1€=7S 'T¢=0H [ausax a1dnnIA EvC-GET apniubew jo sde [erreds vOl  elusiydoziyos aov) 14y
£g=[e101 ‘/1=(A00 dd0 noyum
(¥10CT “Ie Inoyum) zs ‘91=(aoo pue yim (isea
18 Uayo2-Yote|g) %T6-GL UMm) ZS '02=0H WAS £e San[eA 1seUod NI U0 VAAIN  eluaiydoziyds LINA) TN
dew
(8002 ye=le10l (VdAIN) S1sAjeue 15211U0D (tses
“|e 18 UOOA) %2.-65 6T=2S 'ST=0H usaned [9X0A BN e 8} LLIOJJ S|3XOA BAIOE PBJos[es  elualydoziyos [ensiA) 1HINS
$1591 VAONV
(9rT0Z “IB ¥0T=[e10L Aq dew (se1 Aouani4
18 Bpa1JeIS0D) %¢C6 Ov=dg ‘2€=ZS ‘0v=0H NAS VIN UOIBAIIOR Ul S[3XOA papjoysalyl  Jsejodig/elusiydoziyos [eqJan) 1HINS
J191J1sse|o paseq uoI93|as dNS
(eT02 80z=e101 uoneuasaldal ETEIEN + (3Se1 1010WII0SUS)
“le 18 oe)) %/.. 26=ZS ‘9TT=0H asleds 002 paseq uonejuasaidal asieds  elualydoziyds 19INS
(e
(wnipejed ybii 1oy 3nsal Aeja@ annusou|
(5102 88=[el0L 1s90) Arejauon)
“[B 38 Yo03) %E6 vv=7S 'vv=0H INAS 1B1YIesS VIN wioned UOIIBANOE Yse) JO VAAIN  Bludiydoziyds 1YY
(zT0Z Z0T=le101 dew jsenuod  (spostda-sity) (isex
"2 18 UOOA) %<9 16=Z7S 'T6=0H van VIN 8Ul Ul D4d 1A US| JO SIBX0A  eruaiydoziyds 1dO-XV) 1A
(e800z 8ET=[e10L (S35 J010WILIOSUBS/
“le 18 1011weq) %06-08 1G=7S 'T6=0H Hnsind uonosfoid ¥1:0T sdeiy |eneds w1 eluaiydoziyos Baaquiais/aov) 14N
J1918N[2 (ssey Adowa
(zT02 8z=[el0L sdwins uoisioap uoneAnoe Bujiom ‘aov
“*1e 13 OLIOUOH) %96 €1=7S ‘ST=DH € 10 810 Ajlolely T 1596.e| 83U} JO UOIRAIOR UBSN  eludIydozIydS 10J0WI1I0SUS) [HINL
VvOd
(tT0C 00T=[e10L Aq paonpai
“1e 18 1UBMBpIY) %96 06=ZS '05=0H van €T-TT sdew N pue 4 Jo sjexoA  elusaydoziyos k=AY
(9002 8G=[e10L
“le 18 ueeD) %G. v€=ZS '¥2=0H vai €1 sdeiN w4 eluaiydoziyos I4NP
(8002 06=[€l0L JueUIWLOSI
“Ie 18 ueyndeD) %08 Gv=7S ‘Gv=0H Jeaur sJaysid 09 sdeNl 4 40 vOd ueuiwnosiq  elusiydoziyos I4AP
ERIVEFETEN] >om‘_zoo< [1=2E7Ye) muow.—njw JO JsaquinN PEITIRN ] 9} Sodnjes # Sa.anjesH JapJosig \Q__m_uo_)_
"S9IPNIS UOIRIIYISSR]I vIUaIydozIyas paseq-14IA G9 Jo Arewwns
€ 9l|qel

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 62

Arbabshirani et al.

(0102 25=Ie101 Bunaisn|d s10Y vV bBuowe (Buippaqua
“le 18 uays) %98 2€=7S '0¢=0H SUBBIN-O 45 Jeaul| [ea0]) D4 peonpal-uoisuswig  elualydoziyds [PE[NTS]
suoifal vy
91T Buowre
(uorrewuoul feninw paziwixew
9=[e10L papusIxa
(€T0Z "[B 1O NS) %E8 2€=ZS '2€=0H INAS 0,99 uo paseq) AANDBUUOD [euolouNg  BlUSIYdoZIYOS 1dIN4s4
vOd Aq
(zT02 rh=1e10l paonpal
“le1s Bue] ) %E6 22=7S '7¢=0H INAS 0SS se[ye N4 Ul suoibiai 0 Buowe D4 ejuaiydoziyos [PE[NTS]
(zT0Z "B 18 9g=[el0L
ueweleieyusA) %S/ 8T=7S ‘8T=DH 159104 wopuey 960T S10Y 06 Puowed4  eluaiydoziyds 1HINISA
Z6=Ie101 ‘9y=siuaied
(¥102 706 o Buiqis
“le 13 on9 ‘M) %S. parosyeun ‘9y=0H INAS VIN L1 43| Y} JO SaNjeA 44714 elualydoziyds [PE[NTS]
urelq ai1us ay3 ul pub e se paoeld
(v102 GpT=[e10L 18Nydels sapou
““|e 10 aqeueIep) %T6 T.=7S ‘v/=DOH ‘osse] pasn4 000€ /7€ Buowe AAnd8UU0D [euonoung  elualydoziyds RIS
68=[e10L ‘6T=AAN aan
(e€TOZ “[2 19 NA) %6°08 ‘2€=ZS '8¢=0H INAS 0299 s10Y Buowe o4 feiuaiydoziyos [PE[NTS]
T/=le10L VOd Aq paonpal sepie vy ul
(9eT02 22=0H suoibal
“le18 ) %29 Buqis ‘vz=7s ‘sz=0H INAS €ee 9TT Buouwre AnAidsuL0D [euUOROUNS  eluaIydozIyds 1HINISA
syusuodwod v
pue sdNS
SANS 0ST pa109|as ‘dew uoneAnoe [HIA
(ot02 ov=[e10L SINAS € Buowe + S|9XOA Ul S|9X0A dNS pue (vsel
“le 19 Buen) %.8 02=ZS '0¢=0H Bunoa fiofey 192 parosyas :sainyesy Jo sadA) saiyL  eluaiydoziyos aov) 14N
uoljezijewJou
|euonouny
Joy arejdwia) uoisny ylomiau
(sToZ GG=[e101 Ialjisse|o paseq -1jnw paseq 14INIS4 pue (dselr
“le 19 unad) %2L L2=7S '82=0H 19|deys pue va1 00T pue € -V/Ol WOJJ POALISP $8109S DN BlualydozIyds aov) 14N
19IA4s4
9G=|e101 jueulwdsig pue Av_mwu
(zToZ “[2 39 NQ) %86-€6 82=7S '82=0H Jeaun sJaysi4 €5 sdew [eneds Ol U0 Od [suseX  elusiydoziyos aov) 14Ny
uo.dediad xewyos (ago
(o102 (onv) 09=[e10L pazifesousD [esodwsay (tsey
“|e 19 sequly) %06-28 ¥1=d4 'T2=ZS '5¢=0H ueisakeg 0T pue NINQ) sdew |eneds w0l Jejodigreluaiydoziyos aov) 14Ny
(8o [eJodwiay
pue NINQ)
sde feneds voI Buisn pjing
(8002 T9=[el01 dnoif (1se1
“|e 18 unoyed) %S6-€8 ¥T1=dg ‘'T¢=ZS '92=0H  @dueIsIg Wwnwiuiy € Uoes 1oy abewul uesw 0} soueisiq  Jejodig eiusiydoziyog aov) 14N
ERIVEIETEN| Adeanday |1edsno $1038[gns Jo JaquinN BEINEN:Tle} saanjesd # sadnjesq  JapJiosiq Aepony

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 63

Arbabshirani et al.

S10Y pa1oales

(TT0Z "I z6=[e10L sisA[euy uonoung jo  (sposida-isiy)
19 16eueAeyR] ) %08 25=7S ‘0v=D2H JURUIWLISI] (o34 SS3UXOIY} [e211100 UBAW pue awnjoA  elualydoziyds 14INS
SNIAVY Uo paseq
(eT0C yZT=[e10L syuswainsesw  (sposida 1si14)
“Ie 19 mauez) %EL 29=7S '29=0H INAS 69 OLISWN|OA UreIq oYM elualydoziyos I4INS
Answoydiow
(eT02 paseq
‘soyizieneq 8yT=le101 -|9X0A dAIrRUIWILIOSIP Ajfewndo
pue Bueyz) %TL 69=27S '6.=0H INAS VIN Uo paseq suoiBal aAl) WOy SISXOA  eluaIydoziyds I4INS
VOl wouy
(€T0Z ‘usyod oyT=|el0L pendwod
pue uosIapuy) %S9 2.=7S 'v.=0H NAS €T ON4 Uo paseq sotaw ydess  ejuaiydoziyas 14IA4sa
dew ANAIOBUU0D
(¥102 08T=[e10L olurereyy
“[e 19 21AINUY) %6'EL ‘06=ZS '06=0H INAS V/IN ureiq 3joym uo paseq VdAW  eluaiydoziyos [PE[NTS]
$8SIN0J-aW DI
(eToz “Ie 9G=[el01 6 Buowe
19 1UelIYsqeqly) %96 82=ZS '82=0H (snnsa11s80) INAS G ANADOBUUOD 3I0MIBU [EUOOUNS  BlURIYdOZIYDS [PE[NTS]
suoifal vV 06 10}
S9SIN0J
-awi Buowe uoie|a1i09 Woly pjing
(zT02 85=[e10L syde.
“[e 19 nasseq) %S. 6¢=ZS '6¢=0H INAS V/IN ut sjusuodwod pajaauuod Jo zIS  elualydoziyos [PE[NTS]
AlAIdBUU0D
01d010WOH PaJOLIIA-|8XOA
pue 47v4
saulyoew ‘447v ‘AlsusbowoH Jeuoifay
(sT02 9pT=[e10L Buyuuses| swanxa wouy
“1e 19 3AyzAyD) %T6-08 2/=7S ‘v/=DH 10 3|qwiasug 00T PaALIap Salnjeay UOIIe[a1I0d uosiead  elualydoziyds 1HINSSA
29=[e101 NETITSSCTR) a|qeLien
(TT0Z "2 38 UEd) %.8-G8 1€=ZS '1€=0H INAS 40 8|quiasug L9 susaped ANIAROBUUOD [eUOOUNS  BIUAIYdOZIYDS [PE[NTS]
(eT0Z gT=le10L seJnseall
_._m 1 mumv_wu_v %00T 8=7S .OHHOI INAS 9T1¢ JJomiau xw_QEoU _mgo_m pue |ed307] m_:mEQON_cow 1dINISA
(sT0Z AnAnosuuod
“Ie 18 BusyDd "H) %0°08 8F=[el0L '6T=ZS '6¢=0H INAS VIN [euonouNd Jo sainsesiy ydess 7S P[]
BETITSSCTR) uonisodwoosp
(s10C "I 19z=[e10L JueUIWILIOSI] vl
18 UueWNeY) %¥y8-G/ T/=7S ‘96T=DH Jeaul] pazienbay ot Uo paseq ANAIIOBUUOD [euollound  eluaiydoziyss 1HINISA
sepe Tvv
(sT0Z 00T=Ie10L PIWEIN] u1 suoifal
“le1a wiy) %98 0S=ZS '0S=0H [eanaN daag 0499 9TT Buowe ANAndaUU0D [euONOUNS  elUdIYdOZIYDS 1HINSSA
ERIVEIETEN| Adeanday |1edsno $1038[gns Jo JaquinN BEINEN:Tle} saanjesd # sadnjesq  JapJiosiq Aepony

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Author manuscript; available in PMC 2018 January 15.

roimage.

Neu,



Page 64

Arbabshirani et al.

(eT0C
“'|e 13 1yongem) %L.2-9'99 6€=[e0L ‘6T=ZS ‘0¢=0H INAS VIN sdew N pue ND  eluaiydoziyas 1dINS
abeyui| abelane
3y} pue ‘poyaw AioBared Answoydiow paseq uolewIoep
(sT02 p101JUdd ‘YQTINW ainyeay pue sanisusp
“*]e 18 eAOSNOUES) %9'18 6v=7S ‘6v=0H 10 uoleUIqWOD Jad 96 Janew Aeib ‘saiisusiul YN eluaiydoziyos 19INS
(TT0Z “IE G/=[e0L S|0Y  eluaiydoziydos
19 noibioabeley]) %2. 82=7S ‘/¥=0H val S G6 40 SIUBLIAINSBALL DLIBWIN|OA  13SUO U823y 14INS
(1102 8/=[e101 Va1 Aurepasun (spuesnoy} (aposida-1siiy)
“|e 10 Maledsey) %2L 6€=ZS ‘6E=DJH -winwixew Algeqoid)w/N san|eA A1ISuslul |9X0A ulelq 3Joya  eluaiydoziyas 14INS
Answoydiow
paseq-|aXxoA WOIy PBALIAP
(2002 z6=[e10L Buipjousaiy L abew!
““le 18 Desemey) 2%06-08 9%=7S ‘'9y=0JH ajdwis T uabig o uoissaldxa uesw ay|  eluaiydoziyds 14INS
(SN3AVY)
29¢=le10L 89eds pazijewIoN Ul SawnjoA
(sT0Z "I 8GT=7S ureiqg  Jspiosig pooN
19 SLIB[NOSIN0Y) %9/ ‘$0T=I8p10s1Q POON 344-NAS 0LT J0 sisAjeuy [euolfiey Jo sdew NS felusiydoziyos I4INS
(vooz "1 vOT=Ie10L
19 BINWEXEN) %98-8. 18=7S 'I¥=0H val L urelq 8y Ul S|OY [B49A8S JO dWNjoA  eluaiydoziyds I4INS
L/¢=¢le10L
‘6€Z=TIeI0L S|9X0A 90T doy Jo Answoydiow
(zToCZ “IB GGT=¢ZS ‘8¢T=1ZS paseq-|axon
18 SINyuamnaIN) %TL ‘Z2T=¢OH ‘TTT=TOH INAS 00.'ST uo paseq sanisuap Janew Ae1o  eluaiydoziyds IAINS
68T=[e10L
'€2=2ZS '8e=TZS S10d Jo
(z10Z "2 19 BI0) %9.-0L ‘€¢=¢0OH 'S0T=0H va v SeJNSeal JLIBWN|OA 4SD pue NS eluaiydoziyos 14N
(9002 8¢=le10L 581095 159} [ea1BojoyaAsdoinau
“Ie 12 opJed) %96 0T=ddg ‘0T=ZS '8=0H vai 14 2z yum Buoe s|0Y €2 Jo swnjoA  Jejodigyetusiydoziyos IdINS
SaINSeawl J1418WN|OA pue
(sT0Z “l2 10 €2T=[e10L ‘Gy=AsS [eaiwayoolq
oyoeWeD-euld) %0'66-0'T8 -UON ‘9€=ASS ‘¢r=0H NAS 0507 ‘[eatBojoyoAsdoinau ‘fedtun]d  eruaiydoziyos IdINS
(Toz "B
18 noss|npey) %L'22-0'59 TG=[e101 ‘/2=7S ‘¥Z=JH vai VIN $8INsesll OLI1BWINJOA pUe aIMXa).  eluaiydoziyos IAINS
9€T=¢|e10L ‘86T=T[EI0L
‘lv=2d9 ‘99=Td4
1oz '9v=¢ZS '99=TZS
“|e 19 50UY2S) %06-29 ‘e = ¢ZOH ‘99=TOH INAS VIN sdeAl IND asImM-|9XOA  Jejodig eluslydoziyos I1dINS
191J1sse|9
2/=Ie101 uoissaifial onsibo| SISoydAsd pue
(600Z ““[e 18 UNg) %98 9€=7S '9¢=0H [elwoun|nw asreds 6¢T AND [edioD  eluaiydoziydosg 1dINS
ERIEIETEN| Aoeanddy |[edanQ s108[gns Jo JaquinN J3y1sse|D sainyea # sainyeaq  JapJosig AreponN

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 65

Arbabshirani et al.

14IN} W0l 4471V pue | 1L woiy

(agToC €9=[e10L V4 ‘[ednionas (P
“le 19 InS) %6/ G£=7S ‘82=0H INAS €981 WwioJy sanisuap Janew Aeio  eluaiydoziydos pue 14INIS THINS
winso|[ea sndiod pue Ss|9LIUSA
0S=[e10L ‘0Q0V  ddiN
(eT0Z "2 19 ®IO) %88-¢L G2=7S 'G¢=adiN vai 1€ ‘snwejeyy ‘ejnsu| JO 4 pue awnjop  /elualydoziyds 19IAIP pue [HIAS
(Buuaisn|d
(zToz S0T=[e10L [E21YD.IRIBIH)
““|e 19 |esueq) %016 'G9=7S ‘0v=0H pasiAladns-1was VIN sainsea|A [edrjoydiow adeuns  eluaiydoziyos 14INS
sueaw-y Aq palaisn|d pue 14IS
(zToC 80T=[e10L Jsuey Ag904d1a
“le 18 1uej|aiseD) %S.-99 ¥S=ZS ‘vS=0H 190] LIM INAS 0¢ 0.} PBIOBIIX3 SPIOM [BNSIA  eluaiydoziyos 14INS
(¥00zZ ‘e /TT=Ie101 sIsAJeuy uonoun4 510109AUabID
18 Ajsueulas)) %6/ 25=7S ‘G9=D0H JueUIWwILIOSIa (4 adeys o1weleyy pue jedwesoddiq  eiuaiydoziydos 19INS
(pay10ads
(5002 “Ie 8yT=[e10L 10U) JaIyIsse|D SUETEYN-EN]
18 soy1zieneq) %T8 69=ZS '6/=0H JeauljuoN VIN OLIBWIN|OA Utelq 3JOYM  Blusaydoziyos 14INS
480
T9=[e10L pue NS
(500z “[e 18 UeS) %¢6 €2=27S '8€=0H J4H-NAS 69 ‘N 1B 4O SBINSEaW OLIBWINIOA  eluaiydoziyas 14INS
/8=¢|e10L
‘T9=TIeJ0L
9¥=2ZS '€2=1ZS Anawoydiow paseq-uoinewioep
(2002 “[e 10 Ued) %T6 ‘T¥=¢OH '8e=TOH NAS vvI6€ UO paseq sjuaLaINseaw dLlWN[oA  eludiydoziyos 14INS
(paueds
anubod
ZTy=|eloL puedlep
(v10Z ‘Tr=VZS Answoydiow  sAmuboo)
“le 18 p|noo) %¢.-9S ‘80¢=ZS '€9T=0H NAS VIN paseq-[axoA urelq ajoym  eruaiydoziyos 14INS
(19su0
(eToz “1e L6T=[e10L pooyp|IyD)
18 UI9JSU831D) %PL 86=ZS '66=0H 1531104 wopuey 122 SSAUMOIYL [ea10D  elualydoziyds 14INS
S10Y 8/ Yum sydomiau AlIAIDsuu0d  (sadAigns
(zoz "B 2G=Ie10L [eamonns - Buiknuapr)
18 Jexjifeyebur) %8L €2=ZS '62=0H Bunaisno [enoads VIN woly ping sydesf abps-RNIAL eluslydozIyds I4INS
ERIIEIETEN] A2eanaoy |[edsnO s109[gns Jo JsquinN BETITSY:Tle) sanyesd # sainyesd  JapJosig Alfepoy

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 66

Arbabshirani et al.

(¥y10C 89=[e101 ‘¥T=dg sisAeue uonouny
““[e 13 JBlSeINIBIN) %018 ‘2€=AAWN ‘22=0H JueUIWLIOSIQ <] Sjuswainseaw duBWNIOA  d9/AdIN 19INS
€6T=IeI0L
‘Ge=ANY ‘/S=aan uofeydaousiq [enusp
(ST0Z "8 18 18Y00ES) %.°29-G'65 ‘0v=dg 'T9=0H NAS 14 pue alepne) 4O SsWN|oA Jalew Ael9  dg/AAN 14N
€TT=IeI0L
‘e¢=dd ‘6T=adN (SNIAVY)
(#1702 “[e 10 BAIBS) %1'99-9'%5 ‘86=ZOH '€€=TOH NAS 66-€S sdew 91119WN|OA S3JOLAUBA pUR N ‘NS d9/AdIN I4INS
sisAJeue
J€=e101 JURUIWILIOSIP uoissaidaQg
(€T0Z “Te 19 BIN) %6'16 ‘6T=A3S ‘6T=0N asimdals JaysiH S104 8 S10Y JO Sainjesj OH8Y  ploysaiyigqns 1dINISA
Japiosig
£9=[e10] ‘9e=uoIssaidap anissaldaq
(¥T0Z “[e 19 OND "H) %506 19su0-184l 'L2=0H NNV 0€ saunses|\ Alosyl-ydels  18su0-1sii4 1dINISA
9/=le0L
(¥10Z e 19 0BD) %992 ‘6€=AAIN LE=OH INAS T€ suoifal Tyv Buowe 04 QAW 1dINISA
€y=le0l s10d Buowre
(zT0Z "2 18 PIOT) %66 ‘T¢=AdN ‘2¢=0H INAS S¢-¢ O U0 paseq sainseswl paseq-}IMoisN  AdN 1dINISA
Ov=lel0L
(€T0Z “[2 38 180) %06 ‘0¢=Adn ‘0¢=0H INAS 4 Sy40mjau aels-Bunsai Jo susuodwiod 1siny - (1AIN 1HINISA
Bunigisn|d
€5=[e10L Buibrey wnwixe
(¥10Z "I 18 BUaZ) %G°¢6 ‘Y¢=AdN ‘6¢=0H uonelsus9 [age] VIN Jovsjosdew D4  AAw 1dINISA
(souew.opiad
1880) INAS
29=[e10L ‘uoissalbay onsifo (>se1 Aouanyy
(STOZ “[e 38 NZIWNYS) %0°'56-0'06 ‘T€=AdIN ‘T€=0H paziienfiay SS0vT dew 1senuod 8sIM-|aX0A QAW [eqan) 14N
(onv) op=[e0L vai (34se1 1d80u00
(5TOZ “[B 3 O1ES) %18 ‘6z=AdN ‘T¢=0H Adonuz wnwixep VIN sisAjeue |dd Jo sdew NS QAW [e100s) 14N}
(sMse1
[euonows pue
8E=lei0L uolyeulw149sIp
(ST0Z "2 30 esoy) %0°G8-6'8L ‘6T=AAWN '6T=0H INAS 9T€6 D4 JO saunjeay paseq-yiomjau ssreds QAN Japuab) 14N}
(>se1 uonubooal
(TT0C (payewnsa) 8e=[el0L $8INJe8) UOHEBAIOR 10348
“'|e 13 BpUBIIIA--OBINOIA)) %5'S9-€9 ‘6T=passaidaq ‘6T=0H INAS Ssejo-auQ V/IN pabelane-10y pue sdew uoneAnde uteld  aan [e1oey) 14N
8i=[€l0L suJened
(z702 "1e 30 Bued) %L'T6 ‘2¢=Adn ‘'9z=0H INAS 0 ANA198UL0D [EOIWIOIBLE UlRIG-BIOYM  AdIN 14AP
ERIIEETEN] Aoeanaoy |[eseno s108[gns Jo JaquinN 1811sse|D sainyea # sainjead  JapJosig Aepo
"S9IPN]S UOI1eIL}ISSR|O J18PJ0SIpP memEQoU paseq-14IN 6T Jo Alewwins
¥ alqeL

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 67

Arbabshirani et al.

89=le10L S8al1 uoIsea S18S IdINP
(GTOZ “[e 18 31Rd) %€'L8 ‘€€=AQ17'5e=03 Buneusslv ainjesd €1 Aifepow yoes woJj sainjesy Jo AlslleA @1l pue 14INSA THINS
(st02 €e=[e10]
“'|e 18 $S0Y-pue|0-) %0L ‘8T=AAN ‘ST=0H INAS 89 SIOY [eJaAss JO ssauXdly) [ed1i0D  ddin TdINS
88=[e10L ‘€Z=AadN
(TT0Z “[e 18 BUOD) %9'18-L'8S ‘€¢=Aay ‘¢r=0H INAS VIN Sallsusp WM pue O  ddIN TdINS
29=[e101 sdew NO
(ZT0Z “[e 10 16UBMIN) %€°06 ‘0€=Ad ‘2€=0H INAY pue INAS VIN J0 saunsesw oLidwoydiow peseg-ainesd AN TdINS
9T=dd
(5T0Z “[e 19 BUnd) %EVL ‘6T=AAN '62=0H INAS 8T Bale 8JBLINS pue SSSUMJIY] [edI0D  d9/AdiN TdINS
ERlIETETEN| Aoeunaoy |[edsnO s100[Qns Jo JsquinN BETITSY:Tle) saunyesd # sainyesd  JapJosig AlepoN

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 68

Arbabshirani et al.

104
or Yoes wouy SUOITeI0| [B911102 Pa)Ia|as
(e0TOZ “'[B 30 42503) %58 -|eloL '02=AsV ‘0¢=0H NAS SaInyesy G 40 sainjesy 0113W03H pue dLIBWN|OA asv 1dINS
yh=lei0]
(q0T0Z "2 18 J803) %LL '2¢=ASV '¢Z=0H NAS 000'0T< sdew N pue WD asv 1dINS
Ty=[el0L
(ST0Z “'1e 30 L0D) (0NV) %v. ‘T¢=ASV ‘02=0H NAS e SI0Y P313|3s JO S3INJe3) ABWOYdION asv 14N
8e=|e10L $9a.1 INgS woly
(0TOZ “[e 38 ORI[) %18 ‘2¢=ASV ‘9T=0H [apouw ansifo L Pajo.IX8 SIUBWAINSEaW SSaUMOIL) [euoiBay asv 1dINS
0v=0q1S
(¥10Z e 18 BIAOBBS) %0°'G8-0'08 -asy ‘z6=AasV ‘0v=0H INAS VIN dew swnjon WO asv 1dINS
8p=[e10]
(TT0Z “12 30 UIPPN) %026 'y2=asV ‘vz=al NAS VIN sdew N pue NS 3SIM-|3X0A asv 1dINS
JTT=[8100 sainyeay euoiBalBIul YIM
(¥T0Z “[e 10 39M) %€'96 '‘85=ASV '65=0H INAS [3uaX-nInA VIN Buole s|0Y 40 d11IBLUNJOA puE SSBUNDIY L asv 14N
08=[e101.
(TT0Z " 39 UosIapuy) %06 ‘0P=asV ‘0v=a.l Buripoysaiy L Gi7/'€6€'92 s10Y Buouwe o4 asv (P]TS]
25z=le10L
(ST0Z I8 38 UBYD) %T6 ‘92T=AsV '92T=0dLl 158104 wopuey 06072 s10Yd 0zg Buowe AyAnosuuod feuonoundg asv (P]TSS]
0v9=leloL Y40MIBN [eINdN
(ST0Z "B>tEPI) %06 ‘ZTe=ASY ‘82e=0aL onsl|igeqold S00% s10d 06 Buowe o4 asv 14INgsA
962=[e101 (synsai
'68=2ASYV '65=1ASY 1530) INAS pue
(5102 "2 38 MId) %L°9L 68=2AL '65=TAL uoissaibay onsiBo 3|qeLien s10d Buouwe o4 asv (P]TSS]
Op=le10L sjusuodwod
(€T0Z “12 30 UIPPN) %0°8. ‘0z=ASV ‘0¢=0dL uoissaifiay onsibo 0T 14IAISI J0 sluauodwod ol asv 14INgsA
og=[e10L San|en w4 14Na
(€T0Z "I 39 9pURdyseq) %6°'G6 ‘GT=ASV ‘ST=041 INAS 6T pue sanjeA - ‘siyBiam ANA08UL0D [esned asv pue xsel- 14N}
(d1ser putin-jo
-A108y] e pue
LZ=Ie10L syse} afenbue|
(z10Z 12 39 ybnep.niy) %096 ‘€T=AsV ‘v1=al uojssaibay onsiBo VIN sdew O paseq D0d pue O4dINl 'OV asv oM1) 1IN
yE=|e10] safeg sIsAJeue J0joe) (3{se1 uonaesalul
(¥10Z e 1938N1) %.L6 ‘,1=0dL ‘LT=0H AAIBN UeISSNeS) $10)08) {7 Aq passad0.d S|9XOA Pa1da|as JO UOIRAIIDY asv 1e1208s) 141N
G/=[e10]
(TTOZ I 30 4B3j1RYEbU]) %08 ‘SP=ASV ‘0£=041 NAS 8T S10Y Pa103|8s 40 AIN pue 4 asv 14INP
ERIVEYETEN| Aoeandoy [[edsnO $108lgNs Jo JaquinN Jay1sse|D Seanlesd # sednjesq  JapJosiq A1epony
"S9IPNIS UONRIIYISSR|d ASY Paseq-1dIN 0Z Jo Arewwng
G 9|qel

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 69

Arbabshirani et al.

Jaquinu
19X0A DHINA 18q0]6 pue suoibai pa1osjas
08z=[e101 JETTTSY:ITe) 10 SaNJeA-Z pue S|SXOA JO Jaquinu ‘444
(y102 12 18 NOYz) %0°0L ‘/2T=ASY '€5T=0dL 93J| wopuey 2w ‘suoifaJ [211409gNS PaJIBYaS JO BWNJOA asv 19IAIST ‘THINS
Je=le10L UOIeNUIIU0I SHIN pue
(gTOZ “[e 18 0J3QIT) %616 ‘6T=ASV '8T=AL 89l uolsioeq € [eJ1WaYI0IN3U PUE /4 ‘SSaUXdIY} [e21110D asyv IHIAP ‘THINS
19=[e101 sIsAjeuy uonound BaJe
(#002 “[e 10 Jowooys)y) %8'S6-€'C6 '26=AsV 'ST=0dL JueulwudsIg 6 SIWIBA Je[|3ga4ad pue sainsesw JLIBWN|oA asv 14INS
(onw) 9. =
(2T0Z “[e 39 1UOIBP[RD) %008 [e10L ‘0£=ASV ‘8€=0AL NAS 00¢ 13.L4va-INGA woly sdew Aels asv 1dINS
ERIIETETEN] AoeIndoy |[edsnO s309[gns jo JequinN BETITSY:Tle) sanyesd # salnjesd  JapJosig Airepo

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 70

Arbabshirani et al.

(zToz 9ep=le0l 0£9¢g€
“le 18 Bueyd) %669 ‘0TZ=aHQAV ‘92¢=0H INAS -LTT [e20] 91do.A10s! U0 Paseq sainyesy aInIxaL aHav IdIAS
(zT0Z 8/=[e101
“[e 19 [enb) %S'TL ‘6€=HAHV 6£=0H INAS pue 1s00qepy VIN $9INSE3 JLIBWN|OA SNSJONU 8YepNe) aHav 1dIAS
(¥102 89=e10L.
“|e 38 uoisuyor) %E6 '‘v€=AHAV 'v€=0OH INAS VIN sdew INM aHav 1dINS
0¢=aHav SETITISN][o)
(€T0Z “re 10 WIT) %2'58-2'89 '6T=ASV '6T=0H $53001d UeISSNe VIN S3UNSEAIN ILIBWIN|OA IND 3SIM-[3XOA aHav 1dINS
(eToz 0TT=[e10L
“le 18 Buad) %2 06 ‘66=aHAV ‘G5=OH RE] ore S9INSEALU SSAUMDIY (910D aHav I4NS
(966T
“le 19 uBWAID 0e=[e101 ‘0T=rIX3|SAQ sISA[euy uonoun
-pniwss) %%.8-0'09 ‘'0T=aHAV ‘0T=0H JueuIWLdSIg 9 $10Y 40 sainseaw dLIBWoydIoN  eIxs|sAQ/aHAV 1dINS
(sToZ “I® L/TT=[e101 PIINEI
19 wucmg;wmov %06 ‘eey=aHayv ‘vv/.=0al [ednaN [euIuY 002 SaJnseaw >H_>_~omc:ou |euondalig aHav [dINJSA
L8Y=[€l0L Buifeas euoisuswig-nINA
(¥10z “Ie 18 A8Q0) %G'EL ‘08T=AHAY ‘'L0€=0H INAS z Aqg pessaidwoo sainsesw paseq-ydeio aHav [PSIASS)
L¥9=[e10L ZTT=0-aHAV
(2T0Z “Ie 19 Ared) %.'28-7'€9 ‘08=1-QHAV ‘SS¥=0dL VdAW Pased-INAS 0ST O U0 paseq sainjesy paseq ydelo aHav (PE]TSS
626=1e101
%.9 '6v2=0-aHAav adAy aunesy
:adAigns ‘2I=IH-aHQV ‘2Z1=VI (souew.opiad 1saq) yoea
(210Z I 18 O1ES) aHav %vs -aHAav ‘'9¥5=0H uoissaifay onsibo 103 00% NS pue477V ‘OH3Y aHav 1dAsA
899=[e10L sainseawl
(zT0Z ‘T¥T=0-aHaVv 000°2 a1dAlousyd ynm Buoge sfeubis g109
“le 18 nypIs) %9/-98'89 ‘86=1-AHAYV '62y=0H INAS noqy 3U} UO \/Od JO UOIFRIBA JUSISYIP pue | 4 aHav P[]
(eToz 9p=[e101
“Ie 18 Buep) %008 ‘€2=AHAV '€2=0H INAS 0059 sdelN oHaY aHav (F[TS]
yZ=1e10l SISAJeue aAITRUILILIOSIP
(800Z “1e 18 Nyz) %0°'G8 ‘ZT=aHav ‘z1=0H Jaysl paseq-vod VIN sdeyy oHay aHav 1dINs4
(1ser
(avToz Ov=[e10L uolyeuIWwIAdSIp
“le 18 LeH) %0°'S. ‘'02=aHAV "02=0H $53001d UeISSNeS VIN dely uoneAndY ulelg aHav fedodwial) 1HINY
ye=[e0l ‘12¢=0 (sseL
(ST0Z "8 39 >ied) %216 -aHAayv ‘€T=vI-aHav INAS VIN sanjeA O UO paseq sainseawl Y40msN aHav XIS) 14N}
(evTOC 09=[e10L lay1sse| (seL
“le 18 LeH) %LL ‘0€=AHAV ‘0€=0H $5900.d UeISSNeD) 859'T¢C dew 1UB1914300 INTD Uleld 8JOYM aHav dois) 14N
ERITETETENS] Aoeandoy |1e1sno $103[gns Jo JaquinN Jauisse|D saunyesd # saanyesH Japaosig Arepony
"S31PNIS UOIRIILISSE|d AHAY Pased-1YIA ZZ Jo Arewwng
9 9|qel

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



Page 71

Arbabshirani et al.

salnseaw ydeih pue
(zT0C 9//=[e10L (001<) e1108ads 14NSI
“le 18 Aq[0D) %85S ‘68¢=AHAV ‘T6v=AaLl INAS adiini a|gelien Jamod ‘D4 ‘sainseaw |eaibojoydio aHavy pue 14IAS
(zToz ¥29=Ie10L Buiues [aulay IHINJSI WO} D4 pue OHsY pue [HINS
“le1s re@ "Q) %919 '222=aHav ‘cor=aolL - pue INAS VIN woly sdew N pue ssauddIL 221100 aHav 1dINJSI pue [HINS
(090N /1Y Uel)seL
(50T “Ie 9g=[el0L INEA woly sdew TN
18 8UOOORULE]) %8'LL-T'T9 ‘8T=AHAV ‘8T=0H INAS VIN IND pue SjusidIgs0d INTO ulelq 3Joymn aHav pue [HINS
(zT02 (onv) 9//=[e101 saunsea Buibeuw
“le 18 puejyog) %008 ‘G82=AHAV ‘T6v=0dL INAS 0009-9 -UoU pue 3J0MI8U ‘[edlLioTeue SNOLIEA aHav T1HINIST + THINS
erep a1dAjousyd
pue sainsesw AJAIIIBUUO0D [euonoUN)
pim
fuoje uoIIRINGp pIepUElS SSBUMDIY) pUB
‘aBelane SSaUMDIY) ‘BaJe 30RYINS ‘BINTeAIND elep
(a4 8/=[e10L 98l ueaw ‘awnjoA Janew Aeib ‘ainjeaind a1dAousyd+
“|e 18 UosIspuy) %8'99 '9/2=aHAV ‘z/y=adL uols1oad + 4N 0z uelssnes ‘xaput Buip|oy ‘xaput ainyeAind aHav IHINISA + THINS
(Buuaisnid
(zT02 £8=[e10]. [e91y2IeIaIH)
e 19 [esueg) %0°16 ‘Ty=aHAV ‘2r=0H pasiAadns-1Was V/IN sainseaw o1awoydiow agepng aHav 14INS
saue|d jeuoBoynio saay} uo sussned Areulq
ERIEIETEN] Aoeandoy |[elano s103[gns Jo JaquinN BEITTSN:TTe) sainyead # sainyea JapJosig Arepon

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Neuroimage. Author manuscript; available in PMC 2018 January 15.



	Abstract
	1. Introduction
	1.1 Group Difference vs. Classification

	2. Survey of MRI-based Single-Subject Prediction of Brain Disorders
	2.1 Mild Cognitive Impairment/Alzheimer's Disease
	2.2 Schizophrenia
	2.3 Depressive Disorders
	2.4 Autism Spectrum Disorder
	2.5 Attention Deficit Hyperactivity Disorder
	2.6 Analysis of the Survey
	2.7. Predicting Continuous Measures
	2.8 Detecting/characterizing at Risk Healthy Subjects

	3. Common Machine-learning Pitfalls in Neuroimaging
	3.1 Feature Selection Bias
	3.2 Overfitting
	3.3 Reporting Classification Results
	3.4 Comparison of Accuracies Across Studies
	3.5 Hyperparameter Optimization

	4. Machine Learning in Neuroimaging: Shortcomings and Emerging Trends
	4.1 Sample Size in Neuroimaging Studies
	4.2 Operating on Decentralized Data
	4.3 Differential Diagnosis and Disease Subtype Classification
	4.4.1 Multimodal Neuroimaging Studies
	4.4.2 Single-Subject Prediction using Multimodal Neuroimaging Data

	4.5 Deep Learning in Neuroimaging
	4.6 Standard Machine Learning Competitions in Neuroimaging

	5. Summary and Conclusions
	5.1 Previous Single-subject Prediction Surveys
	5.2 Limitations

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

