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Abstract

Despite the fact that appropriate social behaviors are vital to thriving in one’s environment, little is 

understood of the molecular mechanisms controlling social behaviors or how social experience 

sculpts these signaling pathways. Here, we determine if Phosphodiesterase 11A (PDE11A), an 

enzyme that is restricted to the ventral hippocampal formation (VHIPP) and that breaks down 

cAMP and cGMP, regulates social behaviors. PDE11 wild-type (WT), heterozygous (HT), and 

knockout (KO) mice were tested in various social approach assays and gene expression differences 

were measured by RNA sequencing. The effect of social isolation on PDE11A4 

compartmentalization and subsequent social interactions and social memory was also assessed. 

Deletion of PDE11A triggered age- and sex-dependent deficits in social approach in specific social 

contexts but not others. Mice appear to detect altered social behaviors of PDE11A KO mice, 

because C57BL/6J mice prefer to spend time with a sex-matched PDE11A WT vs. its KO 

littermate; whereas, a PDE11A KO prefers to spend time with a novel PDE11A KO vs. its WT 

littermate. Not only is PDE11A required for intact social interactions, we found that 1 month of 

social isolation vs. group housing decreased PDE11A4 protein expression specifically within the 

membrane fraction of VHIPP. This isolation-induced decrease in PDE11A4 expression appears 

functional because social isolation impairs subsequent social approach behavior and social 

memory in a PDE11A genotype-dependent manner. Pathway analyses following RNA sequencing 

suggests PDE11A is a key regulator of the oxytocin pathway and membrane signaling, consistent 

with its pivotal role in regulating social behavior.
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INTRODUCTION

Several neuropsychiatric disorders are associated with deficits in social behaviors (c.f., 

(Young, 2008)) and no medicines remedy these symptoms. Without acceptable social 

behaviors, our ability to attract a mate, acquire resources from society, and establish a safe/

secure environment is severely compromised (Ferguson et al., 2002). When an individual 

lacks proper social behaviors, one is often ostracized (Reidpath et al., 2005). Social isolation 

worsens mental and physical health and increases mortality, particularly among adolescents, 

the elderly and the mentally ill (Pompili et al., 2008; Bartels and Pratt, 2009; Dickens et al., 

2011; Hawton et al., 2011; Kondo et al., 2013; Slavich and Cole, 2013; Holt-Lunstad et al., 

2015; Yang et al., 2016). To make matters worse, social isolation further impairs subsequent 

social behaviors—thus, creating a vicious cycle (Kogan et al., 2000; Reidpath et al., 2005; 

Derntl et al., 2011; Shahar-Gold et al., 2013). Despite the fact that appropriate social 

behaviors are vital to thriving in one’s environment (Young, 2008), little is understood of the 

molecular mechanisms that control social behaviors or how social experiences modify these 

signaling pathways.

Cyclic nucleotide (cAMP/cGMP) signaling appears to be a molecular mechanism of social 

behavior that is conserved from amobas (Gregor et al., 2010) to mammals (Bickle, 2008). 

For example, oxytocin, a neuropeptide that regulates social behaviors (Lukas and Neumann, 

2013; Stoesz et al., 2013; Feldman et al., 2015), couples to both the cAMP and cGMP 

cascades (Cheng et al., 2009; Viero et al., 2010). Further, cAMP-response element binding 

protein (CREB) and exchange protein activated by cAMP (Epac) are required for various 

types of social behaviors (Bickle, 2008; Srivastava et al., 2012; Yang et al., 2012). 

Phosphodiesterases (PDE), the only known enzymes to break down cAMP and cGMP 

(Francis et al., 2011), also modulate social behaviors (Boess et al., 2004; Grauer et al., 2009; 

Kelly et al., 2010; Hutson et al., 2011; Liebenberg et al., 2012). Cyclic nucleotide signaling 

specifically within the ventral hippocampal formation (VHIPP) may be particularly 

important because VHIPP lesions and knockdown of CREB in the rodent VHIPP impair 

social behaviors (Kogan et al., 2000; Brightwell et al., 2005; Tseng et al., 2009). This is 
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consistent with the fact that both cyclic nucleotide signaling deficits (Ebstein et al., 1976; 

Belmaker et al., 1978; Bowers and Study, 1979; Kafka et al., 1979, 1986; Hoshino et al., 

1980; Garver et al., 1982; Gattaz et al., 1983; Kafka and van Kammen, 1983; Memo et al., 

1983; Goldberg et al., 1984; Kanof et al., 1986, 1987, 1989; Lerer et al., 1987; Ofuji et al., 

1989; Kaiya et al., 1990; Kang, 1990; Young et al., 1991, 1993, 1994; Kaiya, 1992; 

Cowburn et al., 1994; Avissar et al., 1997; Gurguis et al., 1997, 1999a,b; Rahman et al., 

1997; Avissar et al., 2001a,b; Bacchelli et al., 2003; Edmunds et al., 2008; Kelley et al., 

2008; Turetsky and Moberg, 2009; Woolfrey et al., 2009; Ji et al., 2011) and abnormalities 

in the VHIPP (Suddath et al., 1990; Shenton et al., 1992; Rajarethinam et al., 2001; Jessen et 

al., 2003; Pegues et al., 2003; Lee et al., 2004; Rametti et al., 2007; Rusch et al., 2008; Zhou 

et al., 2008; Ghose et al., 2009; Nesvaderani et al., 2009; Schobel et al., 2009a,b; Hall et al., 

2010; Goldman et al., 2011; Zhang et al., 2011) (referred to as the anterior hippocampus in 

primates) are observed in patients with neuropsychiatric disorders in which social deficits 

are known to occur.

Phosphodiesterase 11A (PDE11A, specifically isoform PDE11A4) is the only PDE with 

expression in brain restricted to the hippocampal formation, with a 3–10-fold enrichment in 

the VHIPP versus dorsal HIPP (Fig. 1A) (Kelly et al., 2010, 2014; Kelly, 2014, 2015; Hegde 

et al., 2016; Pathak et al., in press) and little to no expression in peripheral organs (c.f., 

(Kelly, 2015)). PDE11A has been genetically and/or functionally associated with clinical 

phenotypes related to changes in social function, including major depressive disorder (Wong 

et al., 2006; Cabanero et al., 2009; Luo et al., 2009), suicide risk (an inactivating mutation, 

(Coon et al., 2013)), and lithium responsivity (Couzin, 2008; Kelsoe, 2010; Mertens et al., 

2015; Pathak et al., in press). Previously, we showed that reducing PDE11A expression was 

sufficient to reduce social approach behavior towards a novel mouse in adult male mice, but 

not female mice (Kelly et al., 2010). Here, we determine if social context and age 

differentially affect the manifestation of social deficits in PDE11A mutant mice and if social 

experience feeds back to shape the brain and subsequent behavior via PDE11A4. We show 

that PDE11A4 is a key regulator of social behaviors and the oxytocin signaling pathway, and 

that social experience shapes the brain, at least in part, by altering PDE11A4 

compartmentalization.

EXPERIMENTAL PROCEDURES

Subjects

PDE11A knockout (KO) mice were originally developed by Deltagen (San Mateo, CA, 

USA), and are maintained on a mixed C57BL/6J-C57BL/6N-129S6 background, as 

previously described (Kelly et al., 2010; Hegde et al., 2016). PDE11A mice were bred onsite 

in heterozygous (HT) × HT matings, with same-sex wild-type (WT), HT, and knockout(KO) 

littermates weaned together into the same cage at P28 (3–5/cage; but see “mouse 

psychiatrist” assay below). C57BL/6J mice were either obtained from Jackson Laboratories 

or bred onsite and were also group housed (3/cage). For social isolation studies, C57BL/6J 

mice were single-housed for 1 month and mice from the PDE11A colony were single-

housed for 1–2 months. Approximately equal numbers of male and female off-spring were 

tested between P28 - P42 for adolescent studies and 2–9 months of age for adult studies. In 
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all experiments, PDE11A KO mice were compared to sex-matched littermates. Animals are 

housed on a 12:12-h light:dark cycle with unlimited access to food and water. See figure 

legends for experimental n’s. Experiments were carried out in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals (Pub 85-23, revised 

1996) and were fully approved by the Institutional Animal Care and Use Committee of the 

University of South Carolina.

In situ hybridization, quantitative PCR (Q-PCR) and Western blotting

In situ hybridization, quantitative PCR (Q-PCR) and Western blotting were performed as 

previously described (Kelly et al., 2010, 2014). In situ hybridization for PDE11A was 

performed using an S35-labelled antisense probe 

(5′gccacctgtctggagatctcccacggtttggtcacggc-3′). Q-PCR was performed using pre-designed 

gene-specific oligonucleotide primer-probe sets (Table 1; Integrated DNA Technologies 

(IDT), Coralville, IA, USA). For Western blotting, antibodies were used to detect PDE11A 

(Fabgennix PD11-112 Lot 173, 1:500) and actin as a loading control (Sigma #A2066; 

1:10,000).

Social approach assay

As we previously described (Kelly et al., 2010), we measured social approach behavior 

using Brodkin’s version of the 3-compartment chamber in which a perforated plexiglass 

cylinder is placed in either end of the compartment (Sankoorikal et al., 2006). After subjects 

habituated to the apparatus and empty cylinders for 5 min, a novel object (50 mL conical 

tube) and either a novel PDE11A WT, a novel C57BL/6J, or a cagemate were placed in the 

cylinders (position counterbalanced across subjects). Littermates were tested against the 

same stimulus mice, with order of genotypes tested counterbalanced across littermate 

groups. In the “cagemate vs. novel mouse” version of the assay, the cagemate remained and 

the object was first replaced with a novel PDE11A WT and then a novel C57BL/6J. Each 

approach trial lasted 5 min. For the “new object vs. new PDE11A WT” assay, chamber time 

was hand scored. For the “new object vs. new C57BL/6J” assay, latency and chamber time 

were collected using AnyMaze to track center of body, and cylinder data was hand scored. 

For the cagemate assays, latency and chamber/cylinder time were collected by tracking head 

position using Ethovision 7.0, with the exception of the adolescent study that was hand 

scored. For all studies using AnyMaze or Ethovision, locomotor activity was recorded but no 

effects of genotype were noted (Table 2).

“Mouse psychiatrist” assay

This assay is somewhat similar to the Preference for Typical Social Interaction Test (Shah et 

al., 2013) but with substantial differences in methodology/design. A C57BL/6J mouse, a 

“social” mouse strain (Brodkin et al., 2004; Fairless et al., 2012), was first habituated to the 

social approach apparatus for 5 min. Next, an age- and sex-matched PDE11A WT and either 

a HT or KO littermate were placed in the two cylinders (i.e., 1 mouse/cylinder). The position 

of genotypes in the cylinders was counterbalanced across trials. Each C57BL/6J was tested 

against a new pair of WT-HT/KO littermates. The C57BL/6J “mouse psychiatrist” was then 

allowed to assess the WT and HT/KO mice for 30 min. Data were binned in 5-min epochs. 

This assay was also run using PDE11A KO mice as the “mouse psychiatrist”. These 
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PDE11A KO mice were raised in HT × HT matings but were weaned exclusively with other 

sex-matched KO mice. Chamber data were calculated using AnyMaze, and cylinder data 

were hand scored.

Biochemical fraction

Animals were sacrificed by cervical dislocation, with individual brain regions immediately 

dissected onto dry ice and stored at −80 °C. Each biological replicate contained tissue from 

2 - 3 mice to provide sufficient starting material. Tissue samples were homogenized, 

biochemically fractionated, and processed by Western blotting as previously described 

(Kelly et al., 2010, 2014; Pathak et al., in press).

Social odor recognition

As previously described (Kelly et al., 2010; Hegde et al., 2016), mice were individually 

placed in a clean home cage and allowed to explore 3 wooden beads—2 from their home 

cage and 1 from the cage of a novel mouse strain (C57BL/6J, BALB/cJ, 129S6/SvEv). 

During a 2-min memory test 24 h after training, mice were again presented with 3 beads: 

home cage, bead from training, and a bead from another strain. Time investigating each bead 

was scored, and “memory” was operationally defined as spending significantly more time 

investigating the novel versus the familiar odor.

RNA sequencing

Animals were sacrificed by cervical dislocation, with individual brain regions immediately 

dissected onto dry ice and stored at −80 °C. RNA and library preparation, sequencing, and 

post-processing of the raw data were performed by the Epigenomics Core at Weill Cornell 

Medicine. Tissue stored at −80 °C was dry-fractured in a tissueTUBE device using a 

cryoPREP TM Impactor as per manufacturer recommendations (Covaris, Woburn, MA, 

USA). Each pulverized sample was resuspended in 350uls of Qiagen RNeasy Plus Mini RTL 

lysis buffer and RNA extracted as per manufacturer recommendations (Qiagen, Valencia, 

CA, USA). RNA integrity was assessed using the Lab Chip GX (Perkin Elmer, Waltham, 

MA, USA), and samples had a quality score > 8.0. TruSeq RNA libraries were prepared 

using established Illumina methods (Illumina, San Diego, CA, USA, Part #RS-122-2001). 

Each library was made with one of the TruSeq barcode index sequences and samples were 

sequenced across 3 lanes. The pools were clustered at 6.5 pM on a pair end read flow cell 

and sequenced for 100 cycles on an Illumina HiSeq 2500. Primary processing of sequencing 

images was done using Illumina’s Real Time Analysis software (RTA). CASAVA 1.8.2 

software was used to perform image capture, base calling and demultiplexing. Sequences 

were aligned to the mouse mm10 genome (http://hgdownload.soe.ucsc.edu/goldenPath/

mm10/bigZips/) using STAR v2.3.1 (Dobin et al., 2013). Reads were counted using the 

featureCounts function of the Subreads package (Liao et al., 2013) in R (https://www.R-

project.org/) using Gencode M6 GTF (http://www.gencodegenes.org/mouse_stats/

archive.html) and summarized at exon, transcript, or gene level. Only reads that were 

mapped uniquely to the genome were used. Mapping quality (MAPQ) minimum threshold 

was set at 10. Differential expression analysis was performed in R using the edgeR package 

(Robinson et al., 2010). The average read depth for the samples was 64 million reads and 

only genes with at least 1 count per million average depth were considered for differential 
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expression analysis. Raw counts were normalized using the trimmed mean of m-values 

(TMM) method. Dispersion estimates were then calculated using the 

estimateGLMRobustDisp function (Zhou et al., 2014). The normalized read counts were 

then fitted to a generalized linear model using the function glmFit (McCarthy et al., 2012). 

Genewise tests for significant differential expression were performed using the function 

glmLRT. The P-value was then corrected for multiple testing using Benjamini-Hochburg’s 

FDR (Benjamini and Hochberg, 1995). Genes that differed in expression between PDE11A 

WT and KO mice (FDR P < 0.05; Table 3) were examined for enrichment in KEGG and GO 

pathway using STRING 10 (string-db.org) (Szklarczyk et al., 2015).

Data analyses

Behavioral and biochemical data were collected in a blinded fashion and analyzed using 

Statistica 9.0. As previously described (Kelly et al., 2010; Kelly, 2014; Pathak et al., 2015), 

to mitigate non-specific effects related to transfer efficiencies, film exposures, etc. across 

gels, Western blot data on a given gel were normalized to a reference group (e.g., GH). Data 

were analyzed by an analysis of variance (ANOVA) or repeated measure ANOVA for 

genotype and/or housing condition and compartment. With regard to the effect of sex, male 

and female data in Figs. 1 and 3A were analyzed separately based on our previous sex-

specific findings in an “object vs. novel mouse” version of the approach assay. For 

remaining datasets, sex was included along with genotype in ANOVAs where n ⩾ 6/sex/

genotype. Data were graphed collapsed across sex unless a significant genotype × sex 

interaction was detected to best reflect the conclusions of the statistical tests. In cases of 

significant ANOVAs, post hoc analyses were conducted using the Student–Newman–Keuls 

Method. As previously described (Kelly et al., 2008, 2010; Kelly, 2014; Pathak et al., 2015), 

statistical outliers >2 standard deviations from the mean were removed from analyses 

(outliers/total data points: Fig. 1C Left, 2/62; Fig. 1E Right, 6/132;Fig. 2A Left 8/28; Fig. 

2A Middle, 7/128; Fig. 2A Right, 7/128; Fig. 2B Left, 3/64; Fig. 2B Middle, 8/128; Fig. 2B 

Right, 10/128; Fig. 2C Left, 6/128; Fig. 2C Middle, 5/128; Fig. 2C Right 10/128; Fig. 3A 

Left, 2/109; Fig. 3A Right, 3/56; Fig. 3B, 4/101; Fig. 3C, 3/101;Fig. 3D, 4/101; Fig. 4A, 

5/104; Fig. 4B, 4/104;Fig. 4C, 5/104; Fig. 4D, 6/88; Fig. 4E, 1/88;Fig. 4F, 4/88; Fig. 4H, 

1/56; Fig. 4I, 1/56). Significance was defined as P < 0.05. Data are graphed as means ± 

SEM.

RESULTS

Social approach behaviors of PDE11A HT and KO mice depend on the social context

In our previous laboratory (Kelly et al., 2010), we reported that within a colony that was 

bred offsite and single-housed, male PDE11A KO mice—but not female KO mice—

exhibited significantly reduced social approach behavior relative to sex-matched WT 

littermates. Here, we replicated this sex-specific effect with group-housed (GH) mice bred 

onsite (Fig. 1C). Next we determined if social approach behavior of PDE11A mutant mice 

might depend on the social context. Changing the stimulus mouse from a novel PDE11A 

WT to a novel C57BL/6J mouse (Fig. 1D-E) and/or replacing the alternative option of the 

novel object with a cagemate (Fig. 2A) altered the social approach deficits exhibited by 

PDE11A HT and KO mice, in some cases lessening the deficits and in other cases worsening 
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the deficits. Together, these data suggest that social approach deficits exhibited by PDE11A 

mutant mice differ depending on the social context.

Effects of PDE11A deletion on social approach behavior are age dependent

Previously we showed that PDE11A expression is minimal at postnatal day 7 but 

dramatically increases to young adulthood levels between postnatal day 21–28 (Hegde et al., 

2016). Social approach behaviors become reliably measurable in the mouse around postnatal 

day 19 (Laviola et al., 1994; Fairless et al., 2012), suggesting PDE11A mutant mice might 

exhibit social approach deficits early in adolescence. That said, a number of 

neurodevelopmental insults, including neonatal ventral hippocampal lesions, do not yield 

immediate behavioral deficits but, rather, require a period of development to occur before 

deficits fully manifest (e.g., (Tseng et al., 2009)). As such, we determined if adolescent 

PDE11A HT and KO mice would exhibit similar social approach deficits relative to WT 

littermates as did their adult counterparts. Adolescent PDE11A HT and KO mice largely 

performed normally in social approach behaviors where adult HT and KO mice showed 

deficits (Fig. 3). In fact, adolescent PDE11A KO mice demonstrated significant social 

approach towards their cagemate vs. a novel object when adolescent PDE11A WT and HT 

littermates demonstrated no such preference (Fig. 3B). Overall, these data suggest deficits 

observed in the adult mutant mice are age dependent.

A social mouse prefers to spend time with a PDE11A WT versus a PDE11A KO but a 
PDE11A KO prefers to spend time with another KO

The above experiments suggest that adult PDE11A mutant mice exhibit altered social 

behaviors in specific social contexts; however, this is based on a human definition of what is 

an appropriate social behavior for a mouse. Therefore, we determined if a C57BL/6J “mouse 

psychiatrist” would be able to detect abnormal behavior in PDE11A mutant mice. C57BL/6J 

mice strongly preferred to spend time with PDE11A WT versus KO mice, particularly 

during the last 5 min of the 30-min session (Fig. 4A–C). In contrast, C57BL/6J mice 

preferred PDE11A WT over HT mice during the first 5 min, but then switched to prefer the 

HTs over the WTs during the last 5 min (Fig. 4D–F). In contrast, PDE11A KO mice 

preferred to spend time with another PDE11A KO vs. a WT mouse, particularly during the 

final 5 min of the session (Fig. 4G–I). These data suggest other mice are able to detect 

differences in PDE11A mutant mouse behavior.

Social isolation decreases PDE11A4 protein expression in a subcellular compartment-
specific manner

When humans lack proper social behaviors, they are often ostracized. We show this 

phenomenon extends to mice as well (Fig. 4). As such, we determined if social isolation 

might alter PDE11A4 protein expression. In biochemically fractionated ventral hippocampi 

of C57BL/6J mice, 1 month of social isolation decreased PDE11A4 expression in the 

membrane but not the cytosolic compartment (Fig. 5A).
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Isolation impairs subsequent social approach and social odor recognition memory in a 
PDE11A genotype-dependent manner

Given that social isolation impairs subsequent social behaviors in humans (Kogan et al., 

2000; Derntl et al., 2011; Shahar-Gold et al., 2013), we determined if isolation would impair 

subsequent social behaviors in a PDE11A genotype-dependent manner. If so, this would 

suggest that the isolation-induced decreases in PDE11A4 expression noted above are of 

functional consequence. To do so, we compared social behaviors in GH versus single-

housed PDE11A WT, HT, and KO mice, reasoning that isolation should induce a dose–

response shift across PDE11A genotypes. We tested social approach behavior in male mice 

in the “novel object vs. novel PDE11A” version of the assay and social odor recognition in 

both male and female mice. Across the 2 assays, behavior of socially isolated (SI) WTs 

shifted towards that of group-housed (GH) HTs and the behavior of SI HTs shifted towards 

that of GH KOs, with no effect of isolation on PDE11A KO behavior (Fig. 5B-C).

Deletion of PDE11A triggers gene expression changes in the oxytocin pathway

To determine the molecular mechanisms by which PDE11A deletion alters social behavior, 

we conducted RNA sequencing on VHIPP samples from adult male and female PDE11A 

WT, HT, and KO mice (n = 7/genotype). After FDR correction, 52 genes were down 

regulated and 117 genes were upregulated in PDE11A KO vs. WT mice (Table 3; Fig. 6). 

KEGG pathway analyses identified enrichment in only three pathways (Table 4). 1 of these 3 

pathways is the oxytocin pathway, a major signaling pathway underlying social behaviors 

(c.f., (Viero et al., 2010; Ebstein et al., 2012; Lukas and Neumann, 2013; Stoesz et al., 2013; 

Feldman et al., 2015)) and the effects of social buffering (Chen et al., 2011; Hostinar et al., 

2014). Consistent with a role for PDE11A in regulating behavior, the GO Biological Process 

and GO Cellular compartment most significantly affected by PDE11A deletion was synaptic 

transmission and the synapse, respectively (Table 4; Fig. 6). Given that social isolation 

specifically decreased PDE11A4 expression in membrane, it is interesting to note that 

PDE11A deletion also significantly affected several membrane-related GO pathways (e.g., 

synaptic membrane, Table 4).

DISCUSSION

Here we showed that PDE11A4, an enzyme enriched in the VHIPP, is a key regulator of 

social behavior and a key mechanism by which social experience feeds back to shape 

signaling in the brain. We showed that (i) PDE11A deletion impairs social behaviors of 

adults much more so than adolescents (Figs. 1–3), (ii) social deficits caused by the loss of 

PDE11A are sensitive to the social context (Figs. 1, 2 and 4), (iii) social isolation decreases 

PDE11A4 expression in a subcellular compartment-specific manner (Fig. 5A), (iv) isolation 

impairs subsequent social behaviors in a PDE11A genotype-dependent manner, suggesting 

that isolation-induced decreases in PDE11A4 expression do contribute to subsequent 

impairments in social behaviors (Fig. 5B-C), and (v) deletion of PDE11A4 significantly 

alters expression of genes in a major signaling pathway underlying social behavior (Table 

4,Fig. 6), namely the oxytocin pathway (c.f. (Viero et al., 2010; Ebstein et al., 2012; Lukas 

and Neumann, 2013; Stoesz et al., 2013)). We believe that social approach deficits measured 

here in PDE11A mutant mice likely reflect a fundamental deficit in social approach behavior 
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as opposed to a simple failure to detect social novelty because PDE11A HT and KO mice 

retain the ability to differentiate familiar versus novel social odors when presented via 

wooden beads, although the consolidation of long-term social memory is impaired (Fig. 5C; 

(Kelly et al., 2010; Hegde et al., 2016)). Thus, phenotypes exhibited by PDE11A mutant 

mice are reminiscent of social deficits observed in patients with certain neurodevelopmental 

disorders (e.g., (Miller et al., 2002; Johnstone et al., 2005; Jahr et al., 2007; Locke et al., 

2010; Giacco et al., 2012; Dean et al., 2014)), in that mutant mice initiate social interactions 

differently relative to WT mice and a social mouse chooses to interact less with the PDE11A 

KOs.

Although the effect sizes of the social approach deficits noted in the PDE11A mutant mice 

are arguably limited, they are reproducible and their magnitude is well in line with the sparse 

nature of PDE11A4 expression in the brain (i.e., limited to a subpopulation of neurons in 

CA1, subiculum, and the amygdalohippocampal area (Kelly et al., 2010, 2014; Kelly, 2015; 

Hegde et al., 2016)). The effect of PDE11A deletion on social interactions is clearly 

dependent on the social context as changing the stimulus mouse strain (i.e., new PDE11A 

vs. cagemate vs. new C57BL/6J mouse) or the nature of the alternative option (i.e., new 

object vs. cagemate), distinctly alters the phenotype of PDE11A HT and KO mice. Although 

PDE11A mutant mice clearly show context-dependent alterations in their social approach 

behaviors, it remains to be determined what is driving the context specificity of the effects. It 

may be that deletion of PDE11A affects motivational aspects of task performance. For 

example, the social approach deficits noted in male PDE11A mutant mice in the “new object 

vs. new PDE11A mouse” context may reflect a slight aversion for the new mouse or simply 

a stronger attraction toward the novel object. Similarly, the fact that male PDE11A KO mice 

exhibit reduced social approach in the “object vs. new PDE11A mouse” context, but not in 

the “cagemate vs. new PDE11A mouse” context, may reflect a positive effect of social 

buffering in the latter (i.e., the stress-reducing effect elicited by the presence of a conspecific 

(Ditzen and Heinrichs, 2014; Hostinar et al., 2014; Gobrogge and Wang, 2015)), since it 

does not appear that a PDE11A mutant mouse is simply more motivated to explore a novel 

object vs. a familiar mouse (Fig. 2A). Indeed, PDE11A4 is expressed in VHIPP neurons that 

project to the nucleus accumbens (Cembrowski et al., 2016), suggesting PDE11A4 may be 

important in regulating how motivated one is to engage in social interactions or how 

rewarding one finds those social interactions. Whatever motivations drive the altered social 

interactions of a PDE11A mutant mouse, those alterations appear to be recognizable by 

another mouse as the “mouse psychiatrist” assay shows a C57BL/6J mouse prefers to 

interact with a PDE11A WT mouse over a PDE11A KO mice while a PDE11A KO mouse 

prefers to interact with another PDE11A KO mouse over a PDE11A WT mouse. The fact 

that PDE11A KO mice prefer another KO vs. a WT in the “mouse psychiatrist” assay 

suggests that a PDE11A KO mouse might even show stronger social approach relative to a 

WT when given the choice between a novel object and another PDE11A KO mise. Findings 

in the “mouse psychiatrist” assay are consistent with reports in humans showing people tend 

to associate with like-minded people (Launay and Dunbar, 2015) and individuals with 

neurodevelopmental or psychiatric illnesses tend to socially withdraw and/or be ostracized 

(e.g., (Miller et al., 2002; Johnstone et al., 2005; Locke et al., 2010; Giacco et al., 2012; 

Dean et al., 2014)).
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Interestingly, deleting PDE11A changes social behaviors in a manner that does not strictly 

follow a gene-dosage relationship (Figs. 1, 2 and 4). This suggests that full deletion of 

PDE11A may trigger a protective compensatory mechanism that partial deletion does not. 

Consistent with this idea, the RNAseq experiment shows that PDE11A KO mice exhibit a 

significant reduction relative to PDE11A WT and HT mice in insulin-like growth factor 

binding protein 3 (IGFBP3), elevated expression of which is associated with chronic 

loneliness in humans (Cole et al., 2007). Although some questions remain, data presented 

here strongly argue that PDE11A is a key regulator of social interactions, which is consistent 

with the fact that PDE11A has been genetically and/or functionally associated with clinical 

phenotypes related to changes in social function, including major depressive disorder (Wong 

et al., 2006; Couzin, 2008; Cabanero et al., 2009; Luo et al., 2009; Kelsoe, 2010; Coon et al., 

2013), suicide risk (an inactivating mutation, (Coon et al., 2013)), and lithium responsivity 

(Couzin, 2008; Kelsoe, 2010; Mertens et al., 2015; Pathak et al., in press).

It remains to be determined whether PDE11A is more relevant to social deficits observed in 

adulthood disorders, such as schizophrenia, or those observed in childhood disorders, such 

as autism. Adolescent PDE11A mutant mice exhibit normal social approach behaviors in 

social contexts where adult PDE11A mutant mice show reduced social approach (Fig. 3). 

Such an age-dependent trajectory is thought to be relevant in modeling aspects of 

schizophrenia in rodents (Feleder et al., 2010), since this schizophrenia is thought to be 

caused by neurodevelop-mental insults that do not fully manifest until early adulthood. That 

said, PDE11A KO mice are impaired in other types of social behaviors. Previously we 

showed that both adolescent and adult PDE11A mutant mice show significant impairments 

in consolidating long-term memories involving social information (Kelly et al., 2010; Hegde 

et al., 2016). This raises the interesting possibility that adolescent PDE11A mutant mice 

have a fundamental inability to form long-term memories for what is and what is not a 

socially-acceptable behavior, which ultimately leads to alterations in social approach 

behavior at a later age. Indeed, adolescents with intellectual disabilities were found to have 

lower quality friendships relative to typically developing adolescents, which was predicted 

by impaired social skills earlier in development (Tipton et al., 2013). It will be of interest to 

future studies to determine if social interaction deficits observed in adult PDE11A mutant 

mice are, in fact, directly related to their inability to form social memories.

Our work argues that it may be necessary to not only stimulate PDE11A4 catalytic activity 

but also to restore PDE11A4 to a specific subcellular localization to treat social deficits. The 

importance of the compartment-specific effects noted herein in response to social isolation 

are underscored by the fact that patients with neuropsychiatric and neurodegenerative 

diseases may have cyclic nucleotide deficits in one subcellular compartment but not another 

(Rahman et al., 1997; Bonkale et al., 1999; Fields et al., 1999; Chang et al., 2003). It is 

possible to stimulate PDE11A4 catalytic activity via its GAF-A domain (Jager et al., 2012). 

Further, it is possible to increase insertion of PDE11A4 into the VHIPP membrane by 

promoting homodimerization of the protein at its GAF-B domain (Pathak et al., in press). 

Importantly, PDE11A4 GAF domains are less than 50% homologous to those in other PDE 

families (84), and PDE11A1–3 do not contain a full GAF-A domain (Yuasa et al., 2000). 

This suggests selectivity for PDE11A4 relative to other PDE families, and even other 
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PDE11A isoforms, is possible. Selective targeting of PDE11A4 may reduce side effect 

potential given its minimal expression outside of the brain (Kelly, 2015).
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Glossary

ANOVA analysis of variance

CREB cAMP-response element binding protein

GH group housed

HT heterozygous

KO knockout

PDE11A Phosphodiesterase 11A

Q-PCR quantitative PCR

SI socially isolated

VHIPP ventral hippocampal formation

WT wild-type
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Highlights

• Adult—not adolescent—PDE11A mutant mice exhibit sex-dependent 

social deficits in select social contexts but not others.

• C57BL/6J mice prefer to interact with PDE11A WT mice while 

PDE11A KO mice prefer to interact with other PDE11A KO mice.

• Social isolation decreases PDE11A4 protein and impairs subsequent 

social behaviors in a PDE11A genotype-dependent manner.

• Deletion of PDE11A4 alters gene expression in the oxytocin signaling 

pathway, a key regulator of social behaviors.
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Fig. 1. 
PDE11A mRNA expression is restricted to the hippocampal formation and deletion alters 

social approach in a manner that depends on the strain of the stimulus mouse. (A) As 

previously reported (Kelly et al., 2010, 2014; Kelly, 2014, 2015), PDE11A mRNA is 

selectively expressed in CA1 (and possibly ventral CA2), subiculum, and the adjacent 

amygdalohippocampal area (not shown at this level), with a 3- to 10-fold enrichment in 

ventral (VHIPP) versus dorsal hippocampus (DHIPP). (B) As expected, PDE11A 

heterozygous (HT; n = 6 (3 females)) mice show a 50% reduction in ventral hippocampal 

(VHIPP) PDE11A mRNA expression relative to wild-type (WT) littermates (n = 7 (4 

females)), as measured by Q-PCR (t(11) = 3.47, P = 0.005). Note, no signal was detected in 

samples from PDE11A knockout (KO) mice, proving specificity of the primer/probe sets 
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(data not shown). Surprisingly, however, PDE11A HT mice (n = 9 (5 females)) show an 80% 

reduction in VHIPP PDE11A4 protein expression relative to WT littermates (n = 10 (5 

females)), as measured by Western blot (t(17) = 8.20, P < 0.001; shown in lower panel). 

Identical results were obtained in dorsal hippocampal samples from these mice as well as 

whole hippocampus samples from a second cohort of mice (data not shown). The 

mechanism underlying this disconnect between mRNA and protein remains to be 

determined, but alterations in social behavior driven by the HT deletion may further drive 

down PDE11A4 protein expression in the PDE11A HT mice (e.g., see Fig. 5A). (C) (Left) 

When given a chance to explore a novel object vs. a novel PDE11A WT mouse, adult male 

PDE11A mutant mice (i.e., HT, n = 8, and KO mice, n = 10) exhibited reduced social 

approach relative to that of male WT littermates (n = 14; F(2,26) = 4.50, P = 0.021). (Right) 

in contrast, female PDE11A WT (n = 7), HT (n = 3), and KO mice (n = 9) spent equivalent 

amounts of time with a novel mouse from the PDE11A colony (F(1,16) = 68.77, P < 0.001). 

This sex-specific phenotype in group-housed mice bred onsite is consistent with our 

previous report in single-housed mice bred offsite (Kelly et al., 2010). Note: latency to 

chamber and time near the cylinder were not available for this experiment. (D) Changing the 

stimulus mouse to a C57BL/6J altered the pattern of behavior seen in PDE11A mutant mice. 

(Left) male PDE11A KO mice (n = 18) failed to show a significant social preference in 

terms of their latency to approach the new C57BL/6J mouse vs. the new object, having 

approached the novel object much more quickly than their male HT (n = 14) and WT 

littermates (n = 20; effect replicated in 2 cohorts of mice, combined analysis: F(2,49) = 4.82, 

P = 0.012). (Middle) despite this difference in latency to approach, PDE11A KO males 

exhibited significant social preference in terms of their time in each chamber (F(1,49) = 

55.22, P < 0.001) and (right) time near each cylinder (F(1,49) = 54.60, P < 0.001). (E) 

Unlike PDE11A KO males, (left) PDE11A KO females (n = 17) showed a significance 

preference for the new C57BL/6J mouse vs. the new object, as did PDE11A WT and HT 

females (WT, n = 27; HT, n = 22), in terms of their (left) latency to approach (F(1,63) = 

31.78, P < 0.001) as well as their (middle) time in chamber (F(1,63) = 87.15, P < 0.001), and 

(right) time near the cylinder (F(2,57) = 4.57, P = 0.014), with PDE11A HT females 

showing significantly greater social approach on the last measure. Post hoc, *vs. object, P < 

0.001; #vs. WT, P < 0.05–0.001.
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Fig. 2. 
Replacing the new object with a cagemate aligned social approach behaviors of PDE11A 

mutant males and females, with PDE11A mutant mice showing context-dependent changes 

in social approach behavior. (A) Relative to PDE11A wild-type (WT) mice, PDE11A HT 

and KO mice generally demonstrated intact social approach towards their own cagemate. 

(Left) an exception exists in that HTs fail to differentiate their latency to approach a 

cagemate vs. a novel object (latency: F(1,60) = 5.94, P = 0.018); however, all mice 

demonstrate significant social preference for the cagemate in terms of (middle) chamber 

time (F(1,63) = 15.01, P < 0.001) and (right) cylinder time (F(1,60) = 32.79, P < 0.001). *vs. 

cagemate, P < 0.001. (B) When given a choice between a cagemate and a novel PDE11A 

WT, PDE11A KO mice exhibited significant social approach in terms of (left) their latency 

to approach the chamber (F(1,24) = 13.75, P = 0.001), (middle) time in chamber (F(1,25) = 

28.39, P = 0.001), and (right) time near the cylinder (F(1,23) = 20.41, P < 0.001), as did 

PDE11A WT mice (latency: F(1,22) = 15.18, P < 0.001; chamber time: F(1,23) = 16.24, P < 

0.001; cylinder time: F(1,23) = 7.46, P = 0.012). Surprisingly, PDE11A HT mice showed 

further impairments in social approach such that both male and female HTs failed to 

demonstrate any preference for the new PDE11A WT over their own cagemate on any 

measure. Further, PDE11A HT mice spent significantly more time in the chamber of the 

cagemate than did PDE11A WT and KO mice (F(2,63) = 5.12, P = 0.009) and significantly 

less time in the chamber of the new PDE11A WT than did PDE11A WT and KO mice 

(F(2,65) = 4.52, P = 0.015). (C) Similarly, PDE11A HT mice failed to show a significant 

preference in their latency to approach a new C57BL/6J mouse vs. their own cagemate, 

unlike the PDE11A WT (F(1,24) = 31.54, P < 0.001) and KO mice (F(1,25) = 28.15, P < 

0.001). This is due to the fact that PDE11A HT approached their cagemate significantly 

sooner than did PDE11A WT mice (F(2,65) = 3.85, P = 0.026). A similar trend was 

observed in the PDE11A KO mice (Post hoc, P = 0.079). (Middle) despite these differences 

in latency to approach, PDE11A WT (F(1,23) = 85.83, P < 0.001), HT (F(1,14) = 45.43, P < 
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0.001), and KO mice (F(1,26) = 48.12, P < 0.001) all showed a significant preference for the 

new C57BL/6J mouse over their own cagemate in terms of time spent in each chamber. 

(Right) PDE11A WT (F(1,23) = 30.91, P < 0.001), HT (F(1,13) = 83.04, P < 0.001), and KO 

mice (F(1,22) = 6.84, P = 0.016) also showed a significant preference for the new C57BL/6J 

mouse over their own cagemate in terms of time spent near the cylinder. That said, there was 

a significant difference among the genotypes in terms of how much time was spent near the 

cylinder of the C57BL/6J mice (F(2,63) = 10.90, P < 0.001), with PDE11A HT mice 

spending significantly more time relative to WT mice and PDE11A KO mice showing a 

strong trend towards spending less time than WT mice (Post hoc, P = 0.057). (F, G) WT-F, n 
= 14; HT-F, n = 9; KO-F, n = 15; WT-M, n = 12; HT-M, n = 7; KO-M, n = 11. Post hoc, *vs. 

cagemate, P < 0.05–0.001; #vs. WT, P = 0.025–0.004.
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Fig. 3. 
Adolescent PDE11A heterozygous (HT) and knockout (KO) mice show no deficits in social 

approach behavior relative to PDE11A wild-type (WT) littermates. (A) Unlike adult male 

PDE11A HT and KO mice (see Figs. 1 and 2), adolescent PDE11A HT and KO mice show 

no deficits in social approach relative to PDE11A WT littermates in the “object vs. novel 

PDE11A” version of the assay (females, F(2,47) = 162.60, P < 0.001; WT, n = 9; HT, n = 9; 

KO, n = 10) (males, F(2,78) = 304.12, P < 0.001; WT, n = 13; HT, n = 13; KO, n = 17). (B) 

In the presence of a cagemate, male and female adolescent PDE11A HT and KO mice 

similarly show normal or better social approach behavior relative to sex-matched PDE11A 

WT littermates in terms of the latency to approach (F(2,40) = 3.56, P = 0.038), (C) the time 

spent in the chamber (F(1,41) = 201.31, P < 0.001), and (D) the time spent near the cylinder 

(F(1,42) = 190.30, P < 0.001). 3B-D WT-F, n = 8; HT-F, n = 8; KO-F, n = 12; WT-M, n = 6; 

HT-M, n = 6; KO-M, n = 7. Post hoc, *vs. object or cagemate, P < 0.01–0.001; #vs. WT, P = 

0.014.
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Fig. 4. 
Social C57BL/6J mice spend more time with a PDE11A wild-type (WT) mouse relative to a 

PDE11A knockout (KO) mouse; whereas, PDE11A KO mice spend more time with a 

PDE11A KO mouse relative to a WT mouse. (A) During a 30-min session, C57BL/6J mice 

(males, n = 10; females, n = 14) were given access to a sex-matched PDE11A WT and its 

PDE11A KO littermate (consistent effects observed across 2 cohorts and combined analyses 

are shown here). During the last 5 min, C57BL/6J mice approached the chamber of the 

PDE11A WT significantly faster than that of the KO littermate (F(1,22) = 4.94, P = 0.018). 

(B) In both the first (F(1,23) = 4.37, P = 0.048) and last 5 min (F(1,23) = 4.94, P = 0.036), 

C57BL/6J mice spent more time in the chamber of the PDE11A WT versus KO littermate. 

(C) During the last 5 min, C57BL/6J mice spent more time directly interacting with the 

cylinder of the PDE11A WT versus KO littermate (F(1,21) = 7.6, P = 0.011). (D) The 

pattern of results differed when C57BL/6J mice (males, n = 12; females, n = 10) were given 

access to a sex-matched PDE11A WT and its heterozygous (HT) littermate (consistent 

effects observed across 2 cohorts and combined analyses are shown here). C57BL/6J mice 

approached the PDE11A WT significantly faster than the HT littermate only during the first 

5 min (F(1,17) = 8.82, P = 0.009). (E) In the last 5 min, C57BL/6J mice actually spent 

significantly more time in the chamber of the HT vs. WT littermate (F(1,19) = 4.61, P = 

0.045). (F) Consistent with these effects shown in panels D and E, female C57BL/6J mice 

spent significantly more time interacting with the cylinder of the female PDE11A WT vs. 

HT littermate during the first 5 min (F(1,17) = 9.61, P = 0.017), and yet male and female 

C57BL/6J mice showed a trend towards spending more time interacting with the cylinder of 

the HT vs. WT littermate during the last 5 min (F(1,17) = 4.05, P = 0.07). (G) Interestingly, 

when PDE11A KO mice (male, n = 6; female, n = 8) were given access to a novel PDE11A 
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WT and that WT’s KO littermate, the PDE11A KO mice approached the novel PDE11A KO 

mouse chamber more quickly than that of the WT littermate (F(1,12) = 6.90, P = 0.022) and 

(H) spent significantly more time with the PDE11A KO mouse vs. the WT littermate in the 

chamber (F(1,11) = 6.20, P = 0.03) and (I) at the cylinder (F(1,11) = 5.31, P = 0.042). Post 
hoc, *vs. WT, P = 0.048–0.005.

HEGDE et al. Page 26

Neuroscience. Author manuscript; available in PMC 2017 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Isolation-induced decreases in PDE11A4 expression are sufficient to impair subsequent 

social behavior. (A) Socially isolated (SI) C57BL/6J mice expressed significantly less 

PDE11A4 protein in the membrane compartment of the ventral hippocampal formation 

(VHIPP) relative to group-housed (GH) C57BL/6J mice (F(1,12) = 5.65, P = 0.035; n = 7 

biological replicates (five males + two females)/group). (B) Isolation, then, induced a dose–

response shift across PDE11A genotypes such that isolated PDE11A wild-type (WT) mice 

exhibited a behavioral profile similar to that of GH PDE11A heterozygous (HT) mice in 

social approach (assessed in males only, F(10,156) = 2.61, P = 0.006). WT-GH, n = 16; WT-

SI, n = 12; HT-GH, n = 14; HT-SI, n = 15; KO-GH, n = 16; KO-SI, n = 11. (C) Similarly, 

isolated HTs shifted their behavioral profile towards that of PDE11A knockout (KO) mice in 

24-h long-term memory for social odor recognition (F(2,58) = 5.43, P = 0.007). All males 

except where noted: WT-GH, n = 17; WT-SI, n = 9; HT-GH, n = 17 (includes three females); 

HT-SI, n = 14 (includes four females); KO-GH, n = 10; KO-SI, n = 5. #WT-GH, P < 0.03–

0.001; *vs. novel object/familiar odor, P ⩽ 0.002; @vs. GH, P = 0.019–0.003.
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Fig. 6. 
RNA sequencing of VHIPP reveals 52 downregulated and 116 upregulated genes in 

PDE11A knockout (KO) mice relative to PDE11A wild-type (WT) littermates, with 

significant enrichment of genes in pathways related to social behavior. Pathway genes and 

edges generated by STRING 10 (medium confidence) for the oxytocin (FDR P = 0.014), 

neuroactive-ligand (FDR P = 0.014), synapse (FDR P < 0.001), and synaptic membrane 

pathways (FDR P = 0.038) are shown here. Nodes are color coded for the log-fold change in 

gene expression of PDE11A KO mice (outer rim) and PDE11A heterozygous (HT) mice 

(inner circle) relative to WT littermates. See Table 3 for the complete list of genes that 

significantly differed between PDE11A KO vs. WT mice that were included in the pathway 

analyses and Table 4 for the full list of KEGG and GO pathways demonstrating significant 

gene enrichment. Gene changes in PDE11A HT mice are also detailed in Table 3. n = 7 

(three males, four females)/genotype. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Table 1

Primers used to assess PDE11A mRNA expression

Gene Set IDT Cat# Sequence Name Sequence

PDE11A exon
 12–13

Mm.PT.58.42976146 PrimeTime Probe 5′-/6-FAM/CAG CTC TAC /ZEN/GGG ACC TCG GC/IBFQ/-3′

PrimeTime Primer 2 GAA CCA ACA ATG CCT TCC AAG

PrimeTime Primer 1 CCT CAC TCT GAA GGA TCA TCA C

TBP exon 3–4 Mm.PT.58.10867035 PrimeTime Probe 5′-/6-FAM/CA CTC CTG C/Zen/C ACA CCA GCT TCT /IBFQ/-3′

PrimeTime Primer 2 TTC ACC AAT GAC TCC TAT GAC C

PrimeTime Primer 1 CAA GTT TAC AGC CAA GAT TCA CG

ACTB exon 4–5 Mm.PT.58.33257376.
gs

PrimeTime Probe 5′-/6-FAM/AT TCC ATA C/Zen/C CAA GAA GGA AGG CTG G/
IBFQ/-3′

PrimeTime Primer 2 ATT GGC AAC GAG CGG TT

PrimeTime Primer 1 AGG TCT TTA CGG ATG TCA ACG

POLR2A exon
 22–23

Mm.PT.58.13811327 PrimeTime Probe 5′-/6-FAM/AC CAC CTC T/Zen/T CCT CCT CTT GCA TCT /IBFQ/-3′

PrimeTime Primer 2 TCG AAT CCG CAT CAT GAA CAG

PrimeTime Primer 1 GTC AGC ATG TTG GAC TCA ATG

PDE11A was normalized to the average of values for the housekeeping genes TBP, ACTB, and POLR2A. Primer-probe sets were used with 5′ 6-

FAM (6-Carboxyfluorescein) fluorophore, 3′ IBFQ (Iowa black FQ) and internal ZEN quenchers (IDT) using iTaq™ Universal Probes Supermix 
(Bio-Rad, Hercules, CA).
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Table 2

There was no significant difference in locomotor activity between genotypes as measured by total centimeters 

travelled in the social approach chamber

Social approach test Source WT-M HT-M KO-M WT-F HT-F KO-F

New object vs. new PDE11A
 WT

Kelly et al. (2010),
PNAS

1862 (105) 1970 (86) 1753 (111) 1890
(167)

1542 (186) 2250
(516)

New object vs. new C57BL/6J Fig. 1D,E 1484 (54) 1576 (68) 1517 (50) 1629 (62) 1645 (79) 1786 (94)

New object vs. cagemate Fig. 2A 3078 (787) 4299
(1325)

2998 (953) 2525
(658)

3463 (969) 1744
(169)

Cagemate vs. new PDE11A
 WT

Fig. 2B 3393 (896) 6104
(2243)

3406
(1236)

3231
(826)

7241
(4062)

2297
(379)

Cagemate vs. new C57BL/6J Fig. 2C 3574
(1113)

6133
(1352)

2753 (757) 2865
(786)

2393 (570) 2682
(600)

Data expressed as mean (SEM).
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Table 3

RNA sequencing reveals 169 genes that significantly differ in expression between PDE11A KO versus WT 

littermates (sorted by KO vs. WT FDR P-value)

Gene ID KO vs. WT HT vs. WT KO vs. HT

logFC P-Value FDR P-value logFC P-Value FDR P-value logFC P-value FDR P-value

Xist 4.6819 2.351E–11 1.736E–07 0.8148 3.052E–01 9.998E–01 1.9335 4.048E–07 2.990E–03

Mylk −0.6646 3.077E–08 1.515E–04 −0.2890 1.542E–02 9.443E–01 −0.1878 1.368E–03 2.617E–01

Samd4 0.6946 5.943E–08 2.194E–04 0.4917 1.025E–04 4.619E–01 0.1015 1.120E–01 8.715E–01

Fgl2 −1.9915 2.400E–07 7.088E–04 −0.7670 3.958E–02 9.998E–01 −0.6122 1.233E–03 2.617E–01

Hivep1 1.1266 3.264E–07 8.036E–04 0.8016 2.502E–04 4.619E–01 0.1625 1.324E–01 8.955E–01

Syce2 −1.3233 5.799E–07 1.224E–03 −0.5006 4.899E–02 9.998E–01 −0.4113 1.245E–03 2.617E–01

Pitpnm3 0.8443 8.292E–07 1.531E–03 0.4902 3.295E–03 7.487E–01 0.1771 3.853E–02 7.123E–01

Hlf 0.7903 1.064E–06 1.746E–03 0.2144 1.765E–01 9.998E–01 0.2879 2.640E–04 1.950E–01

Satb1 0.8303 1.264E–06 1.867E–03 0.5077 2.779E–03 7.309E–01 0.1613 6.132E–02 7.703E–01

Asap1 0.8505 1.638E–06 2.199E–03 0.3569 3.840E–02 9.998E–01 0.2468 5.392E–03 4.525E–01

Unc13c 1.9464 2.114E–06 2.602E–03 1.2594 1.634E–03 7.120E–01 0.3435 8.163E–02 8.359E–01

Cacnb4 0.6627 2.398E–06 2.724E–03 0.3364 1.525E–02 9.443E–01 0.1631 1.999E–02 6.357E–01

Mtcl1 0.8188 2.949E–06 3.046E–03 0.2353 1.849E–01 9.998E–01 0.2917 9.939E–04 2.617E–01

Fam26e −0.6501 3.096E–06 3.046E–03 −0.2762 4.846E–02 9.998E–01 −0.1869 8.562E–03 5.038E–01

Hecw1 0.7093 3.300E–06 3.046E–03 0.3463 2.109E–02 9.852E–01 0.1815 1.467E–02 5.640E–01

St3gal1 1.0880 3.808E–06 3.309E–03 0.6929 2.668E–03 7.297E–01 0.1976 8.500E–02 8.392E–01

Cobl 1.3253 5.535E–06 4.542E–03 1.0592 2.278E–04 4.619E–01 0.1331 3.443E–01 9.457E–01

Nbl1 −0.7475 6.227E–06 4.812E–03 −0.4266 7.894E–03 8.388E–01 −0.1604 5.065E–02 7.449E–01

Grm8 1.2196 6.516E–06 4.812E–03 0.8843 9.596E–04 6.450E–01 0.1677 2.027E–01 9.260E–01

Etl4 0.7987 7.032E–06 4.946E–03 0.5497 1.983E–03 7.120E–01 0.1245 1.608E–01 9.132E–01

Rab26 −0.6809 7.532E–06 5.057E–03 −0.2208 1.347E–01 9.998E–01 −0.2301 2.150E–03 3.125E–01

Rora 0.7188 7.926E–06 5.090E–03 0.4800 2.485E–03 7.120E–01 0.1194 1.270E–01 8.897E–01

Mlip 0.6955 1.174E–05 7.223E–03 0.5119 7.089E–04 5.847E–01 0.0918 2.473E–01 9.415E–01

Il1rapl2 1.3039 1.480E–05 8.743E–03 0.6506 3.221E–02 9.998E–01 0.3267 2.532E–02 6.812E–01

Plcb4 0.8478 1.581E–05 8.979E–03 0.5576 3.578E–03 7.738E–01 0.1451 1.348E–01 8.971E–01

RP24–490B17.1 2.0479 1.765E–05 9.435E–03 0.8881 6.392E–02 9.998E–01 0.5799 1.327E–02 5.401E–01

Cntn4 0.8808 1.840E–05 9.435E–03 0.5997 3.201E–03 7.471E–01 0.1406 1.486E–01 9.053E–01

Vwc2l 1.8754 1.853E–05 9.435E–03 1.3651 1.367E–03 7.120E–01 0.2551 2.188E–01 9.322E–01

Zdhhc22 1.3832 2.075E–05 1.021E–02 0.6864 3.144E–02 9.998E–01 0.3484 2.750E–02 6.839E–01

Frmd7 −1.1582 2.399E–05 1.074E–02 −0.5211 4.737E–02 9.998E–01 −0.3186 2.140E–02 6.517E–01

Pamr1 0.9322 2.317E–05 1.074E–02 0.5266 1.588E–02 9.443E–01 0.2028 6.407E–02 7.763E–01

Dlg1 0.4058 2.361E–05 1.074E–02 0.2297 1.534E–02 9.443E–01 0.0881 6.472E–02 7.763E–01

Cpne7 −0.9417 2.905E–05 1.226E–02 −0.2759 1.905E–01 9.998E–01 −0.3329 2.800E–03 3.504E–01

Nr4a2 0.9161 2.828E–05 1.226E–02 0.7585 6.396E–04 5.847E–01 0.0788 4.777E–01 9.518E–01

Fut9 0.6358 3.079E–05 1.263E–02 0.3092 4.054E–02 9.998E–01 0.1633 2.764E–02 6.839E–01

Pknox2 0.5421 3.193E–05 1.275E–02 0.1613 1.994E–01 9.998E–01 0.1904 3.439E–03 3.681E–01

Igfbp3 −0.8821 3.446E–05 1.339E–02 0.0503 7.989E–01 9.998E–01 −0.4662 9.618E–06 4.735E–02
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Gene ID KO vs. WT HT vs. WT KO vs. HT

logFC P-Value FDR P-value logFC P-Value FDR P-value logFC P-value FDR P-value

Deptor 1.1437 3.608E–05 1.366E–02 0.7056 1.015E–02 8.766E–01 0.2190 1.002E–01 8.567E–01

Camk2g 0.4572 3.942E–05 1.399E–02 0.0855 4.258E–01 9.998E–01 0.1858 8.338E–04 2.512E–01

Astn2 0.5271 3.796E–05 1.399E–02 0.1916 1.256E–01 9.998E–01 0.1677 8.933E–03 5.095E–01

Lnp 0.4311 3.977E–05 1.399E–02 0.3909 2.466E–04 4.619E–01 0.0201 7.065E–01 9.797E–01

Adra1d −0.8237 4.383E–05 1.407E–02 −0.3748 5.364E–02 9.998E–01 −0.2245 2.522E–02 6.812E–01

Smad6 −1.6239 4.283E–05 1.407E–02 −0.9034 2.135E–02 9.852E–01 −0.3603 6.840E–02 7.885E–01

Chrna4 0.8001 4.221E–05 1.407E–02 0.4968 1.161E–02 9.421E–01 0.1516 1.176E–01 8.771E–01

Sowahb 1.4828 4.328E–05 1.407E–02 1.0883 2.371E–03 7.120E–01 0.1973 2.776E–01 9.441E–01

Tshz3 1.3431 4.644E–05 1.459E–02 0.6382 4.970E–02 9.998E–01 0.3525 2.655E–02 6.812E–01

Rnf128 −0.5481 5.331E–05 1.637E–02 −0.1518 2.552E–01 9.998E–01 −0.1981 2.978E–03 3.605E–01

Gm23935 −1.2578 5.431E–05 1.637E–02 −0.4726 1.597E–01 9.998E–01 −0.3926 1.825E–02 6.130E–01

Slc17a6 1.4644 5.748E–05 1.687E–v02 0.8239 1.942E–02 9.723E–01 0.3202 7.196E–02 8.035E–01

Pth1r 1.0572 5.825E–05 1.687E–02 0.8738 6.847E–04 5.847E–01 0.0917 4.763E–01 9.518E–01

Epha10 0.5337 5.999E–05 1.698E–02 0.2302 8.915E–02 9.998E–01 0.1518 2.389E–02 6.784E–01

Hspa1b −0.9499 6.174E–05 1.698E–02 −0.4208 7.725E–02 9.998E–01 −0.2646 2.445E–02 6.804E–01

Osbpl3 0.6298 6.207E–05 1.698E–02 0.3116 4.510E–02 9.998E–01 0.1591 4.309E–02 7.265E–01

Tusc1 −0.8527 6.390E–05 1.716E–02 −0.1130 5.845E–01 9.998E–01 −0.3699 5.334E–04 2.462E–01

Ubac2 −0.3748 6.566E–05 1.732E–02 −0.2280 1.552E–02 9.443E–01 −0.0734 1.204E–01 8.771E–01

Nova1 0.6060 6.856E–05 1.777E–02 0.2648 7.041E–02 9.998E–01 0.1706 2.498E–02 6.812E–01

Ptgds −1.6596 7.009E–05 1.785E–02 −0.4602 2.558E–01 9.998E–01 −0.5997 2.959E–03 3.605E–01

Cntnap5a 0.7787 7.409E–05 1.797E–02 0.3909 4.037E–02 9.998E–01 0.1939 4.467E–02 7.329E–01

Cit 0.9118 7.371E–05 1.797E–02 0.6235 6.443E–03 8.209E–01 0.1441 2.035E–01 9.263E–01

Slc20a1 0.3071 7.478E–05 1.797E–02 0.2245 4.194E–03 7.738E–01 0.0413 2.905E–01 9.443E–01

Lrrtm3 0.8080 7.542E–05 1.797E–02 0.8092 6.359E–05 4.619E–01 −0.0006 9.949E–01 9.994E–01

Fam53b 0.5043 7.863E–05 1.834E–02 0.0684 5.987E–01 9.998E–01 0.2180 7.599E–04 2.512E–01

Cdon 0.7665 7.947E–05 1.834Ex–02 0.3634 6.201E–02 9.998E–01 0.2015 3.872E–02 7.130E–01

R3hdm2 0.3424 8.228E–05 1.870E–02 0.1582 6.914E–02 9.998E–01 0.0921 3.418E–02 7.000E–01

Rprml −0.8683 8.893E–05 1.976E–02 −0.2619 2.362E–01 9.998E–01 −0.3032 6.772E–03 4.713E–01

Gm22405 −2.2935 9.097E–05 1.976E–02 −1.4109 1.486E–02 9.443E–01 −0.4413 1.328E–01 8.955E–01

Fgd2 1.2255 9.010E–05 1.976E–02 0.8777 4.495E–03 7.738E–01 0.1739 2.363E–01 9.398E–01

Zfp365 0.3791 9.500E–05 1.976E–02 0.0822 3.955E–01 9.998E–01 0.1485 1.970E–03 2.984E–01

Obscn 0.9565 9.380E–05 1.976E–02 0.5057 3.871E–02 9.998E–01 0.2254 6.629E–02 7.829E–01

Gm28370 0.6501 9.390E–05 1.976E–02 0.4202 1.352E–02 9.443E–01 0.1150 1.574E–01 9.128E–01

Agps 0.3853 1.036E–04 2.125E–02 0.1543 1.258E–01 9.998E–01 0.1155 2.106E–02 6.480E–01

Snca −0.4367 1.050E–04 2.125E–02 −0.2042 6.800E–02 9.998E–01 −0.1162 3.756E–02 7.077E–01

Rcan2 0.4698 1.078E–04 2.151E–02 0.3143 9.596E–03 8.688E–01 0.0777 1.996E–01 9.255E–01

Galnt13v 0.6550 1.108E–04 2.183E–02 0.2291 1.673E–01 9.998E–01 0.2130 1.025E–02 5.271E–01

Kdm5d −4.6329 1.151E–04 2.208E–02 −1.3754 6.847E–02 9.998E–01 −1.6287 1.937E–02 6.282E–01

B930095G15Rik 0.6217 1.147E–04 2.208E–02 0.4885 3.026E–03 7.406E–01 0.0666 4.017E–01 9.478E–01

Stard5 −0.5076 1.270E–04 2.406E–02 −0.3388 1.051E–02 8.974E–01 −0.0844 2.051E–01 9.272E–01

Olfm3 0.6911 1.309E–04 2.448E–02 0.6636 2.247E–04 4.619E–01 0.0138 8.778E–01 9.924E–01
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Gene ID KO vs. WT HT vs. WT KO vs. HT

logFC P-Value FDR P-value logFC P-Value FDR P-value logFC P-value FDR P-value

Tshz2 1.8146 1.336E–04 2.466E–02 0.8524 6.725E–02 9.998E–01 0.4811 3.457E–02 7.013E–01

Rxfp1 1.7468 1.420E–04 2.527E–02 0.6832 1.310E–01 9.998E–01 0.5318 1.641E–02 5.801E–01

Satb2 1.2285 1.390E–04 2.527E–02 0.6804 3.054E–02 9.998E–01 0.2740 8.687E–02 8.402E–01

Yam1 −1.8381 1.415E–04 2.527E–02 −1.8508 1.697E–04 4.619E–01 0.0064 9.785E–01 9.989E–01

Dcaf12l2 −0.9540 1.438E–04 2.529E–02 −0.2825 2.562E–01 9.998E–01 −0.3358 7.761E–03 4.838E–01

Kcnab3 0.7636 1.541E–04 2.677E–02 0.4629 2.285E–02 9.959E–01 0.1503 1.469E–01 9.053E–01

Gm11914 −0.7652 1.648E–04 2.750E–02 −0.0130 9.484E–01 9.998E–01 −0.3761 2.296E–04 1.785E–01

Tesc −0.6218 1.652E–04 2.750E–02 −0.2546 1.118E–01 9.998E–01 −0.1836 2.571E–02 6.812E–01

Slc35e2 0.4057 1.625E–04 2.750E–02 0.2064 5.572E–02 9.998E–01 0.0996 6.372E–02 7.763E–01

Hkdc1 0.8737 1.657E–04 2.750E–02 0.5539 1.801E–02 9.498E–01 0.1599 1.720E–01 9.210E–01

Rnf217 0.5521 1.696E–04 2.784E–02 0.5010 5.547E–04 5.847E–01 0.0255 7.228E–01 9.797E–01

Dcdc2a −0.6627 1.716E–04 2.785E–02 −0.2704 1.225E–01 9.998E–01 −0.1962 2.578E–02 6.812E–01

Calcrl −0.5534 1.910E–04 2.794E–02 −0.0688 6.409E–01 9.998E–01 −0.2423 6.780E–04 2.512E–01

Rph3a 0.5848 1.841E–04 2.794E–02 0.0880 5.685E–01 9.998E–01 0.2484 1.260E–03 2.617E–01

Tacc1 0.4630 1.885E–04 2.794E–02 0.1262 3.085E–01 9.998E–01 0.1684 6.032E–03 4.713E–01

Fcgbp −1.2194 1.743E–04 2.794E–02 −0.3520 2.712E–01 9.998E–01 −0.4337 7.536E–03 4.829E–01

Grm2 0.9173 1.909E–04 2.794E–02 0.3328 1.632E–01 9.998E–01 0.2922 1.665E–02 5.801E–01

Syt2 1.1424 1.802E–04 2.794E–02 0.4946 9.704E–02 9.998E–01 0.3239 3.012E–02 6.878E–01

Plxdc1 1.2835 1.835E–04 2.794E–02 0.7993 1.605E–02 9.443E–01 0.2421 1.538E–01 9.084E–01

Mcc 0.5805 1.899E–04 2.794E–02 0.4434 4.223E–03 7.738E–01 0.0685 3.637E–01 9.457E–01

Dsc3 2.9992 1.850E–04 2.794E–02 2.3767 2.806E–03 7.309E–01 0.3113 4.064E–01 9.479E–01

Brinp3 0.7647 1.800E–04 2.794E–02 0.6185 2.243E–03 7.120E–01 0.0731 4.726E–01 9.510E–01

Epha5 0.6288 1.943E–04 2.813E–02 0.2785 9.477E–02 9.998E–01 0.1751 3.901E–02 7.130E–01

Grik3 0.9567 1.978E–04 2.837E–02 0.6005 1.851E–02 9.518E–01 0.1781 1.559E–01 9.089E–01

Nxph3 1.2644 2.091E–04 2.970E–02 0.8348 1.607E–02 9.443E–01 0.2148 2.023E–01 9.256E–01

Smarcd3 −0.4134 2.275E–04 3.171E–02 −0.1088 3.258E–01 9.998E–01 −0.1523 6.890E–03 4.713E–01

Scn4b 1.3640 2.263E–04 3.171E–02 0.6231 8.663E–02 9.998E–01 0.3705 4.042E–02 7.215E–01

Grb7 1.9920 2.303E–04 3.179E–02 1.4475 6.829E–03 8.209E–01 0.2723 2.977E–01 9.443E–01

Crym −0.5688 2.336E–04 3.195E–02 −0.3365 2.362E–02 9.998E–01 −0.1162 1.241E–01 8.818E–01

Tbc1d30 0.4939 2.387E–04 3.235E–02 0.2748 3.946E–02 9.998E–01 0.1095 1.030E–01 8.576E–01

Cbln2 0.9211 2.441E–04 3.248E–02 0.4791 5.943E–02 9.998E–01 0.2210 8.262E–02 8.359E–01

Wdr83 −0.4093 2.432E–04 3.248E–02 −0.2675 1.656E–02 9.498E–01 80.0709 2.002E–01 9.255E–01

Cecr2 0.6876 2.490E–04 3.284E–02 0.0912 6.358E–01 9.998E–01 0.2982 1.826E–03 2.900E–01

Vipr1 0.5246 2.558E–04 3.314E–02 0.1278 3.893E–01 9.998E–01 0.1984 7.324E–03 4.822E–01

Gm27177 4.2839 2.545E–04 3.314E–02 2.8819 1.195E–02 9.425E–01 0.7010 1.897E–01 9.218E–01

Mgp −1.1996 2.700E–04 3.468E–02 −0.8580 8.336E–03 8.610E–01 −0.1708 2.776E–01 9.441E–01

Limk2 0.2955 2.756E–04 3.509E–02 0.1775 3.353E–02 9.998E–01 0.0590 1.560E–01 9.089E–01

Fam217b 0.2971 2.896E–04 3.538E–02 0.1064 1.954E–01 9.998E–01 0.0953 1.996E–02 6.357E–01

Zdhhc14 −0.4323 2.898E–04 3.538E–02 −0.1936 9.898E–02 9.998E–01 −0.1194 4.400E–02 7.328E–01

Ttc30b −0.3918 2.893E–04 3.538E–02 −0.1829 9.113E–02 9.998E–01 −0.1044 5.473E–02 7.501E–01

Cacng3 0.4936 2.898E–04 3.538E–02 0.2444 6.276E–02 9.998E–01 0.1246 6.737E–02 7.843E–01
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Gene ID KO vs. WT HT vs. WT KO vs. HT

logFC P-Value FDR P-value logFC P-Value FDR P-value logFC P-value FDR P-value

Kcnt1 0.6121 2.888E–04 3.538E–02 0.4703 6.106E–03 8.209E–01 0.0709 4.073E–01 9.479E–01

Cdh7 0.7944 2.973E–04 3.599E–02 0.6049 5.484E–03 8.100E–01 0.0948 3.819E–01 9.457E–01

Sh3bgrl −0.3908 3.202E–04 3.845E–02 −0.2139 4.429E–02 9.998E–01 −0.0885 1.032E–01 8.576E–01

Tyro3 0.3389 3.257E–04 3.880E–02 0.0525 5.711E–01 9.998E–01 0.1432 2.374E–03 3.217E–01

Ank1 0.6262 3.296E–04 3.894E–02 0.3612 4.014E–02 9.998E–01 0.1325 1.306E–01 8.922E–01

Rhobtb2 0.4320 3.418E–04 4.006E–02 0.2404 3.852E–02 9.998E–01 0.0958 1.074E–01 8.639E–01

Kif5a 0.3307 3.524E–04 4.066E–02 0.1806 5.095E–02 9.998E–01 0.0750 1.044E–01 8.586E–01

Gm5639 −1.0324 3.520E–04 4.066E–02 −0.7001 1.528E–02 9.443E–01 −0.1661 2.621E–01 9.423E–01

Gatsl2 0.4026 3.590E–04 4.110E–02 0.1782 1.159E–01 9.998E–01 0.1122 4.651E–02 7.355E–01

Arhgef10l 0.5565 3.676E–04 4.141E–02 0.2019 1.723E–01 9.998E–01 0.1773 2.326E–02 6.713E–01

Trim66 0.8119 3.701E–04 4.141E–02 0.5932 8.757E–03 8.649E–01 0.1094 3.261E–01 9.457E–01

Pcdh15 0.9567 3.665E–04 4.141E–02 0.9113 7.126E–04 5.847E–01 0.0227 8.649E–01 9.921E–01

Lama3 1.1681 3.737E–04 4.150E–02 0.5850 7.442E–02 9.998E–01 0.2916 7.112E–02 8.013E–01

Stk3 −0.3788 3.809E–04 4.179E–02 −0.0391 6.976E–01 9.998E–01 −0.1698 1.468E–03 2.617E–01

Prss23 −0.7360 3.820E–04 4.179E–02 −0.5581 6.054E–03 8.209E–01 −0.0889 3.671E–01 9.457E–01

G8m24447 −1.3571 3.849E–04 4.180E–02 −0.9883 1.243E–02 9.425E–01 −0.1844 3.447E–01 9.457E–01

Arap2 0.5580 3.929E–04 4.236E–02 0.2518 1.097E–01 9.998E–01 0.1531 5.159E–02 7.478E–01

Pi15 −1.0084 3.990E–04 4.270E–02 −0.1340 6.215E–01 9.998E–01 −0.4372 2.229E–03 3.149E–01

Galk2 −0.3509 4.069E–04 4.317E–02 −0.0144 8.856E–01 9.998E–01 −0.1682 8.177E–04 2.512E–01

Rapgef3 0.4784 4.092E–04 4.317E–02 0.2501 6.167E–02 9.998E–01 0.1142 8.934E–02 8.430E–01

Arhgef15 0.6324 4.133E–04 4.329E–02 0.3132 7.582E–02 9.998E–01 0.1596 6.946E–02 7.918E–01

Sytl2 0.5686 4.203E–04 4.372E–02 0.2429 1.333E–01 9.998E–01 0.1629 4.235E–02 7.249E–01

Zmat4 0.5322 4.252E–04 4.392E–02 0.1010 4.954E–01 9.998E–01 0.2156 3.267E–03 3.676E–01

Pik3c2b 0.6788 4.317E–04 4.398E–02 0.2323 2.393E–01 9.998E–01 0.2232 2.332E–02 6.713E–01

Rgs6 0.9177 4.299E–04 4.398E–02 0.5679 2.817E–02 9.998E–01 0.1749 1.717E–01 9.210E–01

Cacna2d2 0.4855 4.381E–04 4.432E–02 0.3532 9.762E–03 8.688E–01 0.0662 3.401E–01 9.457E–01

Epb4.1 0.7239 4.545E–04 4.532E–02 0.1620 4.260E–01 9.998E–01 0.2810 5.182E–03 4.424E–01

Dock3 0.7209 4.613E–04 4.532E–02 0.2911 1.533E–01 9.998E–01 0.2149 3.668E–02 7.063E–01

Slc8a3 0.6069 4.511E–04 4.532E–02 0.2673 1.186E–01 9.998E–01 0.1698 4.152E–02 7.240E–01

Ncald 0.5018 4.622E–04 4.532E–02 0.2284 1.039E–01 9.998E–01 0.1367 4.919E–02 7.420E–01

Gm5616 −0.4293 4.634E–04 4.532E–02 −0.2619 3.185E–02 9.998E–01 −0.0837 1.756E–01 9.210E–01

Tmem180 −0.3773 4.738E–04 4.604E–02 −0.1906 7.419E–02 9.998E–01 −0.0933 8.470E–02 8.384E–01

Agap1 0.3895 4.858E–04 4.607E–02 0.1665 1.329E–01 9.998E–01 0.1115 4.560E–02 7.348E–01

Map3k9 0.7193 4.847E–04 4.607E–02 0.3765 6.769E–02 9.998E–01 0.1714 9.319E–02 8.465E–01

Atp10b 1.2795 4.897E–04 4.607E–02 0.6771 6.617E–02 9.998E–01 0.3012 1.031E–01 8.576E–01

Arhgap32 0.5381 4.873E–04 4.607E–02 0.3709 1.611E–02 9.443E–01 0.0836 2.780E–01 9.442E–01

Mapk6 0.4079 4.857E–04 4.607E–02 0.3133 6.890E–03 8.209E–01 0.0473 4.179E–01 9.479E–01

Fibcd1 −0.8530 4.940E–04 4.618E–02 −0.4837 5.282E–02 9.998E–01 −0.1847 1.484E–01 9.053E–01

Cpne2 −1.2501 5.141E–04 4.757E–02 −0.1021 7.650E–01 9.998E–01 −0.5740 1.408E–03 2.617E–01

Gm6788 −0.5516 5.250E–04 4.757E–02 −0.0535 7.368E–01 9.998E–01 −0.2490 1.715E–03 2.814E–01

Gst8m6 −0.5525 5.179E–04 4.757E–02 −0.1977 2.082E–01 9.998E–01 −0.1774 2.568E–02 6.812E–01
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Gene ID KO vs. WT HT vs. WT KO vs. HT

logFC P-Value FDR P-value logFC P-Value FDR P-value logFC P-value FDR P-value

Nrros −0.5870 5.241E–04 4.757E–02 −0.3482 4.270E–02 9.998E–01 −0.1194 1.722E–01 9.210E–01

Gucy1a3 0.5850 5.231E–04 4.757E–02 0.5019 2.507E–03 7.120E–01 0.0416 6.213E–01 9.711E–01

Dock10 0.6370 5.379E–04 4.786E–02 0.0765 6.802E–01 9.998E–01 0.2802 2.561E–03 3.328E–01

Ssbp4 −0.4606 5.317E–04 4.786E–02 −0.1781 1.727E–01 9.998E–01 −0.1412 3.273E–02 6.915E–01

Wwox 0.4364 5.376E–04 4.786E–02 0.3074 1.511E–02 9.443E–01 0.0645 3.053E–01 9.455E–01

Syt6 −0.7500 5.528E–04 4.889E–02 −0.0377 8.615E–01 9.998E–01 −0.3561 1.080E–03 2.617E–01

Nlk 0.3939 5.674E–04 4.939E–02 0.1694 1.339E–01 9.998E–01 0.1122 4.566E–02 7.348E–01

Prrg3 0.6091 5.649E–04 4.939E–02 0.4106 1.976E–02 9.762E–01 0.0992 2.529E–01 9.423E–01

Orai3 −0.3671 5.684E–04 4.939E–02 −0.2533 1.729E–02 9.498E–01 −0.0569 2.767E–01 9.441E–01

KO–PDE11A knockout; WT–PDE11A wild-type; HT–PDE11A heterozygous mouse.

Note: In the HT vs. WT and KO vs. HT analyses, no genes were significant at the level of the whole genome (i.e., all FDR-corrected P-values were 
>0.05). That said, P-values for a number of genes reached significance in both analyses when the stricter Bonferroni correction was applied but 
limited to the number of genes within this specific gene set (i.e., 0.05/169 = P < 0.00029; shown in bold).
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Table 4

Pathway analyses following RNA sequencing of VHIPP from male and female adult PDE11A wild-type 

versus knockout mice

GO_id Term # Genes p-value_fdr

KEGG pathways

4261 Adrenergic signaling in cardiomyocytes 8 1.74E–03

4921 Oxytocin signaling pathway 7 1.37E–02

4080 Neuroactive ligand-receptor interaction 9 1.37E–02

GO biological processes

G0:0007268 Synaptic transmission 12 2.97E–02

G0:0051239 Regulation of multicellular organismal process 35 2.97E–02

G0:0030001 Metal ion transport 13 2.97E–02

G0:0007196 Adenylate cyclase-inhibiting G-protein-coupled glutamate receptor signaling pathway 3 3.07E–02

GO:0006812 Cation transport 15 3.07E–02

G0:0051056 Regulation of small gtpase-mediated signal transduction 12 3.07E–02

GO:0065008 Regulation of biological quality 36 3.46E–02

G0:0006816 Calcium ion transport 8 4.21E–02

GO Cellular componenets

G0:0045202 Synapse 22 2.83E–06

G0:0042995 Cell projection 34 2.20E–05

G0:0097458 Neuron part 25 4.47E–04

G0:0044456 Synapse part 15 1.05E–03

G0:0005886 Plasma membrane 49 1.42E–03

G0:0043005 Neuron projection 21 1.42E–03

G0:0034702 Ion channel complex 10 1.98E–03

G0:1902495 Transmembrane transporter complex 10 2.98E–03

G0:0071944 Cell periphery 48 2.98E–03

G0:1990351 Transporter complex 10 2.98E–03

G0:0008328 Ionotropic glutamate receptor complex 5 4.10E–03

G0:0005623 Cell 107 7.23E–03

G0:0005622 Intracellular 96 8.78E–03

G0:0044464 Cell part 106 9.25E–03

G0:0043235 Receptor complex 9 1.50E–02

G0:0030054 Cell junction 19 1.95E–02

G0:0097060 Synaptic membrane 8 3.84E–02

G0:0042734 Presynaptic membrane 4 4.52E–02

G0:0044424 Intracellular part 92 4.57E–02

GO molecular functions

G0:0043167 Ion binding 61 3.93E–03

G0:0005543 Phospholipid binding 11 1.70E–02

G0:0001640 Adenylate cyclase inhibiting G-protein-coupled glutamate receptor activity 3 1.70E–02

G0:0008289 Lipid binding 14 1.70E–02
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GO_id Term # Genes p-value_fdr

G0:0043169 Cation binding 43 1.70E–02

G0:0030276 Clathrin binding 5 1.70E–02

G0:0046872 Metal ion binding 42 1.79E–02

G0:0098772 Molecular function regulator 19 2.05E–02

G0:0005261 Cation channel activity 9 2.73E–02

G0:0005089 Rho guanyl-nucleotide exchange factor activity 5 2.74E–02

G0:0005088 Ras guanyl-nucleotide exchange factor activity 6 3.99E–02

Pathway analyses conducted using STRING 10.0. n = 7/genotype. VHIPP–ventral hippocampal formation.

Note: 5/8 genes included in the “Adrenergic signaling in cardiomyocytes” pathway are represented in the “Oxytocin” pathway.
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