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Quantitative analysis with mass spectrometry
(MS) is important but challenging. Matrix-assisted
laser desorption/ionization (MALDI) coupled with
time-of-flight (TOF) MS offers superior sensitivity,
resolution and speed, but such techniques have
numerous disadvantages that hinder quantitative
analyses. This review summarizes essential obstacles
to analyte quantification with MALDI-TOF MS,
including the complex ionization mechanism of
MALDI, sensitive characteristics of the applied
electric fields and the mass-dependent detection
efficiency of ion detectors. General quantitative
ionization and desorption interpretations of ion
production are described. Important instrument
parameters and available methods of MALDI-TOF
MS used for quantitative analysis are also reviewed.
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1. Introduction
Quantifying molecular analytes is fundamental to scientific research and applications. Along with
molecular identification, quantification reveals molecular information on physical and chemical
properties as well as how molecules interact with their surroundings. Molecular abundance
variations are also important indicators of chemical reactions, diseases and pollutants [1, see
ch. 5, pp. 157–167 and chs. 10–13, pp. 249–331]. Among the important analytical techniques,
mass spectrometry (MS) offers great accuracy, sensitivity and speed. In modern MS, a matrix-
assisted laser desorption/ionization (MALDI) ion source coupled with a time-of-flight (TOF)
mass spectrometer is one of the most widely used instruments for protein, carbohydrate and
polymer studies. Quantification of analytes with MALDI-TOF MS, however, is highly challenging
and should be done with care.

MALDI-TOF MS’s ability to quantify the presence of different analytes depends on many
factors. These factors are based on three MS components: the ion source, mass analyser and
detector. Figure 1 depicts a typical configuration of a MALDI-TOF mass spectrometer. The
MALDI ion source comprises a sample electrode and two extraction electrodes. The mass analyser
contains an Einzel lens to focus the ion beam, deflector plates to adjust the ion trajectory, a mass
gate (or timed ion selector) to suppress unwanted ions, and a reflectron to improve the mass
resolving power. The most critical factor associated with the ion source is the ionization efficiency
of the analytes. Such efficiency depends on the intrinsic properties of the analytes and ionization
mechanisms. Sample morphologies also affect the reproducibility of spectra. In the mass analyser,
quantitative capability is affected by ion transmission efficiency through the TOF mass analyser.
Transmission efficiency reflects the configurations and timing characteristics of the electric fields
used to guide the ions to the ion detectors. Ion lifetimes are also important, as ions spend most
of their time in the TOF mass analyser [1, see ch. 5, pp. 157–167 and chs. 10–13, pp. 249–331]. The
third factor is the detection efficiency of the ion detectors. On the whole, however, with properly
and carefully designed experiments, including standard calibrations, quantitative analyses in
MALDI-TOF MS can be achieved [2–4].

This review discusses the current status of analyte quantification with MALDI-TOF MS. The
first part of this review discusses MALDI ionization and desorption mechanisms, including a
general quantitative interpretation of ion yields based on chemical equilibria. The impact of
mass spectrometric components and the methods used to obtain quantitative information are
discussed in §3, including ways of improving the ion transmission efficiency through the TOF
mass analyser and the detection properties of the ion detectors. Finally, in §4, current strategies
for MALDI-TOF MS usage in quantitative measurement- and quantification-related issues
are reviewed.

2. Ion production in matrix-assisted laser desorption/ionization
MALDI generates protonated (and deprotonated) analytes via complex reactions. To facilitate
ionization, the analytes are typically dissolved in solution and co-crystallized with matrix
compounds before measurements. After crystallization, ionization of analytes is achieved with
photochemical reactions induced by a pulsed UV laser beam [5]. The initial photochemical
reactions are followed by fast desorption of irradiated species from the solid to the gas phase.
Decomposition of ions may occur if ions gain high internal energy through these processes.

The ionization efficiency of analytes depends on the matrix [6,7], analyte-to-matrix ratio [8,9],
crystal morphology [10–13], laser energy [14,15] and others. Because no single experimental
condition offers equal ionization efficiency for every analyte, a general reaction model is
necessary for the optimization of experimental conditions in quantitative analysis. However, the
MALDI reaction models proposed in the literature remain controversial owing to inconsistent
experimental results. For example, the observed ion-to-neutral ratios of desorbed materials range
from 10−3 to 10−8 [16–20]. This inconsistency is mainly attributed to the complexity of the
ionization mechanisms.
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Figure 1. Configuration of MALDI-TOF mass spectrometer. The ion source comprises a sample electrode and two extraction
electrodes. Themass analyser contains an Einzel lens, deflectors, amass gate and a reflector. Ions are detectedwithMCP I and II
in linear and reflectron modes, respectively. (Online version in colour.)

(a) Ionization
The ionization reactions in MALDI have been qualitatively described by numerous models.
These models can be summarized into two categories: photoreaction and pre-charging. The pre-
charging model proposes that analytes preserve their charges in solution after crystallization,
and lasers serve as energy sources to liberate ions during the transition from the solid to the gas
phase [21]. The pre-charging model is not included here because a quantitative interpretation
of this model is not yet available. In the photoreaction model, on the other hand, the principal
ionization reaction comprises two consecutive steps. The first step is the generation of matrix
ions by photochemical reactions, and the second step is charge transfer from the matrix ions to
neutral analytes [22–25]. For the initial ionization of matrices, two important reaction pathways
are electron depletion [22,26,27], as shown in scheme 1, and proton disproportionation, as shown
in scheme 2 [28–30].

Scheme 1: M(s) + nhν → M∗ → M+• + e−

Scheme 2: 2M(s) + nhν ↔ 2M∗ ↔ [M + H]+ + [M − H]−

Here M and M* stand for matrices in the ground and excited electronic states, respectively.
The matrix radical cation in scheme 1 undergoes complex ion–molecule reactions to produce
protonated matrices. The early quantitative ionization model based on scheme 1 proposed that
electron depletion is facilitated via multiphoton absorption or annihilation processes [31,32].
Knochenmuss proposed that three excited matrix molecules pool their energy to promote one
of them to the ionization continuum [26,33]. By considering the decrease in the ionization energy
of the matrix in the solid phase, Liu et al. demonstrated that electron depletion can be achieved
by an energy corresponding to fewer than two UV photons [27].

In contrast with electron depletion, thermal or quasi-thermal ionization models were
proposed to produce matrix proton pairs based on scheme 2 [28,30,34]. For example, Lai
and co-workers estimated ion abundance based on chemical equilibrium between two 2,4,6-
trihydroxyacetophenone (THAP) molecules,

2THAP
k1↔ [THAP + H]+ + [THAP − H]−

The equilibrium constant (k1) can be estimated from the predicted Gibbs free energy [28].
The second step of the photoreaction model is proton transfer from protonated matrices to

neutral analytes via ion–molecule collision. Such reactive collisions occur numerously in the
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Figure 2. Change of ion abundance of various biomolecules with laser fluence. The result shows that ion signal intensity
increases exponentially with the increase of laser fluence. (Reproduced with permission from Dreisewerd et al. [5] Copyright
© 1995 Elsevier.)

initial phase-transition process. The efficiency of such proton-transfer reactions relies on the
proton affinity (PA) of the analytes and matrices [22,35–37]. The higher the PA of the analyte,
the higher the analyte ion yield is. For analytes with low PA, such as carbohydrates, ionization
commonly forms alkali ion adducts [38,39]. Such ionization products are presumably produced
via pre-charging reactions [21].

(b) Desorption
Desorption is mainly induced by sudden heating of matrix crystals during laser excitation.
Desorption processes in MALDI have been described quantitatively in more detail than ionization
[40–43]. The desorption efficiency of materials depends on the intrinsic properties of the samples
and the excitation conditions, such as the molecular weight [43], crystal morphology [44–46] and
laser conditions [5,47–49].

A comprehensive interpretation of ion yield should simultaneously consider ionization and
desorption processes. Dreisewerd et al. [5] quantitatively described the desorption process by
Arrhenius-type equations. In this interpretation, ion abundance (Iion) is a function of desorption
activation energy (Ea, J), initial crystal temperature (T0, K) and laser fluence (F, J m−2). By
using transition state theory in the estimation of the desorption rate, Lai et al. [50] developed
a comprehensive interpretation of ion yield:

Iion = A
k(T0 + γ F)

h
(1 − e−hν/k(T0+γ F)) e−Ea/k(T0+γ F)[ion]s, (2.1)

Here, A is the pre-exponential factor, k is the Boltzmann constant, h is the Planck constant, γ

is the conversion factor between laser fluence and surface temperature change, and ν is the
vibrational frequency of the intermolecular bond. The concentration of surface ions [ion]s can
be estimated using the equilibrium constant of the reactions in scheme 1 or 2. Observation shows
crystal temperature rising instantaneously by approximately 1000 K and rapidly decreasing due
to expansion cooling [51]. When the laser fluence is above the ion production threshold, the signal
intensity increases exponentially with the increase in laser fluence, as shown in figure 2 [5]. As a
high ion signal produced with high laser energy causes signal saturation, the best laser fluence
for quantitative analysis is slightly above the threshold value [52].

(c) Decomposition
Ions produced in MALDI may decompose extensively because they typically have high internal
energy. Decomposition results in unwanted ion loss and chemical noise that seriously affect the
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Figure 3. Spatial distribution of ions at detector surface under various experimental conditions. The upper row shows that ion
distribution increases with laser fluence. The ion distribution exceeds that of the detection area with the highest laser fluence
used in the measurement. The lower row shows that ion distribution can be reduced to obtain correct quantity information by
using Einzel lens systems. (Reproduced with permission from Lai et al. [50]. Copyright© 2010 American Chemical Society.)

accuracy of quantitative analysis. Ion decomposition can be reduced by selecting ‘soft’ matrices
[53] or decreasing the laser fluence [54].

3. Instrument performance
Instrument performance impacts quantification ability via the electric field and ion optics, ion
extraction times and ion detection. Because individual ions exhibit distinct desorption properties
and stability, their optimal extraction conditions in the ion source region vary. In TOF mass
analysers, ion transmission is optimized with electrical components. The detection efficiency of
ion detectors also critically affects the spectral pattern of MALDI-TOF MS data.

(a) Electric field and ion optics
Reliable quantitative information is available when proper ion transmission efficiency is achieved.
Ion transmission efficiency reduces due to ion decomposition and poor ion trajectory. To suppress
ion decomposition, as mentioned, the ionization conditions need to be changed. In addition, ions
move both axially and radially after desorption [55], and the resultant expansion of the ion packets
arriving at the detector increase with laser energy. Figure 3 gives ion populations for a 40 mm
diameter detector surface using different laser fluences [50]. With an unfocused ion beam (upper
row), a considerable portion of the ion beam misses the detection area when the highest laser
fluence is used. Ion loss due to oversized distributions can be minimized using an Einzel lens
and electrostatic deflectors to focus and adjust the ion beams (lower row), respectively [56,57].
To avoid signal saturation, as also mentioned above, it is important to use medium or low laser
fluences.

(b) Timing characteristics of electric fields
MALDI-TOF MS sensitivity changes with the timing of ion extraction, or extraction delay.
Delayed extraction is a well-established means of enhancing mass resolving power by reducing
the spatial spread among ion packets during MALDI [58]. Another notable advantage is the
significant suppression of metastable decay [59,60] due to the reduced number of ion–molecule
collisions after extraction delay. Although higher sensitivity provides more accurate quantitative
information, optimal extraction delay is mass-sensitive. Observations show that heavier ions
require longer extraction delays and vice versa [61]. In this case, estimating analyte amounts
based on relative signal intensity in MALDI-TOF MS is unreliable for ions with significant
mass differences.
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Figure 4. Change of secondary electron emission efficiencywith ionmass and ion kinetic energy. The solid circles, open squares
and solid triangles represent ion kinetic energy of 30, 20 and 10 keV, respectively. (Adapted fromWestmacott et al. [68].)

The timing characteristics of mass gates (figure 1) also affect the accuracy of quantification.
High-mass range sensitivity is dependent on ion detector saturation with lighter ions. In order
to obtain a correct signal intensity for quantity estimations, all unwanted low-mass ions are
deflected by appropriate timing of mass gating [62]. When examining proteins and peptides with
MALDI-TOF MS, a low-mass cut-off is typically used to enhance the sensitivity for high-mass
ions [63].

(c) Detector performance
MALDI-TOF mass analysers detect ions using microchannel plate (MCP) detectors [64]. An
MCP detects incoming ions by amplifying secondary electrons ejected during high-velocity ion–
surface collisions through a cascade reaction within microchannels. The resultant electric current
collected by the anode is digitized. Thus, the detection efficiency of MCPs depends not only on
the magnitude of amplification of secondary electrons, but more importantly on the conversion
efficiency of primary ions to secondary electrons. A conventional single-disc MCP works when
it is supplied with 600 V across the MCP. It reaches maximum gain (approx. 104) at 1000 V. As
MCP signal intensity depends critically on the supplied voltage, it is important to ensure that the
voltage supply does not vary.

Notably, operating MCPs in high-gain mode can easily cause saturation of microchannels
when the secondary electron density reaches the space-charge limit [65], or when MCP surfaces
are unable to deliver enough electric current to sustain an amplification reaction. Further, longer
microchannels result in longer response times [64], which may distort the shape of the spectral
signal, resulting in inaccurate peaks and signal intensity. If signal saturation or peak distortion
occurs, ion abundance may be underestimated.

The conversion efficiency of secondary electrons from primary ions is mass-dependent [66–68].
Mass dependence varies with the efficiency of the MCP to generate secondary electrons, which in
turn depends on ion velocity during MCP ion–surface collisions [68]. Figure 4 shows observed
secondary electron yields with changing ion mass and ion kinetic energy [68]. As all ions
possess the same kinetic energy, high-mass ions travel with lower speed than low-mass ions.
This distinction in ion speed is the key principle behind TOF MS. Therefore, ions with higher
mass generate fewer secondary electrons [69–71]. Although increasing acceleration voltage at the
sample electrode restores high-mass ion detection efficiency, it is unable to compensate for the
sensitivity difference between high- and low-mass ions. The only feasible way to account for this
problem is by using internal standard compounds, which will be described in §4b.

When an ion enters a microchannel, amplification reactions proceed until all the secondary
electrons exit the microchannel. Before amplification is complete, in a given microchannel, it is
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unable to deliver amplification to another incoming ion. The period for a microchannel to fully
recover is termed dead time, and it is typically in the millisecond range [64,72]. As most data
acquisition times under MALDI-TOF MS are in the tens of microseconds, every microchannel
can only receive one effective ion per acquisition event. Although MCP discs usually comprise a
million microchannels, the dead time is still a property that needs to be considered in quantitative
mass analysis [73]. If large numbers of ions are produced or the ion beam is focused on to
a small area of the MCP, ion abundance may be considerably underestimated. Therefore, it is
recommended to project ion beams across the entire area of the MCP.

Aside from the intrinsic properties of MCP detectors, accurate data analysis also depends on
the properties of digitizers [74]. Electric signals delivered from MCPs are typically converted to
electronic signals with analogue-to-digital (ADC) or time-to-digital (TDC) converters. An ADC
directly converts electric currents to voltages, so ion abundance can be estimated based on the
corresponding signal intensity. ADCs are suitable for detecting mid- to high-flux ion beams, but
their accuracy in determining low-flux ion beams is limited by electronic noise. By contrast,
TDCs count individual ions present at a time segment with typical resolution in the sub- to
low-nanosecond range. TDCs are suitable for identifying low-flux ion beams, but ion abundance
may be considerably underestimated if high ion flux is present. To achieve the highest analytical
performance, it is possible to combine multiple digitizers in series [75,76]. Another novel strategy
proposed is the use of an anode array (known as sectioned anodes) to collect electrons generated
by MCPs [77,78].

4. Available methods
Quantitative analysis with MALDI-TOF MS is challenging because signal intensity in mass
spectra varies with sample composition, sample morphology, laser conditions and depletion of
samples during continuous laser exposure. Inhomogeneous sample morphology is also a crucial
obstacle that leads to poor signal reproducibility (including the so-called sweet spot and coffee-
ring effects) [79,80]. In order to perform quantitative analysis with the highest accuracy, it is
important to find the optimal sample preparation method and to perform standard calibrations.

(a) Sample preparation methods
A major reason for poor reproducibility is inhomogeneous sample morphologies resulting from
the dried-droplet (DD) method [43,81]. Such a problem is matrix-dependent. For example,
samples prepared with THAP and α-cyano-4-hydroxycinnamic acid (CHCA) form homogeneous
crystal morphologies, whereas those with 2,5-dihydroxybenzoic acid and sinapinic acid (SA)
form irregular sample morphologies. To reduce data variation, hundreds of laser shots across
randomly selected sample positions are used to obtain averaged spectra [82]. As CHCA provides
higher ion yields than other matrices, it is the most commonly used matrix for quantitative
studies [2,3,83]. Signal reproducibility is also improved by ionic liquid matrices [84,85], solvent-
free sample preparation [86,87], small droplet deposition [88] and prestructured sample supports
[89–91]. However, changing sample composition and preparation methods change ion yields, and
the durability of prestructured sample supports is limited. Therefore, one has to compromise with
all factors during analysis.

Alternatively, changing sample drying methods or surface properties change the resultant
sample morphologies. Improved sample morphologies are available by preparing samples with
fast evaporation [10,92], seeded layer (SL) [79,93], sandwich [94], electrospray deposition [95]
and sublimation [44,96] methods. These methods provide fine and uniform crystals that provide
superior signal reproducibility compared to conventional methods. Figure 5 shows the crystal
morphologies of various matrices prepared with DD and SL methods [79]. With the SL method,
significantly finer crystals than those with the DD method are produced. Drying samples under
vacuum [97] or on a substrate with well-controlled surface and environmental temperatures [98]
also provides finer sample homogeneity and signal reproducibility.
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Figure 5. Crystal morphologies of three matrices prepared with DD and SL methods. (a) DD CHCA, (b) SL CHCA, (c) DD SA,
(d) SL SA, (e) DD ferulic acid (FA) and (f ) SL FA. (Adapted from Onnerfjord et al. [79].)

(b) Standard calibration
Standard calibration can be conducted externally or internally. In external calibration, the signal
intensity of analytes is correlated to calibration curves determined with analytes of known
concentration. However, external calibration may result in error because the ionization efficiencies
of analytes change with composition. One such phenomenon is ion suppression effects observed
in complex samples, especially when analysing trace analytes in biological fluids. On the
other hand, internal calibration by mixing standard compounds in analyte mixtures minimizes
uncertainties in quantitative analysis [99,100]. Ideal internal standards are compounds with
similar chemical structures as the analyte. Isotopically labelled analyte analogues offer the best
results for quantification analyses [4,101], including isotope-coded affinity tags [102], and isobaric
tags for relative and absolute quantitation [103].

5. Conclusion
Quantitative analysis with MALDI-TOF MS is feasible but requires consideration of the
sample and instrument conditions. The most critical problems are sample properties, ionization
chemistry, electric fields and detector properties. Because the parameters are interrelated,
adjusting one parameter changes the optimal conditions of others. Even though high-quality
mass spectra can be obtained with optimal experimental conditions, quantitative analysis of
MALDI-TOF mass spectra should be interpreted with special care. The most critical challenges
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lie in ionization chemistry and detector efficiency. For example, the development of a universal
matrix providing equal ionization efficiency to all analytes is highly necessary. On the other
hand, new ion detectors providing equal efficiency to light and heavy ions and free of dead time
problems are critical for improving data reliability.
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