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Although qualitative strategies based on direct
injection mass spectrometry (DIMS) have recently
emerged as an alternative for the rapid classification
of food samples, the potential of these approaches in
quantitative tasks has scarcely been addressed to date.
In this paper, the applicability of different multivariate
regression procedures to data collected by DIMS from
simulated mixtures has been evaluated. The most
relevant factors affecting quantitation, such as random
noise, the number of calibration samples, type of
validation, mixture complexity and similarity of mass
spectra, were also considered and comprehensively
discussed. Based on the conclusions drawn from
simulated data, and as an example of application,
experimental mass spectral fingerprints collected
by direct thermal desorption coupled to mass
spectrometry were used for the quantitation of major
volatiles in Thymus zygis subsp. zygis chemotypes.
The results obtained, validated with the direct thermal
desorption coupled to gas chromatography-mass
spectrometry method here used as a reference, show
the potential of DIMS approaches for the fast and
precise quantitative profiling of volatiles in foods.
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1. Introduction

The analysis of food volatile composition is a topic of high relevance in the food science and
technology field, as several properties such as food aroma greatly determine the acceptance of
foods by consumers. Therefore, authentication and quality control of many food samples are often
based on the analysis of their volatile composition.

Thymus zygis is a widespread endemic plant in the Iberian Peninsula extensively used for
culinary purposes and in popular medicine. Three subspecies of T. zygis have been recognized
by Morales Valverde [1], and four chemotypes with a different volatile profile have also been
reported for these species [2,3]. To select the most appropriate chemotype for collection or
cultivation, the rapid characterization of T. zygis subsp. zygis based on its content of volatile
secondary metabolites would be of great interest.

The coupling of gas chromatography to mass spectrometry (GC-MS) has become the technique
of choice for the characterization of the volatile composition of food samples, as it allows in a
single analysis the separation, identification and quantitation of the complex mixtures of volatiles
usually present in foods. However, interest in the analytical platforms that allow the analysis
time (mainly associated with the chromatographic separation) to be reduced has promoted the
development of non-separative approaches based on direct injection mass spectrometry (DIMS)
for the high-throughput and cost-effective characterization of food samples.

A number of mass spectral fingerprint approaches based on the so-called MS noses or mass
sensors have been described in the food field [4-6]. Direct sampling by static or dynamic
headspace techniques [7-9] and solid-phase microextraction (SPME) [7,10,11] are the most
common sample introduction systems, whereas electron impact (EI) and quadrupole are the
preferred ionization method and mass analyser, respectively.

DIMS strategies have mostly dealt with the discrimination of food samples for authentication
tasks [7,9,10,12-15] or the prediction of different food quality parameters from mass spectral
fingerprints [8,13]. However, the number of contributions addressing quantitative analysis is
much more limited, papers usually addressing the quantitation of a limited number of target
compounds [7,13,16]. Strategies for compensating for the effect of temporal instability of mass
spectral fingerprints, which are critical to achieve precise quantitation with MS sensors, have also
been reviewed by Pérez Pavén et al. [4]. However, other factors noticeably affecting quantitative
results such as data processing have not been comprehensively evaluated yet.

The multi-channel nature of the mass spectrometer signal, associated with a high number
of selective mass/charge (m/z) ratios for every compound determined, makes it possible to
mathematically model the variation in the mass spectral fingerprint versus the concentration
of the analyte under study by applying multivariate regression procedures. Moreover, the mass
spectrum is a type of multivariate signal known for being virtually discrete and additive. This
allows the estimation of the concentration of analyte i (c;) in a mixture after analysis of the global
spectrum (total intensities for all recorded m/z ratios) by multivariate regression procedures [17].

Different supervised and unsupervised statistical methods have been reported for multivariate
regression of DIMS data: multiple linear regression (MLR), principal component regression (PCR),
partial least-squares regression (PLSR), support vector machine (SVM), neural networks (NN),
etc. [4,6,17]. Among them, PCR and PLSR have become the most popular as they are easy-to-use
approaches available from different statistical packages and whose mathematical basis is well
known [18-20]. However, the comparison of the results obtained after data processing with more
than one of these methods is scarcely addressed in the literature [6,10], although it is advisable
for every intended application.

In view of the above, this paper aims to evaluate the applicability of different multivariate
regression procedures to quantitative DIMS data obtained from simulated mixtures. Moreover, in
an attempt to comprehensively assess the most relevant factors affecting quantitative response,
the effect of random noise, the number of calibration samples, type of validation, mixture
complexity and similarity of mass spectra were also studied. As an example of application,
the conclusions drawn from simulated data were applied to the fast quantitation by direct
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thermal desorption (DTD)-MS of major volatiles representing each of the T. zygis subsp. zygis
chemotypes. Results of this approach were validated with those obtained by conventional
DTD-GC-MS analysis.

2. Experimental set-up

(a) Samples and standard mixtures

Thymus zygis subsp. zygis (hereafter abbreviated as thyme) plants were collected at the flowering
stage in two sampling areas in the north of Madrid province (Spain) under botanical surveillance.
An amount of 200-300 mg of thyme leaves was used to obtain representative samples from 53
individual plants. Leaves were air-dried at room temperature before analysis.

Analytical standards of benzene, tetrahydrofuran and n-alkanes (from n-decane to n-
hexadecane) were purchased from Merck Co. (Darmstadt, Germany). Different mixtures were
prepared from these standards: Mpoise, consisting of equal volumes of benzene, tetrahydrofuran
and n-nonane, was used for setting the noise level of simulated data; Majianes, consisting of equal
volumes of n-alkanes (from 1n-C10 to n-C16), was used to evaluate the dispersion of T. zygis subsp.
zygis chemotypes.

(b) Simulation of mass spectral fingerprints for volatile mixtures

The mass spectra of the different volatile mixtures evaluated (hereafter referred to as mass spectral
fingerprints) were simulated as the linear combination of the mass spectra for every individual
mixture component. In a general case, for a multi-component mixture, the global mass spectral
fingerprint consisting of multiple m/z data can be expressed as

n
=Y KjpCp, 2.1)
p=1

where J; is the total intensity of the jth m/z, Kj, is the intensity of the jth m/z for the p component,
Cp is the concentration of the pth component and 7 is the total number of components in the
mixture.

Writing this expression using matrix notation

I=KC, 2.2)

where [ is a single column intensity matrix, corresponding to the global mass spectral fingerprint
of the mixture considered; K is a column-wise matrix, where each column vector corresponds to
the mass spectrum of a pure component; and C is a single column concentration matrix, where
the concentrations of the mixture components are placed as a column vector.

To maximize the number of simulated data available for this study and to avoid instrumental
artefacts, simulated mass spectral fingerprints were used rather than experimental mixture
spectra. Thus, global mass spectral fingerprints (I) for different mixtures of a varied number of
components with different functionality were simulated using the individual mass spectra (K)
obtained from the NIST/EPA /NIH Mass Spectral Library 2.0 for benzene (Bz), tetrahydrofuran
(THF), n-nonane (C9), n-decane (C10), 1,4-dioxane (Diox), n-butyl acetate (ButAc), 2-heptanone
(Hept), 1-pentanenitrile (Pent), 1-nitropropane (Nitro) and 1-octanol (Octa), according to
equation (2.2).

(c) Experimental data

(i) Gas chromatography—mass spectrometry analysis

Analyses were carried out on a GC 8000 gas chromatograph (Fisons, Milan, Italy) coupled to an
MBD 800 mass detector (Fisons, Manchester, UK), provided with two sample introduction systems:
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(i) a split/splitless injector and (ii) a module for DTD (ATD 400; Perkin-Elmer, Norwalk, CT,
USA). Mass spectra were recorded in EI mode at 70 eV, scanning the 35-350 m/z range. Interface
and source temperatures were 250°C and 200°C, respectively. Separation was carried out on
a poly(100% methylsiloxane) CPSIL-5CB column (25 m x 0.25 mm i.d., 0.25 pm film thickness)
(Agilent J&W, Santa Clara, CA, USA) temperature programmed from 70°C (10 min) to 180°C (at
4°C min~1) and then to 250°C (at 10°C min~!) for 15 min. Helium at 2.1 ml min~! was used as
the carrier gas.

For DTD-GC-MS analyses, 2 mg (accurately weighed) of dry thyme leaves (or 1 ul of Myjkanes
mixture on silanized glass wool) was introduced into a polytetrafluoroethylene tube (52 x 4 mm
i.d.) which was then placed into a stainless steel desorption cartridge (89 x 4.5 mm id. x 6.5
mm o.d.). Volatile compounds were desorbed at 180°C for 15 min under a 45 ml min~! helium
(99.995% purity) flow and then cryofocused on a Tenax TA trap at —30°C. This trap was then
heated to 320°C at 40°C s™!, remaining at the maximum temperature for 4 min. The desorbed
volatiles were transferred to the GC-MS system through a fused silica line heated to 225°C. Inlet
and outlet split flows were set at 90 and 55 ml min~!
triplicate.

For experiments related to the evaluation of noise level, 1 ul of Mpeise mixture was injected
(n=10) using a split ratio of 100:1 and separated on the CPSIL-5CB column under isocratic
conditions (50°C).

MASSLAB v. 1.4 software (Finnigan, Manchester, UK) was used for data acquisition and for
exporting mass spectra to other programs. Qualitative analysis was based on the comparison of
experimental spectra with those of the Wiley mass spectral library [21] and was further confirmed
by using linear retention indices and published data [22]. Semi-quantitative data (percentage of
total volatile composition) were directly calculated from total ion current peak areas, assuming
no differences in response factor for all volatiles quantified.

, respectively. Each plant was analysed in

(ii) Direct thermal desorption—mass spectrometry analysis

For DIMS determinations, the chromatographic column of the DTD-GC-MS system described
above was replaced by a short fused silica tube (30 cm length x 0.32 mm i.d.). A second silica
tube, acting as an interface between the first tube and the mass spectrometer, was used to
transfer the molecules into the mass detector and as a restrictor to maintain the required vacuum
level. Optimization of the dimensions of this interface was done using the Mpise mixture. Oven
temperature and carrier gas flow rate were set at 230°C and 6.0 ml min~!, respectively. Other
experimental conditions were as previously described in §2c(i). Each plant was analysed in
triplicate.

(d) Multivariate regression procedures

The most used regression procedures, as well as those with a more solid mathematical and
statistical base, were evaluated. The selected methods were MLR, stepwise multiple linear
regression (SMLR), ridge regression (RR), PCR and PLSR. Several steps were followed in the
application of these regression models:

First, a calibration model was built using a series of samples (calibration sample set) for which
the concentration of every mixture component was known. Equation (2.3) shows the type of
predictive equations obtained,

Ci=a+b<%>l+c(%)2+d(%)3+~-, 2.3)

where C; is the concentration of the compound i, (m/z)j is the intensity of the different ions of its
spectrum and a, b, ¢, d, . .. are empirical adjustable parameters.

The matrix where the mass spectra of the calibration samples are placed as column vectors is
known as the calibration matrix, and its quality is critical to develop a good mathematical model.
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In this work, calibration matrices were built according to Brereton [23], that is, 25 calibration
mixtures split into five concentration levels and five replicates per level.

Once the model was developed, its efficiency was checked, usually against another set of
samples (validation sample set), which were placed as column vectors in the validation matrix.
The validation sample set should be as large as possible and representative of the expected
variability. In the present work, 250 validation samples were used unless specified.

For quality control of the results obtained by the different regression procedures studied, the
graphical representation of the residuals and the value of the root mean square error of prediction
(RMSEP) calculated according to equation (2.4) were used,

n Anl2
RMSEP = [Z,_l(anCz)} , (2.4)

where C; is the actual concentration of a compound in sample i, C; is its estimated concentration
and 7 is the number of samples. Furthermore, because the present work will deal with high-
collinearity data matrices, correlation matrices were also calculated.

The number of independent variables selected in the SMLR method was determined by
the forward procedure and using as the entry criterion a value of 4 for the F-Snedecor statistic.
The number of components selected for the PCR and PLSR methods was obtained on the basis of
the minimum RMESP value.

Statgraphics® Centurion XV (Statistical Graphics Corporation), Unscrambler® 10.1 (CAMO
ASA) and Microsoft® Excel 2010 (Microsoft Co.) were the software packages used for data
handling and for application of the different regression procedures.

3. Results and discussion

(a) Evaluation of multivariate regression procedures on simulated data

Before carrying out the quantitation of the major volatiles in thyme samples, further described
in §3b(i), it was necessary to establish the robustness of the regression procedures under study
against those factors that could have a relevant effect on quantitative results. To that aim, a
comprehensive study of the simulated data was performed.

First, a calibration set of 25 mixtures, with concentration ranging between 0 and 100 mg ml1~?,
was built according to Brereton [23] using the mass spectra of Bz, C9 and THF taken from the
NIST/EPA /NIH database. Using the same procedure, 250 simulated mixtures were also obtained
to be used as the external validation set.

To provide simulated data with a realistic level of random noise, evaluation of this parameter
was carried out on the experimental mass spectral fingerprint for the Mpgise mixture analysed
as described in §2c(i). Except for m/z ions below 1% of relative intensity, whose relative standard
deviation (RSD, %) was noticeably higher, the RSD (%) values for m/z ions of experimental spectra
were 5% on average. Therefore, a 5% level of random noise was added to simulated spectra, and
m/z ions below 1% were discarded before applying the selected regression procedures.

Results obtained using calibration and validation sets corrected for the level of noise are
shown in table 1. As can be seen, RR is the method that presented the smallest RMSEP (from
0.88 to 1.67) for all the compounds studied, these values being up to three times smaller than
those of the regression procedure with the highest error. Regarding the performance of the other
methods, MLR and SMLR provided better results than data compression methods (PCR and
PLSR). The graphical representation of the residuals obtained for each regression model showed
the expected heteroscedastic nature of the data, but did not reveal any anomaly. However, the
analysis of variance showed the dramatic effect that the collinearity has for the correct estimation
of the regression parameters (electronic supplementary material, table S1). Very high errors were
obtained for the parameter estimators in MLR and SMLR, being in many cases even greater than
the absolute value of the corresponding estimator. Thus, although MLR and SMLR produced

S i o g SR



Table 1. Results obtained by applying the regression procedures under study to simulated mixtures with three components
and 5% random noise (average for n = 250 replicates).

compound
regression parameter Bz O THF
MLR RMSEP 1.95 122 2.02
T R s s T
Cselectedmz 8507478 55,57,70,85,98,28 - 0,72
s s S L o
T o Co—— o
R T s i
T [ D
T e s L
T [ e

29, ridge factor [24].
bSelected PCs, number of principal components for the minimum value of RMSEP.

lower RMSEP values, the high uncertainty of their regression coefficients makes these regression
procedures not recommendable for the quantitation of mixtures represented by data matrices
with high collinearity. In other words, the degree of correlation between mass spectra should be
known for the reliable application of MLR or SMLR.

In addition, several other factors that may affect the performance of the regression models
under study were also evaluated, as follows.

(i) Size of the calibration set

To study the effect of the number of calibration samples used for quantitation, the three following
possibilities were considered: (i) calibration matrix 1, designed to include a total of five samples,
one for each concentration level; (ii) calibration matrix 2, with 25 samples, five samples per level;
and (iii) calibration matrix 3, with a total of 50 samples, 10 per concentration level. As an example,
table 2 lists the results obtained by using these three matrices in the quantitation of benzene.

Irrespective of the compound and model considered, the RMSEP value always diminished
when increasing the number of samples used in the calibration set. This decrease was very
noticeable for SMLR and MLR regressions, whereas it was less important for the compression
methods (PCR and PLSR) between five and 25 samples, and hardly noticeable for 25-50 samples.
With regards to RR, it showed a very good behaviour with almost no differences when using
25 or 50 samples. However, RR presented the same disadvantage as MLR, since it cannot be
applied when there are fewer samples than the independent m/z variables. Therefore, it seems
evident that, when the number of samples available for calibration is small, PCR and PLSR are
the recommended procedures.

(ii) Validation method

In previous sections, a very high number of test samples (250) was used to draw conclusions about
statistical significance. Nevertheless, in analytical laboratories, it is not always feasible to use the
time and economic resources to carry out so many analyses. For that reason, the usual practice is
either to work with a much smaller set of validation samples or to apply cross-validation. Bearing
this in mind, RMSEP values obtained for subsets of validation samples including 25, 10 and five
samples and that obtained in the cross-validation procedure were compared with RMSEP data
for the set of reference (250) samples. The results shown in figure 1 indicate that, irrespective of
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Figure 1. Differences between the reference value of RMSEP (250 samples) and those obtained by the external validation set
(25,10 and 5 samples) and cross-validation (CV).

Table 2. Results obtained in the quantitation of benzene using calibration sets with a different number of samples (average for
n =250 replicates).

calibration samples

regression parameter

2n.¢., not computable; the number of calibration samples is lower than the number of independent variables.
b6, ridge factor [24].
CSelected PCs, number of principal components for the minimum value of RMSEP.

the regression method considered, the difference between the RMSEP value for the reference set
and that obtained for external validation diminishes with the size of the validation set. The use
of at least 25 validation samples was considered advisable, and where this was not feasible, the
cross-validation procedure provided similar results.

(iii) Number of compounds and similarity of mass spectra

The results described in previous sections were obtained on mixtures with three components.
However, a regression model applicable to real samples should show good behaviour when
the number of mixture components is much higher. Therefore, in this subsection, the different
regression methods were tested on mixtures of 10 components: Bz, THF, C9, C10, Diox, ButAc,
Hept, Pent, Nitro and Octa. The concentrations of the calibration mixtures were obtained
according to Brereton [23], and the concentrations of the validation set (25 samples) were
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Table 3. Results obtained by applying the regression procedures under study to mixtures with 10 components and 5% random
noise (average for n = 25 replicates).

component

regression  parameter THF
MLR RMSEP 1.269

29, ridge factor [24].
bSelected PCs, number of principal components for the minimum value of RMSEP.

randomly generated between 0 and 100 mg1~!. In general, results obtained on mixtures with
10 components (table 3) were of the same order of magnitude as those for three-compound
mixtures. Nevertheless, some particularities should be mentioned. SMLR provided acceptable
RMSEP values in all cases, but the selection of variables frequently led to the choice of a
single representative m/z. Therefore, SMLR must be used with caution, since in these cases the
advantages provided by the use of a multivariate regression technique are lost. Data compression
methods gave rise to models with a high complexity, due to the presence of many principal
components, although the errors obtained were not much higher. The case of the quantitation
of 1,4-dioxane by PCR should also be highlighted, since a higher error was obtained than in
the remaining methods, even when a distinctive m/z ratio was available (m/z 88). After a more
detailed study of the case, the reason seemed to be the scarce number of m/z ratios available to
carry out the quantitation (m/z 43, 44, 45, 57, 58, 88). Consequently, principal component analysis
(PCA) is not able to extract all the necessary information for the development of a regression
model good enough for this compound. Although this conclusion cannot be extrapolated to
other compounds showing a similar behaviour (e.g. Pent and Nitro), it can be concluded that
the presence of distinctive my/z ratios is not always enough to achieve a good quantitation
by PCR.

When comparing the behaviour of those compounds present in both mixtures (3 and 10
component mixtures), benzene and C9 showed higher values of RMSEP when they were
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quantified in the 10-component mixture. Nevertheless, the errors for THF were similar and in
some cases even higher for the three-compound mixture. Therefore, direct quantitation seems to
be feasible even when using complex volatile mixtures.

Another factor to be considered is the similarity (degree of correlation) between mass spectra,
which is more probable when a higher number of compounds are included in the mixture. In
the present case, the pairs C9/C10 and Pent/Nitro showed the highest correlation, with » = 0.983
and 0.845, respectively (electronic supplementary material, table S2). As the regression method
is not able to distinguish the contribution of every individual compound, it is difficult to achieve
good quantitation (low RMSEP values) for these pairs. The joint measurement of both compounds
can be considered in these cases as an alternative to provide better quantitation results (as
experimentally evidenced in §3b(ii)).

(b) Analysis of the volatile composition of Thymus zygis subsp. zygis

The study carried out on simulated data showed that each of the regression procedures evaluated
has its own characteristics, but all of them can provide good quantitation results depending
on the specific dataset. Furthermore, some important issues such as the appropriate size of
the calibration set, the more suitable validation method or the effect of sample complexity
and spectral similarity on the final results were also established. Thus, the next step was
the application of the regression methods under study to the quantitation of volatiles in real
thyme samples. In addition to the wide number of applications this aromatic plant has in
different fields, this study was carried out on T. zygis subsp. zygis because aspects not previously
addressed in DIMS approaches such as the differentiation of plant chemotypes could also
be evaluated from the analysis of this Lamiaceae plant. Results gathered in the DTD-GC-
MS analysis of thyme samples (§3b(i)) were considered as a reference for the further study
of the application of regression methods to mass spectral fingerprints collected by DTD-MS
(§3b(ii))-

(i) Direct thermal desorption—gas chromatography—mass spectrometry analysis

In an attempt to identify chemotypes in the 53 thyme samples under study, quantitative results
(relative data) obtained in the DTD-GC-MS analysis (1 =3) of major volatiles were subjected to
PCA. In agreement with previous studies [1,25], four chemotypes were distinguished (figure 2a).
The number of samples clustered in each of these chemotypes, together with their characteristic
compounds and relative concentrations, is summarized in table 4. As can be seen, the first
chemotype is dominated by geraniol (22%) and geranyl acetate (42%), the second one by linalool
(60%), in the third one the main compounds are the aromatics thymol (49%) and carvacrol
(17%), and in the fourth chemotype o-terpineol (19%) and «-terpinyl acetate (55%) are the
major components. These clusters will hereafter be referred as geraniol, linalool, aromatics and
a-terpineol chemotypes. A representative chromatogram of each of these chemotypes is shown
in the electronic supplementary material, figure S1.

As shown in table 4, the quantitative data (relative areas) showed a great variability for
samples of the same chemotype. To know whether such variability was due to instrumental errors
or to differences in metabolic pathways giving rise to these volatile secondary metabolites, a study
to evaluate data reproducibility was carried out. To this aim, the n-alkane mixture (M,ixanes,
§2a) covering the elution range of thyme volatiles was first analysed (n=10) by DTD-GC-MS.
Similarly, 10 samples of the same T. zygis subsp. zygis plant (linalool chemotype) were further
analysed. The relative areas obtained and their corresponding standard deviations are listed in
the electronic supplementary material, table S3. Whereas the average RSD (%) for n-alkanes was
2.3%, dispersion data for thyme volatiles were almost an order of magnitude higher, except for
thymol due to its high per cent area. It can be concluded therefore that for these types of samples
the main contribution to variability seems to arise from biological sources.
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Figure 2. Chemotypes identified in Thymus zygis subsp. zygis using (a) relative areas from DTD-GC-MS analysis and (b) DTD-MS
fingerprints.

(ii) Direct thermal desorption—mass spectrometry analysis

As previously mentioned, the DTD-MS analysis of thyme samples required the analytical system
to be redesigned for its use without a chromatographic column. Particular emphasis was paid
to the dimensioning of the interface leading the desorbed volatiles into the mass spectrometer.
A silica tube of 80 cm length x 0.1 mm i.d. was selected as a trade-off to provide good sensitivity
and good vacuum value.

After optimization of the experimental set-up, the 53 thyme samples were analysed in triplicate
by DTD-MS. As no chromatographic column was now used, all compounds eluted together
in a single and almost Gaussian peak at a retention time of approximately 0.5 min (electronic
supplementary material, figure S2). The mass spectra obtained during the elution of this peak
were averaged, and the resulting spectrum normalized to the sum of all detected ions. This type
of normalization was previously applied to chromatographic areas of all recorded peaks, and was
chosen to minimize the effects of data closure [26].

Direct injection mass spectra for the thyme samples under study were subjected to PCA, and
the resulting score plot is shown in figure 2b. As can be seen, the four chemotypes previously
identified by DTD-GC-MS analysis were also observed from DTD-MS data. These results
highlight the usefulness of mass spectral fingerprints for the representative characterization of
the volatile composition of T. zygis subsp. zygis samples and for the intended classification of
these samples into different chemotypes.

After checking the good quality of the DTD-MS data, the selected regression procedures
were applied to the mass spectral fingerprints obtained for samples of each chemotype. A
comprehensive summary of the results obtained is shown in the electronic supplementary
material, tables S4-57. As can be seen, the behaviour of the different regression methods with
experimental data for thyme samples was very similar to that previously described for simulated
data, or even better. In general, the performance of all regression methods with DTD-MS data
was good, giving rise to very low RMSEP values. Moreover, errors obtained for every specific
compound and chemotype were very similar irrespective of the regression procedure considered.
RR was the only method tending to outperform the remaining methods, as it usually gave rise to
the lowest RMSEP values. This could be explained by the high collinearity between mass spectra
shown for the DTD-MS data and the good performance of the RR method for ‘ill-conditioned’
data.

Finally, and to get a simple overview of the reliability of the DTD-MS results, values obtained
by DTD-MS and DTD-GC-MS were compared. As an example, figure 3 shows the differences
observed in the quantitation of the two main components for each chemotype. Considering the
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Table 4. Chemotypes and main components identified in Thymus zygis subsp. zygis samples (average for n = 3 replicates).

area (%)

compound minimum maximum average
chemotype geraniol

3m/z ratios and abundances: 77(16), 79(11), 91(9), 105(41), 133(24), 151(100), 166(38).
bm/z ratios and abundances: 77(14),79(12), 95(21), 123(17), 151(100), 166(42).
m/z ratios and abundances: 43(100), 71(47), 93(27), 108(42), 109(37), 126(30), 137(17), 152(13), 170(2).
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Figure 3. Comparison between DTD-GC-MS and DTD-MS quantitation.

best regression method for each compound, differences between 2% and 10% were obtained in
most cases. However, carvacrol showed an anomalous behaviour, with an error as high as 50%
for the best regression method (RR). As previously stated for simulated data, the high degree of
similarity between the mass spectral fingerprints of the isomers thymol and carvacrol (r=0.992)
could justify these results. In agreement with this, a decrease down to values of approximately
7% was obtained when the joint quantitation of thymol—carvacrol was considered by using the
different regression models under study.

4. Conclusion

The present work has been developed to establish the real possibilities and limitations of
quantitative profiling of volatiles in food samples by DIMS in combination with multivariate
regression methods. To this aim, quantitative global responses (mass spectral fingerprints) from
simulated volatile mixtures, rather than data for specific standards or samples (which is the
common approach in the literature), were processed under very diverse experimental conditions
and subjected to different multivariate regression methods. Although less well known than other
multivariate regression procedures here evaluated, RR was shown to be a robust method for the
precise quantitation of simulated data with high collinearity. MLR and SMLR also provided low
RMSEP values, but they should be applied with caution, because their reliability is inversely
correlated with data collinearity. As far as PCR and PLSR are concerned, they are the methods of
choice when the calibration set includes a low number of samples.

On the other hand, application of the different regression methods under study to
experimental mass spectral fingerprints collected by DTD-MS has been shown to be useful for
the quantitation of major volatiles in T. zygis subsp. zygis chemotypes. In this sense, it is worth
noting that the advantages in terms of no sample pretreatment provided by the use of DTD
as the sample introduction system are in good agreement with the development of the fast
analytical methodologies for volatile quantitation here addressed. The results obtained by DTD-
MS, validated using as reference a DTD-GC-MS method, show the potential of DIMS approaches
as high-throughput and cost-effective methodologies for the precise quantitative profiling of
volatiles in foods.
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