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Surface-assisted laser desorption/ionization (SALDI)
coupled with mass spectrometry (MS) is frequently
used to analyse small organics owing to its clean
background. Inorganic materials can be used as
energy absorbers and the transfer medium to facilitate
the desorption/ionization of analytes; thus, they are
used as SALDI-assisting materials. Many studies
have demonstrated the usefulness of SALDI-MS in
quantitative analysis of small organics. However,
some characteristics occurring in SALDI-MS require
certain attention to ensure the reliability of the
quantitative analysis results. The appearance of
a coffee-ring effect in SALDI sample preparation
is the primary factor that can affect quantitative
SALDI-MS analysis results. However, to the best
of our knowledge, there are no reports relating
to quantitative SALDI-MS analysis that discuss or
consider this effect. In this study, the coffee-ring effect
is discussed using nanoparticles and nanostructured
substrates as SALDI-assisting materials to show how
this effect influences SALDI-MS analysis results.
Potential solutions for overcoming the existing
problems are also suggested.
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1. Introduction

(a) Surface-assisted laser desorption/ionization–mass spectrometry
Matrix-assisted laser desorption/ionization (MALDI) coupled with mass spectrometry (MS) [1,2]
is widely used to analyse various substances, such as peptides, proteins and polymers. Given
the high-matrix background in the low-mass region [3], conventional MALDI-MS is seldom
used as a detection tool for small molecules. Furthermore, poor shot-to-shot reproducibility
also leads to MALDI-MS being unsuitable for quantitative analysis. Surface-assisted laser
desorption/ionization (SALDI) coupled with MS (SALDI-MS) [4] has been considered as an
alternative for the analysis of small molecules and for quantitative analysis owing to its unique
features, including a low-matrix background and improved shot-to-shot reproducibility.

SALDI was first proposed and named by Sunner et al. in 1995 [4]. Contrary to MALDI, graphite
powder was initially used as the energy-absorption medium to absorb laser light for assisting
the desorption/ionization of analytes in SALDI. Furthermore, liquid glycerol was mixed with
graphite powder to buffer the energy transfer and to provide a proton source for facilitating the
desorption/ionization process. Therefore, the shot-to-shot reproducibility was improved because
of the presence of liquid glycerol in the samples. Tanaka et al. [3] used a mixture of cobalt
nanoparticles (NPs) combined with glycerol as the assisting substrate for the analysis of large
proteins in laser desorption MS before SALDI was introduced. The work was mainly focused on
the analysis of large biomolecules [3].

Although carbon materials such as graphite powder [4] and active carbon powder [5–7]
are readily available, other types of inorganic materials [8–36] can also be used as SALDI-
assisting materials. In particular, generating a variety of nanomaterials becomes an easy task
owing to the progress of nanotechnology in the past few decades. Thus, different nanomaterials
have been examined as SALDI-assisting materials to facilitate desorption/ionization of analytes
in SALDI-MS [8–36]. Given the low-matrix background, most studies were focused on the
application of SALDI-MS in the analysis of small molecules [16–36]. Furthermore, the possibility
of using SALDI-MS for quantitative analysis was studied [16–36]. Although liquid glycerol was
added to the samples to facilitate the desorption/ionization process, acid-containing or amine-
containing salts such as citrate acid and ammonium citrate have also been used as alternatives
[10,11,13]. Glycerol has a low vapour pressure but the requirement for high vacuum in the mass
spectrometer does not allow the simultaneous introduction of numerous samples containing
glycerol to a mass spectrometer. However, shot-to-shot reproducibility in the glycerol-containing
SALDI materials is much better than when salts such as ammonium citrate and citric acid are
used in SALDI. In general, the shot-to-shot reproducibility in SALDI-MS is better than that in
MALDI-MS.

(b) Inorganic nanoparticles used in quantitative surface-assisted laser desorption/
ionization–mass spectrometry analysis

The electronic supplementary material, table S1, lists a variety of inorganic particles that have
been used in quantitative SALDI-MS analysis. Carbon materials including porous oxidized
graphitized carbon black powder [16], multi-walled carbon nanotubes [17] and graphitic carbon
nitride nanosheets [18], which possess an absorption capacity in the wide electromagnetic
spectrum, have been used in the quantitative SALDI analysis of small drugs or small organics. Au
NPs [19–24] are widely used in quantitative SALDI-MS analysis. In addition to ease of preparation
and functionalization, Au NPs also possess a desirable absorption capacity in the ultraviolet (UV)
region, which the wavelength of the laser used in SALDI-MS belongs to. This consideration is
also one of the reasons why Au NPs are selected as SALDI-assisting materials. However, Au
nanocluster ions, e.g. Au+

n (n = 1, 2, 3, etc.), generated from Au NPs are easily generated during
SALDI-MS analysis [24]. Au NP-based SALDI-MS has been applied in the quantitative analysis
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[19–24] of small organics, small biomolecules and drugs. The particle size of the Au NPs used in
most of these studies is in the range of 10–20 nm [20–23]. Au NPs with particle sizes of less than
10 nm [19] and greater than 20 nm [24] used as SALDI-assisting materials have also reported.
In addition, Ag NPs that have similar properties to Au NPs including a desirable absorption
capacity in the UV region and ease of generation and functionalization have been used as SALDI-
assisting materials in quantitative SALDI-MS [25,26]. The particle size of these Ag NPs was 10–30
nm. Ag NP-based SALDI-MS has been used in the quantitative analysis of small biomolecules
[25,26]. Metal oxide NPs such as Fe3O4 magnetic NPs (MNPs) [27] and TiO2 NPs [28–31] are
also useful SALDI-assisting materials owing to their absorption capacity toward the laser light
used in SALDI-MS. They also possess the feature of ease of surface functionalization. Thus,
these metal oxide NPs work as suitable SALDI-assisting materials, and can be used as affinity
probes to concentrate their target species prior to SALDI-MS analysis. Moreover, the magnetic
properties of Fe3O4 MNPs allow easy implementation of the concentration steps. The numbers
of ions generated from metal oxide NPs and that contribute to the background are usually much
fewer than those from Au NPs and Ag NPs. HgTe nanostructured particles [32] and zinc sulfide
particles [33] have also been used in the quantitative analysis of cyclodextrins. From the reports
discussed above, if inorganic particles have the capacity to be used as energy absorbers in SALDI-
MS and contribute only a few background ions in the SALDI mass spectra, they can be regarded
as suitable SALDI-assisting materials.

The dynamic range in quantitative SALDI-MS analysis is generally from approximately 1 µM
to approximately 100 µM, whereas the limit of detection is in the sub-micromolar range (electronic
supplementary material, table S1). The linear correlation coefficients (R2) are commonly reported
to be as high as approximately 0.99 (electronic supplementary material, table S1). Thus, these
studies generally concluded that satisfactory quantitative results were obtained using SALDI-MS
as a detection tool. However, considering the characteristics of SALDI, the reliability of using
SALDI-MS for quantitative analysis has to be revisited.

(c) Nanostructuredfilmsused inquantitative surface-assisted laser desorption/ionization–
mass spectrometry analysis

Apart from the assisting materials with particle forms, a number of films with nanostructures
that have the capability to assist quantitative SALDI-MS analysis have also been explored
[34–36]. Silicon nanostructured films [34,35] are the most common substrates used in quantitative
SALDI-MS analysis (electronic supplementary material, table S1). For example, silicon nanopillar
arrays [34], desorption ionization on porous silicon [35] and nanostructured silicon substrates
functionalized with fluorine-containing species [35] have been used as suitable SALDI-assisting
materials for quantitative SALDI-MS analysis of drugs such as oxycodone [34,35]. Moreover,
indium tin oxide coating substrates are useful SALDI-assisting materials for quantitative
SALDI-MS analysis of lactose [36].

However, some problems such as the appearance of coffee-ring effects [37,38] have to be
considered when conducting SALDI-MS for quantitative analysis and when using proton-rich
salts as the proton source. This will be discussed further in the following sections.

2. Experimental

(a) Preparation of Au nanoparticles on a sample target
The details of the chemicals used in this study and the generation of Au NPs are described in
the electronic supplementary material. The Au NP suspension (1 ml) was individually loaded
into five centrifuge tubes, followed by centrifugation at 12 000 r.p.m. for 20 min. The supernatant
(900 µl) from each tube was discarded. Aqueous trisodium citrates (4 mM) with volumes of 1900,
1233, 900, 700 and 566 µl were added individually to the five tubes. Thus, the final concentrations
of the Au NPs in the five tubes were 7.50, 11.25, 15.00, 18.75 and 22.50 nM. The Au NP suspension
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(0.5 µl) from each of the five tubes was deposited in the wells in a stainless sample target. After
air drying, the deposits were photographed using a camera and a Nikon Eclipse 80i microscope
(Tokyo, Japan) with a 10 × objective lens, a 10 × eyepiece lens, and an oil immersion condenser of
1.43–1.20 (Nikon) under dark field. The exposure time was set at 3 s.

(b) Preparation of surface-assisted laser desorption/ionization samples on the
nanostructured film for mass spectrometric imaging

The details of the generation of titania nanotube arrays (TNAs) are given in the electronic
supplementary material. The surface of the generated TNAs was hydrophilic. To limit the sample
deposition to a confined area, we generated sample wells on the TNAs by adhering with a copper
tape that contained spherical holes with a defined diameter. The spherical holes on the copper
tape were created using a punch tool that could make spherical holes with a diameter of 1 mm.
The resultant copper tape was then adhered to a TNA-based substrate that had been adhered
to a sample plate. Finally, sample droplets were deposited on the holes in the TNA substrate
to load the samples. Dodecyltrimethylammonium bromide (DeTAB) was selected as the analyte
and decyltrimethyl ammonium bromide (DTAB) was used as the internal standard. DeTAB was
prepared in deionized water at concentrations of 0.50, 1.00, 1.25, 2.50 and 5.00 µM. DTAB (1 µM)
was also prepared in deionized water. Different concentrations of DeTAB (5 µl) were mixed with
DTAB (5 µl and 1 µM). Then, the mixture (0.5 µl) was deposited on the TNA-based substrate,
which was adhered to a stainless sample target. After air drying, the samples were introduced into
a mass spectrometer for SALDI-MS analysis. Mass spectrometric imaging was carried out using
an AutoFlex III MALDI mass spectrometer (Bruker Daltonics, Breman, Germany). FlexImaging
software (v. 2.0; Bruker Daltonics) was used to treat the resultant data.

3. Results and discussion

(a) Coffee-ring effect
The sample deposition in most of the quantitative NP-based SALDI-MS analysis approaches was
generally conducted by a so-called dried droplet method (electronic supplementary material,
table S1). Namely, a sample and NPs were mixed first and then a microlitre-sized droplet was
deposited on the sample target. After solvent evaporation, the samples were ready for SALDI-
MS analysis. A ‘coffee ring’ [38] is commonly observed when depositing a droplet of particle
suspension on a solid substrate followed by solvent evaporation. A ring-like deposit containing
particles along the boundary appears after drying. The occurrence of this phenomenon cannot be
avoided in the sample preparation for SALDI-MS analysis [37,39]. The appearance of analyte
ion signals relies on the assistance of the NPs such as Au NPs, and, thus, examining the
distribution of the SALDI-assisting materials is important. We used Au NPs as the example
to show how a coffee ring derived from a droplet containing Au NP (approx. 13 nm) was
formed on a stainless sample plate. Figure 1a shows the photographs obtained after depositing
a droplet (approx. 0.5 µl) containing different concentrations of Au NPs on the wells of the
sample plate. Although the background was dark, a ring composed of Au NPs appeared in
each well. An oval-shaped coffee ring was observed owing to the anisotropic structure of the
stainless sample target (figure 1a). Furthermore, the ring became thicker as the concentration of
the Au NPs increased (left to right). Figure 1b shows the optical microscopic images obtained
under dark field after depositing a droplet containing Au NPs with concentrations from low
to high (left to right). The sample spots were incompletely covered by the Au NPs. When the
concentration of the Au NPs was increased to 22.5 nM, a number of Au NPs could distribute
within the ring. However, the distribution of the Au NPs was heterogeneous (figure 1b). The
common concentration of the Au NPs used as the assisting materials in quantitative SALDI-
MS was approximately 15 nM [20,22], which was in the concentration range shown in figure 1.
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1 mm
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(a)

Figure 1. (a) Thephotographsobtainedafter depositingadroplet (approx. 0.5 µl) containingdifferent concentrationsofAuNPs
on the wells of the sample plate and (b) their corresponding microscopic images obtained from dark field. The concentrations
of the Au NPs from left to right were 7.50, 11.25, 15.00, 18.75 and 22.50 nM.

The results showed that heterogeneous Au NP deposition was formed when depositing a droplet
containing Au NPs on the sample plate followed by solvent evaporation. Furthermore, the
corresponding SALDI-MS image of the sample containing AuNPs (15 nM) also shows a ring
when using the ion at m/z 215 as the target ion (electronic supplementary material, figure S1).
The ion at m/z 215, i.e. the sodium adduct of citric acid, is derived from the ligand attached to the
surface of the Au NPs. In addition, SALDI-assisting materials such as Au NPs contribute their
Au cluster ions to background ions during SALDI-MS analysis. Therefore, the appearance of the
intense background ions may easily suppress the appearance of the target analyte ions in the
mass spectra.

A few solutions may be potentially used to suppress the coffee-ring effect in SALDI sample
preparation. Most of the existing studies used a standard sample plate with non-hydrophobic
properties to load with hydrophilic SALDI samples. Therefore, a coffee ring was easily formed
during sample preparation. Heterogeneous sample deposition resulting from the coffee-ring
effect could be expected although no reports related to quantitative SALDI-MS analysis have
paid attention to this issue. Alternatively, the surface of the sample target can be modified to
be hydrophobic to reduce the coffee-ring effect occurring in a hydrophilic sample droplet [37].
Notably, the data points were collected to obtain reliable quantitative SALDI-MS analysis results.
Most of the existing studies stated how many sample spots in a sample were acquired. However,
no reports have evaluated whether the coffee-ring effect has caused some bias in the data. In
addition, when the Au cluster ions generated from Au NPs are used as background ions, analyte
ion signals are suppressed by the presence of high-intensity Au cluster ions. The distribution
of analytes on the SALDI-assisting materials would also affect the quantitative analysis results.
Unfortunately, the coffee-ring effect can also affect the distribution of the analytes in a droplet
after solvent evaporation. To eliminate the contribution of the coffee-ring effect by the SALDI-
assisting materials, nanostructured films can be used as alternatives. The distribution of analytes
on the SALDI-assisting materials can then be discussed solely. As mentioned earlier, using films
as the SALDI-assisting materials is advantageous in that the distribution of SALDI-assisting
materials can be ignored. The films are supposed to be homogeneous and can facilitate the
desorption/ionization of analytes.

(b) Titania nanotube array-based quantitative surface-assisted laser desorption/
ionization–mass spectrometry analysis

TNAs have been used as suitable assisting materials in SALDI-MS analysis [13]. The assisting
capability of TNAs was gained from their anatase crystallines because of their absorption capacity
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Figure 2. (a) Representative photograph of the generated TNAs. (b) Representative SEM image of the generated TNAs.
(c) Representative Raman spectrum of the generated TNAs. (d) Raman spectral image of the TNAs by scanning the Raman
shift at 144 cm−1.

in the UV region [40]. When a TNA-based film is used as the SALDI-assisting material, the
homogeneity of the anatase crystallines on the TNA film can be examined by Raman spectroscopy.
Figure 2a shows a photograph of the generated TNAs, which have a metallic lustre and appear
blueish. Figure 2b shows the image of the generated TNAs obtained from scanning electron
microscopy (SEM). Titania nanotubes with an inner diameter of approximately 100 nm were
observed. Figure 2c shows the representative Raman spectrum of the generated TNAs. The
Raman peaks at 144, 399, 516 and 634 cm−1, representing the characteristic peaks of the anatase
crystalline [41], were observed. These peaks indicate the formation of anatase crystallines. Raman
spectroscopic imaging was used to examine the entire area of the TNAs to ensure the homogeneity
of anatase on the TNAs. The Raman shift at 144 cm−1 is the highest among these characteristic
anatase peaks, and, thus, this peak was selected as the target to evaluate the distribution of anatase
on the TNAs. Figure 2d shows the representative resultant Raman image of the TNA-based film
by scanning the presence of the Raman shift at 144 cm−1. The distribution of the Raman shift at
144 cm−1 on the TNAs was quite homogeneous.

After confirming the homogeneity of anatase crystallines on the generated TNAs, we further
used the TNAs as the SALDI-assisting materials to load with samples. Small wells on the TNAs
were prepared to restrain sample droplets to the limited area as described in the experimental
section. Without using the sample well to restrict the sample deposition, the droplet was quickly
spread out because of the highly hydrophilic surface of the TNAs (electronic supplementary
material, figure S2). Electronic supplementary material, figure S3a, shows a water droplet
deposited on the sample well, whereas figure S3b shows the photograph obtained after the
droplet was dried. A droplet could remain on the well before drying. Namely, the coffee-ring
effect and a large sample deposition area can be reduced using the designed sample wells. A
cationic surfactant, i.e. DeTAB, was used as the analyte to simplify the discussion. DeTAB is
a precharged analyte and thus adding a proton source in the sample is unnecessary. The
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Figure 3. (a) Representative SALDI-MS images at m/z 200 derived from DeTAB, with the concentration range of 5.00, 2.50,
1.25, 1.00 and 0.50 µM (left to right). (b) Representative SALDI-MS images at m/z 228 derived from DTAB (1 µM). The purple
circles indicate the area considered in the quantitative analysis. (c) The corresponding representativemass spectra derived from
the same sample in the same column. The red circles indicate the peaks at m/z 200, while the green circles indicate the peaks
atm/z 228.

contribution and effect caused by the proton source in the sample preparation can be ignored
to simplify the discussion. Furthermore, the effect on the ionization efficiency can be disregarded.
DTAB, which is in the same category of cationic surfactants as DeTAB, was also used as the
internal standard (i.s.). To examine the ion distribution on the TNAs, SALDI-MS imaging was
used for the investigation. Figure 3a shows the representative SALDI-MS images at m/z 200
derived from DeTAB, with a concentration range of 5.0–0.5 µM (left to right). Figure 3b shows the
SALDI-MS image at m/z 228 derived from DTAB. Apparently, the intensity of the ion at m/z 200
decreased as the concentration of DeTAB decreased. The ion image at m/z 228 corresponding to
DTAB was distributed in a roughly similar way in each image. Figure 3c shows the representative
mass spectra obtained from the corresponding sample shown on the same column. The relative
intensity of the ion peak m/z 200 decreased as the concentration of DeTAB decreased. Given
that the sample droplet was restrained in the small well, the coffee-ring effect was insignificant.
Nevertheless, the ion distribution in the SALDI images was inhomogeneous. Thus, the sum
of the intensity-derived target analyte ions should be fully considered when considering the
quantitative analysis.

Figure 4 shows the resultant calibration curve (Y = −15.1 + 25.9X, R2 = 0.994) by plotting the
ratio derived from the sum of the ion intensity at m/z 200 (DeTAB) to that of the ion intensity at m/z
228 (DTAB, i.s.) within the image versus the concentration of DeTAB within the sample deposition
well. The ratios were obtained from three replicated experimental results. The linear regression
coefficient was as high as 0.99. Nevertheless, it was apparent that a large error bar (more than 20%)
was observed in each data point. The results show that it is possible to employ this approach
for quantitative analysis. However, as the data varied quite a lot from different replicates,
attention should be paid to avoiding personal bias. The results also indicate that the influence
of the coffee-ring effect can be eliminated using proper sample preparation. Furthermore, all the
intensity derived from the analyte ions within the sample deposition should be considered when
conducting quantitative analysis to avoid any bias. The addition of an i.s. in the sample can also
compensate for some uncertain operation or human errors.
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Figure 4. The resultant calibration curve based on the data obtained in figure 3. The curve was obtained by plotting the ratio
of the sum of the total ion intensity at m/z 200 (Σ I200) to that at m/z 228 (Σ I228) versus the concentration of DeTAB. (Online
version in colour.)

4. Conclusion
SALDI-MS is undoubtedly suitable for the analysis of small organics. However, some
characteristics occurring in SALDI-MS sample preparation should be considered to obtain
reliable quantitative analysis results. As discussed in this study, the coffee-ring effect seems to
appear in the sample preparation when NPs are used as SALDI-assisting materials. Therefore,
heterogeneous sample deposition can be expected. Further studies are required to explore suitable
SALDI-assisting materials that may be able to suppress the coffee-ring effect. That is, if an aqueous
NP suspension is deposited and used as the SALDI-assisting material, then the sample plate
can be modified to be hydrophobic to prevent the generation of a coffee ring. Then, the entire
sample deposit can be analysed and collected for quantitative SALDI-MS analysis. On the other
hand, when using nanostructured films as the SALDI-assisting material, the coffee-ring effect
can be reduced with a strategic sample preparation approach. When nanostructured-based film
is used as the SALDI-assisting material, the use of a SALDI-MS image to acquire the data from
the entire sample deposit to avoid any bias is suggested. The film should have homogeneous-
assisting capacity through the entire film surface. A good linearity was obtained in the selected
dynamic range, while the variation was large in each data point as observed in the calibration
curve. Although all the existing reports have stated that good linearity in a certain dynamic
concentration range can be obtained in their calibration curves, one should pay attention to
how the data point is sampled to prevent any possibility of reaching incorrect conclusions. In
addition, the use of NPs may cause some problems during laser irradiation. NPs can be easily
sputtered during laser irradiation, leading to possible contamination of the ion source. One
should be cautious and prevent any damage to the turbo pump when using NPs as SALDI-
assisting materials. On the other hand, this concern can be eliminated using nanostructured
films as the assisting materials in quantitative SALDI-MS analysis. In addition, the results may
be further improved by using an extremely small sample volume (approx. picolitres) and small
deposition spot (approx. 100 µm) [42]. Therefore, the entire sample spot can be covered by a laser
beam during laser irradiation The problem resulting from inhomogeneous sample deposition that
can cause poor shot-to-shot reproducibility can be eliminated. Reliable quantitative MS results
with good reproducibility may be obtained.
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