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Environmental stresses experienced by individual parents can influence off-

spring phenotypes in ways that enhance survival under similar conditions.

Although such adaptive transgenerational plasticity is well documented,

its transmission mechanisms are generally unknown. One possible mechan-

ism is environmentally induced DNA methylation changes. We tested this

hypothesis in the annual plant Polygonum persicaria, a species known to

express adaptive transgenerational plasticity in response to parental drought

stress. Replicate plants of 12 genetic lines (sampled from natural popu-

lations) were grown in dry versus moist soil. Their offspring were exposed

to the demethylating agent zebularine or to control conditions during germi-

nation and then grown in dry soil. Under control germination conditions, the

offspring of drought-stressed parents grew longer root systems and attained

greater biomass compared with offspring of well-watered parents of the

same genetic lines. Demethylation removed these adaptive developmental

effects of parental drought, but did not significantly alter phenotypic

expression in offspring of well-watered parents. The effect of demethylation

on the expression of the parental drought effect varied among genetic lines.

Differential seed provisioning did not contribute to the effect of parental

drought on offspring phenotypes. These results demonstrate that DNA

methylation can mediate adaptive, genotype-specific effects of parental

stress on offspring phenotypes.
1. Introduction
Stressful parental environments can influence the phenotypes of offspring in

many plant and animal taxa [1–4]. Such inherited environmental effects on

development (transgenerational plasticity or parental environmental effects) were

initially understood to directly reflect resource levels, with resource-deprived

parents producing low-quality offspring due to reduced provisioning (e.g. to

seeds or eggs). While these direct effects of provisioning are indeed widespread

[3,4], more specialized developmental effects of parental environments have

increasingly come to light. In some cases, stressed parents produce offspring

with specific developmental alterations that mitigate that particular type of

stress. When these offspring encounter similar conditions, such alterations

result in heritable, environmentally induced adaptation [5–10]. As with other

aspects of phenotypic plasticity [11,12], genotypes from natural populations

differ in the precise pattern and degree of these inherited environmental effects

[8,13–15].

Despite increasing awareness of the potential adaptive value of transgenera-

tional plasticity, in most cases, the mechanisms responsible for the inheritance

of these effects remain unclear [16–18]. In some systems, adaptive transgenera-

tional effects are known to stem from increased provisioning of nutritive

resources to seeds or eggs (e.g. [19,20]). However, as provisioning-based effects

are mediated directly by maternal individuals, environmental effects that per-

sist for multiple generations (e.g. [21–24]) must be mediated by mechanisms

capable of longer-term stability.
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One potential mechanism is heritable, environmentally

induced changes to DNA methylation [25,26]. In many taxa,

the addition or removal of methyl groups on cytosine residues

can influence transcriptional activity at specific loci. In plants,

numerous environmental stimuli can induce changes to DNA

methylation throughout the genome, ranging from biotic stres-

ses such as pathogen infection [27–29] to abiotic stresses such

as drought [30–33]. Such environmentally induced methyl-

ation changes vary by genotype [34] and have been shown to

be heritable in a variety of species, in some cases for multiple

generations [35,36]. Furthermore, heritable methylation vari-

ation can have substantial impacts on ecologically important

traits. For instance, studies of epigenetic recombinant inbred

lines in Arabidopsis thaliana showed that DNA methylation var-

iants can cause substantial heritable variation in key traits such

as primary root length and flowering time in the absence of

DNA sequence diversity [37].

This combination of genotype-specific environmental sen-

sitivity, transgenerational stability, and phenotypic impact

makes DNA methylation a primary candidate mechanism for

adaptive transgenerational plasticity, particularly in plants

[16,17]. Yet a central question remains unresolved: to what

extent do genotypes in natural populations vary in their epige-

netic responses to stressful parental environments [38]? The

prevalence of genotype � parental environment interactions

on offspring phenotypes suggests that genotype-specific

patterns of epigenetic response may underlie this common

form of genetic variation. Such G � parental E variation

provides the substrate for the adaptive evolution of transge-

nerational plasticity, just as genetic variation for responses

to the immediate environment (G � E) fuels the adaptive

evolution of within-generation plasticity [11,39,40]. Hence,

demonstrating a role for DNA methylation in genotype �
parental environment interactions would add a new dimen-

sion of evolutionary relevance to our understanding of

environmentally induced epigenetic variation.

Experimental demethylation using pharmacological

agents is a well-established method for investigating whether

DNA methylation mediates phenotypic expression in diverse

animal, plant, and fungal systems [41–46]. Several such

agents are known to interfere with the DNA methyltransferase

enzymes that establish and maintain methylation of cytosine

residues, leading to genome-wide reductions in DNA

methylation levels. Zebularine is particularly useful as an

experimental demethylation agent because its methyltransfer-

ase-inhibiting effects are transient and dose-dependent [47,48].

Alternative demethylation agents such as 5-azacytidine pro-

duce more side effects [49], and mutational approaches to

demethylation cause long-lasting and drastic methylation

changes [37].

We used zebularine to investigate the functional role

of DNA methylation in the adaptive, drought-induced trans-

generational plasticity that is differentially expressed by

genotypes of the annual plant Polygonum persicaria (¼Persicaria
maculosa [8,24,50]). In this common species, seedling offspring

of drought-stressed parents or grandparents develop more

extensive, deeper root systems, and have enhanced growth

and survival, in dry soil [24,51]. This Eurasian plant has

successfully spread throughout most of North America, occu-

pying ecologically diverse sites that vary both spatially and

temporally in soil-moisture content [52]. As P. persicaria has

a mixed breeding system with a high natural rate of self-

fertilization [53], highly inbred lines can be generated without
causing inbreeding depression. Such experimental lines pro-

vide replicate parent plants of each genotype that can be

raised in contrasting environments and allowed to produce

progeny, to compare genotypic patterns of transgenerational

plasticity [8,24].

We raised replicate parent plants in both dry and moist soil

from 12 inbred genetic lines that had been sampled initially

from natural P. persicaria populations. We then examined

the effects of these parental environments on drought-stressed

offspring germinated either in control conditions, or with a

zebularine concentration known to cause moderate genome-

wide demethylation. We raised these offspring under drought

stress to test the adaptive value of the drought-induced

parental effects [24]. We also estimated seed provisioning

for each offspring individual in the study. We tested the

following predictions. (1) If enhanced seed provisioning med-

iates transgenerational response to drought, then offspring

of drought-stressed parents should have greater provisioning

than offspring of well-watered parents. (2) If DNA methylation

regulates drought-induced transgenerational plasticity,

demethylating offspring should reduce or remove the specific

effects of parental drought on offspring growth without signifi-

cantly altering growth in offspring of well-watered parents.

(Note that (1) and (2) need not be exclusive alternatives.)

(3) If environmentally induced DNA methylation patterns

are genotype specific, then the effect of demethylation on off-

spring expression of parental drought effects should vary

among genetic lines.
2. Material and methods
(a) Parental generation
Twelve genetic lines drawn from five ecologically distinct natural

populations (field environmental data in [52]) were propagated

by self-fertilization and single-seed descent for five generations

under uniform, favourable glasshouse conditions. In the parental

generation, we stratified achenes (1 seeded propagules) from

each inbred line for 28 days in distilled water at 48C to break dor-

mancy, and sowed them in vermiculite-filled flats positioned

randomly on a glasshouse bench in full sun (March 2014).

Individual seedlings were transplanted (approx. 20 d after emer-

gence) into 1 l clay pots filled with a 2 : 2 : 1 mix of sterilized

topsoil: horticultural sand: fritted clay (TurfaceTM, Profile

Products, Buffalo Grove, IL, USA). Soil moisture was maintained

at 100% of field capacity (approx. 31% moisture by weight) for all

plants for one week. We then assigned one seedling from each

highly inbred genetic line to a dry soil environment (approx.

42% of soil field capacity), and another seedling from the same

line to a moist-soil environment (approx. 84% of soil field

capacity). Parental moisture environments were maintained

using an automatic watering system, with pot-specific manual

watering as needed. The 24 parental plants (12 genetic lines �
1 parent per treatment � 2 moisture treatments) were grown

for 53 d, with bench positions re-randomized weekly. Self-

fertilized achenes (offspring) were harvested from each parent

plant, air-dried, and stored with desiccant at 48C [54].

(b) Offspring generation
We individually weighed 24 achenes from each parental plant on

a Cahn C-33 microbalance (Cahn Instruments, Cerritos, CA,

USA), placed them into 96 well plates, and submerged them

in distilled water at 48C for five weeks to break dormancy.

Demethylation treatment was imposed during seed germination.

Achenes were sown in Petri plates (8 August 2014) on solidified
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0.8% agar containing either 0 or 45 mM zebularine (hereafter

referred to as Control and Zebularine germination treatments,

respectively); this zebularine concentration did not disrupt

plant development (electronic supplementary material,

Appendix S1). (Note that 40 mM zebularine reduced global

5-methyldeoxycytidine levels by 15–18% in Medicago truncatula
and A. thaliana; in these plants methylation levels returned to

normal after several weeks’ growth in the absence of zebularine

[47].) Petri plates were placed on a glasshouse bench and their

positions were re-randomized daily.

Six days after germination, we transplanted four replicate seed-

lings from each genetic line � parental environment � germination

treatment combination into individual growth containers filled

with a 2 : 2 : 1 mix of sterilized topsoil: horticultural sand: fritted

clay pre-moistened lightly with 40 ml of water per litre of soil

mix (details in [51]). The total experimental sample was 192

offspring (12 genetic lines� 2 parental moisture treatments � 2

germination treatments � 4 replicate offspring). The seedlings

were placed in a randomized complete-block design in a dual Con-

viron growth chamber (Controlled Environments, Winnipeg,

Manitoba, Canada) at a 258C : 188C 14 : 10 h day : night cycle with

approximately 500 mmol m22 s21 ’photosynthetically active radi-

ation (PAR) daytime illumination. A constant low soil-moisture

level (approx. 40% of field capacity; comparable with the 42% in

the parental generation) was manually maintained for all seedlings.

Seedling positions were re-randomized within blocks weekly; seed-

lings were grown for 21 days.

(c) Data collection
To estimate seed provisioning for each seedling offspring, we

subtracted the mass of the pericarp (retrieved after germination)

from the initial achene mass. This measure thus includes only

embryo and nutritive tissue to most precisely capture provision-

ing [8]. On day 21, aboveground tissues from each seedling were

separated and dried at 1008C for 1 h and then at 658C for greater

than or equal to 48 h before weighing. The following data were

collected for each seedling. The first three true leaves were

scanned on a LI-3100 leaf area meter (LICOR, Inc., Lincoln,

NE, USA), dried, and weighed to estimate specific leaf area

(leaf surface area per unit mass; cm2 leaf/g leaf). Total leaf

area was estimated by multiplying this ratio by the total biomass

of leaves from that plant. We washed root systems free of all soil

mix before measuring total root system length for each seedling

with a Comair optical scanner (Hasker de Havilland, Melbourne,

Australia). Root systems were dried at 658C for greater than or

equal to 48 h and weighed. We calculated seedling biomass as

the sum of shoot and root biomass. Two plants were not

included in the final sample due to insufficient germination,

and one control-germinated plant was removed from the exper-

iment due to abnormal development. Owing to missing data

and the removal of two outliers from the analysis, final sample

sizes for total root length, leaf area, and seedling biomass were

177, 177, and 180, respectively.

(d) Data analysis
We used a linear mixed-effects model to analyse the effects of

parental environment (dry versus moist soil), genetic line, and their

interaction on seed provisioning, treating genetic line and its inter-

action with parental environment as random effects (variance

components estimated by restricted maximum likelihood (REML);

[55]). This approach was also used to analyse the effects on offspring

(seedling) phenotypes of parental environment (dry versus moist

soil), germination treatment (zebularine versus control), genetic line,
and all two- and three-way interactions among these factors,

again treating genetic line and its interactions as random effects.

A significant parental environment � germination treatment inter-

action would indicate that the demethylation treatment altered
the expression of transgenerational plasticity (i.e. that the effect of

dry versus moist parental environment differed if offspring were

germinated in zebularine rather than control conditions). Seed pro-

visioning was included as a covariate in the analyses, and spatial

block was included in the model as a fixed effect.

To assess the effect size of each random effect, we expressed

the variance for each random effect as a percentage of the

remaining variance that was not explained by fixed effects:

(random effect variance/[sum of all random effect variances þ
residual variance]) � 100 [56] (see electronic supplementary

material Appendix S1 for the rationale for forgoing significance

testing of random effects in complex linear mixed-effects

models). If the three-way interaction of genetic line � parental
environment � germination treatment explained a substantial

percentage of remaining variance that would indicate that the

effect of demethylation on the expression of transgenerational

plasticity varied among genetic lines. We set a threshold of

greater than or equal to 10% of variance explained to indicate a

biologically meaningful source of variation, but we report the

actual per cent of variance explained for each effect so that the

reader may set this threshold however s/he sees fit. We verified

(qualitatively) the random effects results obtained from linear

mixed-effects models by running similar analyses in a mixed

ANOVA framework. (Linear mixed models estimate variance

components via maximum-likelihood procedures, in contrast

with the least-squares approach of mixed ANOVA. Note that

linear mixed models provide more robust estimates of random

effects than mixed ANOVA, especially when there are missing

data [55,57].) We also ran linear mixed models within each

germination treatment to calculate the percentage of variance

explained by the genetic line � parental environment interaction.

We used one-way ANOVA to test a priori hypotheses regarding

the effect of parental drought versus moist-soil environments on

offspring within each germination treatment. Visual inspection

of the results suggested that genetic lines that most strongly

increased seedling biomass in response to parental drought

under control germination conditions were also the most inhibited

in their growth when demethylated. We used Spearman’s rank

correlation coefficient to test the significance of this apparent nega-

tive correlation [58]. Mixed-model ANOVAs were performed in

JMP 11 (SAS Institute, Cary, NC, USA). All other analyses were

conducted with R v. 3.1.2 [59]. The nlme package was used to

perform linear mixed-effects models [60].
3. Results
(a) Parental drought did not increase seed provisioning
Offspring of drought-stressed and well-watered parents

had equivalent seed provisioning (electronic supplementary

material, figure S1, parental environment, F1,172 ¼ 0.547, p ¼
0.461). Offspring provisioning did not significantly contribute

to variation in any seedling trait (table 1).

(b) Demethylation removed the adaptive effect
of parental drought stress

On average, the zebularine (demethylating) germination treat-

ment did not alter any seedling traits in offspring of well-

watered parents (figure 1), but did alter the development of

seedlings of drought-stressed parents (cf. significant inter-

action between parental environment and germination treatment
for total seedling root length, leaf area, and biomass, table 1).

Under control germination conditions, as found in previous

studies, the offspring of drought-stressed parents had on

average approximately 20% longer root systems (figure 1a,



Table 1. Effects of parental environment (PE; drought versus moist soil), germination treatment (GT; demethylation versus control), genetic line, and their interactions
on total root system length, leaf area, and seedling biomass from linear mixed-effects models. An estimate of seed provisioning was included as a covariate. The
variance for each random effect is expressed as the percentage of the variance that was unexplained by fixed effects (%Var. ¼ (random effect variance/(sum of all
random effect variances þ residual variance)) � 100). Significance levels for fixed effects indicated as †p , 0.10, **p , 0.01, ***p , 0.001.

fixed effects

total root length (N 5 177) leaf area (N 5 177) seedling biomass (N 5 180)

F p-value F p-value F p-value

parent env. (PE) 0.108 0.743 0.016 0.899 1.390 0.240

germination trt. (GT) 8.634 0.004** 3.135 0.079† 13.485 ,0.001***

PE � GT 6.934 0.009** 7.562 0.007** 7.594 0.007**

seed provisioning 1.041 0.309 0.127 0.721 1.125 0.291

block 5.274 0.002** 23.398 ,0.001*** 8.677 ,0.001***

random effects %Var. %Var. %Var.

genetic line 28.323 23.925 19.771

PE � Line 14.193 13.822 14.822

GT � Line 10.913 18.002 17.262

PE � GT � Line 17.076 23.990 30.566

*
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Figure 1. Demethylation of offspring DNA removes the adaptive effect of parental drought on total root length (a), leaf area (b), and total biomass (c) of individual
seedling offspring grown in dry soil. Means+ s.e. are shown for offspring exposed to 0 mM (control) or 45 mM zebularine during germination. Asterisks indicate
significance of the parental drought effect (one-way ANOVA separately testing the effect of parental environment on control-germinated and zebularine-germinated
seedlings, *p , 0.05, **p , 0.01, n.s., non-significant, see Results section for details). (Online version in colour.)
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F1,90¼ 5.218, p ¼ 0.025), approximately 23% greater leaf area

(figure 1b, F1,89¼ 5.04, p ¼ 0.027), and approximately 16%

greater biomass (figure 1c, F1,91¼ 4.749, p ¼ 0.032) compared

with offspring of the same genetic lines whose parents had

been well watered. By contrast, when germinated in the pres-

ence of zebularine, offspring of drought-stressed parents had

approximately 17% lower biomass (figure 1c, F1,91¼ 8.294,

p ¼ 0.005) as well as non-significantly shorter roots and

lower leaf area (11% and 13% reduction, figure 1a,b, res-

pectively) compared with either control-germinated or

zebularine-treated offspring of well-watered parents.

Demethylation reduced the positive growth effects of par-

ental drought stress on seedling traits more strongly than

expected, resulting in reduced rather than equivalent root

system length, leaf area, and seedling biomass compared with

offspring of non-stressed parents as described above (significant

main effect of germination treatment, table 1). We examined ger-

mination dynamics to test a possible explanation for this

unexpected effect: that offspring of drought-stressed parents
may have experienced a more extreme zebularine treatment

than those of well-watered parents by virtue of germinating

later and consequently remaining longer in the Petri plate.

This was not the case: there was no difference in germination

timing (i.e. number of days between sowing and germination)

between offspring of drought-stressed versus well-watered

parents in the zebularine germination treatment (F1,177 ¼

0.398, p ¼ 0.529). In fact, 114 of the 190 transplanted seedlings

germinated on the same day, and this subsample of seedl-

ings displayed the same pattern of response differences

observed in the full dataset (electronic supplementary mate-

rial, figure S2), indicating that offspring from both parental

environments received equivalent demethylation treatments.

(c) Genetic lines varied in both the effect of parental
drought and its alteration by demethylation

The response patterns of most genetic lines were qualitatively

similar to the general pattern explained above: in most cases,
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parental drought increased offspring biomass, total root

length, and leaf area, and demethylation inhibited this effect

(figure 2; electronic supplementary material, figures S3 and

S4). However, there was substantial variation among genetic

lines in the magnitude of the parental drought effect and

its alteration by demethylation. Under control germination

conditions, parental drought increased seedling biomass

between 5.8% and 48.8% in 11 of 12 lines (figure 2a–j), while

slightly decreasing biomass in one line (figure 2l ) by 4.7%

(within the control germination treatment, genetic line �
parental environment interaction accounted for 23.6% of

variance in biomass after accounting for fixed effects). Lines

in which control-germinated offspring most sharply increa-

sed biomass in response to parental drought stress were

also the most growth inhibited by parental drought stress

when demethylated (figure 3; Spearman’s rank correlation

r ¼ 20.776, p ¼ 0.002). In offspring of well-watered parents,

demethylation caused either no reduction or a slight growth

reduction in most lines but increased biomass substantially in

one genetic line and very slightly in two lines (figure 2a–c).

In two other lines, demethylation had similar effects on off-

spring from both drought-stressed and well-watered parents

(figure 2k,l). This complex pattern of genetic variation for the

effects of parental soil-moisture treatment and DNA methyl-

ation status is reflected in the three-way interaction between

genetic line, parental environment, and germination treatment,
which explained approximately 30.5% of the remaining var-

iance in seedling biomass after accounting for fixed effects

(table 1). Variation in total seedling leaf area revealed very

similar patterns of genotype-specific differences in paren-

tal environment � germination treatment effects, explaining
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approximately 24% of the remaining variance in this trait

after accounting for fixed effects (electronic supplementary

material, figure S4; table 1). Effects of parental drought and

demethylation on total root length varied less among genetic

lines (genetic line � parental environment � germination treatment
explained 17.1% of remaining root length variance; electro-

nic supplementary material, figure S3; table 1). Variance

components for the three-way interactions estimated by

mixed-model ANOVAs were qualitatively similar (though

slightly smaller) to those estimated by REML in linear mixed

models: after accounting for fixed effects, the remaining

variance explained by the three-way interaction was 28.59%

for seedling biomass ( p ¼ 0.007), 15.19% for leaf area ( p ¼
0.064), and 10.47% for total root length ( p ¼ 0.143).
oc.B
283:20160988
4. Discussion
(a) DNA methylation mediates adaptive

transgenerational plasticity in Polygonum persicaria
Results from the control germination treatment showed that

drought-stressed P. persicaria parents produced drought-

adapted offspring, compared with parent plants of the same

genetic lines that had been given ample moisture. This finding

confirmed previous studies documenting adaptive transge-

nerational plasticity to drought stress in this system. Earlier

work showed that offspring of drought-stressed parents devel-

oped longer root systems in dry soil, and extended roots at a

faster rate, compared with offspring of the same inbred genetic

lines whose parents were well watered [51]. Consequently, the

former seedlings had better access to the limited amount of

moisture available in their own dry soil environments, and pro-

duced more biomass than did offspring of well-watered

parents. Note that seedling biomass is a reliable proxy for sur-

vival in this species [24] and is generally a robust seedling-stage

indicator of fitness since early growth differentials generally

increase with age under natural conditions [61]. These effects

of drought stress were found to persist for two generations,

increasing the survival of grandoffspring grown under severe

drought conditions [24]. Such multigenerational inheritance

confirms that these developmental effects are truly transge-

nerational, rather than direct influences of the parental

plant’s environment on its developing seeds.

In this study, control-germinated offspring of drought-

stressed parents likewise produced extensive root systems

in dry soil, allowing them to support greater leaf areas and

produce more biomass than offspring of well-watered

parents grown in the same conditions. These results add to

a growing number of cases in which environmental stress

induces inherited phenotypic effects that enhance offspring

performance under the same stress (e.g. [5–7,62,63]).

Experimental demethylation of offspring DNA removed

these adaptive effects of parental drought, indicating that

DNA methylation is required for the expression of these

inherited environmental effects on offspring development.

Adaptive transgenerational plasticity in this system derives

much of its benefit from the initial advantage that parental

exposure to drought confers on offspring in dry soil at the

outset of their growth and development [51]. These inherited

effects cause seedlings to enhance root extension immediately

after emergence without experiencing a lag time between sen-

sing dry conditions and initiating a response. We removed
this initial advantage by briefly demethylating offspring

with zebularine during seed germination. It is possible

that zebularine could have had effects on the Polygonum
genome in addition to demethylation, such as mobilization

of transposable elements [47], resulting in generalized changes

to seedling development. However, demethylation-induced

transposition or other systemic effects would have occurred

in offspring produced in both parental environments, so the

specific effect of zebularine on offspring of drought-stressed

parents suggests that such accessory treatment effects were

not appreciable. Rather, the results indicate that it is specifically

the inherited effect of parental drought stress that is removed

when DNA methylation levels are experimentally reduced.

DNA methylation is but one process among a suite of

mechanisms that can independently or jointly transmit

environmental effects across generations. Such mechanisms

also include environmentally induced changes in seed or egg

provisions such as starches and proteins, changes to cyto-

plasmic factors including hormones, defensive chemicals,

and other secondary metabolites, and heritable changes to epi-

genetic regulatory molecules such as small RNAs that work in

concert with DNA methylation to regulate gene expression

[16,17,64–66]. In plants, altered provisioning to nutritive seed

tissues is often expected to be the primary mechanism of

both beneficial and maladaptive effects of parental environ-

ment, and indeed is a major source of variation in many

cases [3]. We found no evidence that changes to seed provision-

ing accounted for the inherited effects of parental drought in

this study. Previous studies of P. persicaria that used smaller

genotypic samples found some evidence for drought-induced

changes in provisioning [8,24], suggesting that this effect

occurs in some genetic lines but is not predominant in the

species. In one such study, adaptive transgenerational effects

of drought remained after effects of provisioning were

removed via covariate analysis, confirming that the expres-

sion of transgenerational plasticity in this system relies on

additional mechanisms [24]. Studies in other plant systems

have also identified effects of parental environment that are

independent of seed provisioning [67–69], suggesting that

other regulatory mechanisms may be involved in many cases

of transgenerational plasticity in plants.

Despite a surge of new findings about the role of DNA

methylation in regulating environment-specific gene expression

in plants and animals [35,70,71] only a few studies have tested

whether methylation is involved in mediating adaptive transge-

nerational plasticity. In a study of the perennial plant Boechera
stricta, Alsdurf & colleagues [33] found that parental drought

caused changes in DNA methylation that correlated with

increased drought-tolerance in offspring. These transgenera-

tional changes also correlated with decreased production of

defensive chemicals in offspring, thus implicating epigenetic

inheritance in an ecologically meaningful trade-off between

offspring tolerances to different stresses. A recent study of simu-

lated herbivory in Mimulus guttatus found that demethylation

of offspring DNA removed potentially adaptive maternal, but

not paternal, effects on leaf trichome density in offspring,

suggesting that distinct epigenetic mechanisms regulate inheri-

tance of these effects [45]. DNA methylation has also been

implicated in transgenerationally induced tolerance of salt

stress in A. thaliana [44,72], nutrient deficiency in rice [23],

and resistance to pathogen attack in Nicotiana tabacum [73].

Similarly, a recent study of the aquatic invertebrate Artemia
found that heritable, heat-shock-induced resistance to both
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temperature stress and pathogen infection correlated with heri-

table changes in DNA methylation and histone modifications

[74]. These initial studies suggest that adaptive transgeneratio-

nal plasticity that is regulated by DNA methylation may be

phylogenetically widespread.

(b) Genetic variation for methylation-mediated
transgenerational plasticity

A sample of 12 naturally evolved and then inbred P. persicaria
genetic lines altered offspring to varying degrees in response to

parental drought stress. These genotype-specific environ-

mental responses were mirrored by genotypic differences in

the degree to which demethylation changed the expression

of the parental drought effect. These results suggest that

parental drought stress induces genotype-specific changes

to DNA methylation in offspring, and that it is these methyl-

ation changes that underlie the adaptive transgenerational

phenotypic effects of the stress.

Studies of transgenerational environmental effects com-

monly reveal variation among genotypes for those effects (i.e.

genotype � environment variation for transgenerational plas-

ticity; e.g. [8,13,14]). Our results show that, in some cases,

such transgenerational genotype � environment variation

may result from genotype-specific differences in environmen-

tally induced, inherited DNA methylation changes. As DNA

methylation occurs primarily at cytosine bases in eukaryotes,

variation among genetic lines in cytosine content in or near

either key regulatory sequences or protein-coding genes consti-

tutes genetic differences in the potential for methylation

changes at those loci [66,75,76]. Gene expression can also be

modulated by environmentally induced methylation changes

at nearby transposable elements [29]. Differences in transposon

insertions among genetic lines are, therefore, an additional

avenue for genotype-specific changes in methylation. The gen-

etic lines in our sample may have varied in their susceptibility

to environmentally induced methylation changes due to these

types of local, sequence-based constraints. The recent finding

that, in ants, quantitative differences in DNA methylation

levels are associated with quantitative phenotypic variation

suggests that the genotype-specific frequency of methylated

sites may influence development [46].

Environmentally induced methylation patterns at specific

loci can also be influenced by allelic variation at distant loci

throughout the genome. For instance, a recent study of

within-generation environmental effects in 150 Swedish

A. thaliana accessions found that both cis and trans genetic var-

iants substantially influenced temperature-induced changes in

DNA methylation at hundreds of transposable elements [34]

(see [77] for similar findings in humans). The sequence-

specific nature of those changes points to DNA methylation

as a source of genotype � environment interaction: in other

words, induced methylation changes may translate specific

environmental signals into genotype-specific adjustments in

trait expression. When such environmentally induced methyl-

ation changes are heritable (which appears to be especially

common in plants, [35,36]), they may also underlie the

expression of genotype � parental environment variation.

Our results indicate that DNA methylation plays an inte-

gral role in the expression of genotype-specific effects of

parental drought. Yet it remains unclear precisely what

changes are induced by parental drought and inherited by

offspring. It is possible that drought induces targeted
modifications in DNA methylation in parents that are trans-

mitted through meiosis to shape the expression of adaptive

phenotypes in offspring [71]. In this case, genetic variation

for transgenerational plasticity could reflect either (a) differ-

ences among genetic lines in their potential for methylation

changes (as described above), (b) the transgenerational stability

of those changes, or (c) genotypic differences in their phenoty-

pic impact (or some combination of these effects). In support of

possibility (b), a recent study of DNA methylation transmission

through male gametes in the perennial plant Helleborus foetidus
documented genetic variation for the ability of methylation

marks to persist unchanged through meiosis [78]. However,

changes in DNA methylation may not themselves be inherited,

but instead may be reconstituted by inheritance of other direc-

tive factors such as small RNAs or hormones. These factors

may also be subject to genetic variation in their inducibility,

transmissibility, and/or influence on phenotypes.

The distinct pattern of genotype � parental environment �
demethylation effects in our study may offer additional clues to

the nature of these interactions: genetic lines that most strongly

increased biomass in response to parental drought were also

most strongly inhibited in their growth when offspring of

droughted parents were demethylated. This growth reduction

resulted in 17% lower rather than equivalent biomass (on

average) compared with offspring of well-watered parents.

Demethylation may have revealed a maladaptive developmen-

tal effect of parental drought that is normally overcompensated

by the effects of drought-induced DNA methylation. Alterna-

tively, the genetic lines that most strongly increased offspring

biomass in response to parental drought stress may have had

the fastest root extension rates at the outset of growth. By

initially taking up more water, these seedlings would have

acquired more zebularine immediately after germination

compared with seedlings with slower root extension rates,

potentially reducing seedling growth due to more extreme

demethylation effects than those experienced by smaller

rooted seedlings. However, greater-than-expected reductions

in growth did not occur in all cases, indicating that the removal

of the parental drought effect by demethylation did not stem

simply from enhanced uptake of zebularine.

The genetic differences that we observed in the degree of

adaptive response to parental drought may also stem from

(epi)genetic constraints that limit the ability of some geno-

types to express adaptive transgenerational responses. As a

result of genotype-specific constraints, genotypes may differ

in the specific combinations of plastic trait adjustments they

express in response to a given stress [79]. Genetic lines that

did not express adaptive transgenerational responses to

drought (and those that did so weakly) may express particu-

larly effective within-generation plastic responses to drought

stress, while genetic lines that strongly expressed the adaptive

parental drought effect may be less efficient at mounting an

immediate response to moisture limitation. More broadly,

genetic differences in the expression of within- versus trans-

generational plasticity may derive from differences among

source populations in historical exposure to particular

regimes of environmental change [80]. Recent theory predicts

that adaptive within-generation responses will evolve when

there is high temporal environmental variability, whereas

adaptive transgenerational plasticity is likely to evolve

when environments are stable over generations such that

parents and offspring experience similar conditions [81,82]

(for an empirical example, see [10]).
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By demonstrating a role for DNA methylation in mediat-

ing genotype � environment interactions for adaptive

transgenerational plasticity, this research contributes to the

emerging picture that genetic variation, epigenetic variation,

and environmental cues interactively contribute to adaptive

diversity. Further exploring the interactions between these

factors in naturally evolved systems represents a promising

new direction in evolutionary biology.
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