
rspb.royalsocietypublishing.org
Research
Cite this article: Chung W-S, Marshall NJ.

2016 Comparative visual ecology of

cephalopods from different habitats.

Proc. R. Soc. B 283: 20161346.

http://dx.doi.org/10.1098/rspb.2016.1346
Received: 14 June 2016

Accepted: 22 August 2016
Subject Areas:
ecology, evolution

Keywords:
cephalopod, microspectrophotometry,

spectral tuning, opsin
Author for correspondence:
Wen-Sung Chung

e-mail: w.chung1@uq.edu.au
Electronic supplementary material is available

online at doi:10.6084/m9.figshare.c.3461775.

& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Comparative visual ecology of
cephalopods from different habitats

Wen-Sung Chung and N. Justin Marshall

Queensland Brain Institute, The University of Queensland, St Lucia 4072, Australia

W-SC, 0000-0003-0943-8933

Previous investigations of vision and visual pigment evolution in aquatic

predators have focused on fish and crustaceans, generally ignoring the

cephalopods. Since the first cephalopod opsin was sequenced in late

1980s, we now have data on over 50 cephalopod opsins, prompting this

functional and phylogenetic examination. Much of this data does not specifi-

cally examine the visual pigment spectral absorbance position (lmax) relative

to environment or lifestyle, and cephalopod opsin functional adaptation and

visual ecology remain largely unknown. Here we introduce a new protocol

for photoreceptor microspectrophotometry (MSP) that overcomes the diffi-

culty of bleaching the bistable visual pigment and that reveals eight

coastal coleoid cephalopods to be monochromatic with lmax varying from

484 to 505 nm. A combination of current MSP results, the lmax values pre-

viously characterized using cephalopod retinal extracts (467–500 nm) and

the corresponding opsin phylogenetic tree were used for systematic com-

parisons with an end goal of examining the adaptations of coleoid visual

pigments to different light environments. Spectral tuning shifts are described

in response to different modes of life and light conditions. A new spectral

tuning model suggests that nine amino acid substitution sites may determine

the direction and the magnitude of spectral shifts.
1. Introduction
No other creature in the animal kingdom can beat the versatility of coleoid

cephalopod dynamic coloration and camouflage [1]. Although coleoids can

display complex colour patterns on their skin, behavioural, physiological and

anatomical studies indicate that most are colour-blind [2–4]. For instance,

Messenger [2] demonstrated that the common reef octopus, Octopus vulgaris,

was capable of recognizing objects based on brightness levels, but failed in

all colour discrimination trials. Similar results were found in the common Euro-

pean cuttlefish, Sepia officinalis, where animals showed different body patterns

to match the background using intensity instead of wavelength cues [3,4].

Morphological examinations demonstrate that most coleoids apparently pos-

sess a single photoreceptor type and that these are in some ways similar to the

rod-dominant retina of deep-sea fish [5,6]. Coleoid visual pigments are, however,

embedded in microvillar type photoreceptors, as also found in other invertebrates

such as crustaceans or insects [7–9]. The visual pigment rhodopsin consists of a

chromophore linked to an opsin, and their specific combinations determine the

peak of the spectral absorbance (lmax) and the shape of the absorbance spectrum

of the visual pigment [10–14]. Two methods have been commonly used to deter-

mine the lmax of cephalopod visual pigment: spectrophotometry of detergent

extracts of visual pigment (ESP) and photoreceptor microspectrophotometry

(MSP) [8,13,15,16]. It is clear that most cephalopods have only one blue-green-

sensitive visual pigment where the range of lmax value is similar to the rod

photoreceptors in fish (approx. lmax 470–505 nm; table 1) [10,11,13,16,21–23].

While most cephalopods use retinal (A1 chromophore) to make visual pigment, a

small group of mid-water squid (enoploteuthid and bathyteuthid) construct
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multiple visual pigments using different chromophores,

3-dehydroretinal (A2 chromophore) and 4-hydroxyretinal

(A4 chromophore), to expand their spectral range and

potentially distinguish colours [8,15].

Visual pigments are a frequently used model system for

learning how protein variations alter sensory function and phe-

notype and mediate the requirements of vision [6,9–11,24].

Adaptive variation in visual pigment and spectral sensitivities

are of particular interest in respect to visual ecology and molecu-

lar evolution in both vertebrates and invertebrates [9–11,24,25].

A growing number of cephalopod opsin sequences, particularly

coleoids, are available in the GenBank database [11,26–28];

however, lack of lmax information in most sequenced coleoid

opsins makes available molecular data of limited use. Therefore,

the phylogenetic tree of coleoid opsin cannot be reliably used to

reflect functional adaptations with respect to light environments

and modes of life.

Coleoid cephalopods are attractive for studying the evol-

ution of vision as they have camera-like eyes, sharing many

similarities in optics, anatomy and function with fish, while

having evolved these parallels through convergence [5,26].

In contrast with fish rhodopsins, which have been extensively

investigated [10,29], knowledge of the comparative functional

adaption of coleoid visual pigments remains sparse. Our goal

in this study was to investigate spectral adaptation in differ-

ent habitats. We tested the hypothesis that habitat and

corresponding light conditions drive the spectral tuning of

coleoid cephalopods.

In order to achieve this, first, a new MSP protocol was

developed to make direct measurement of spectral sensitivity

in eight species of coastal coleoids and characterize the spec-

tral sensitivity of photoreceptors across many retinal regions.

Second, the opsin phylogenetic trees and the relationship

between lmax and environmental characters revealed that

spectral tuning occurs in the decapodiform coleoids, whereas

octopods do not show similar adaptation. The spectral sensi-

tivity of these decapodiforms shows depth-dependent

spectral changes linked to their dwelling realms and modes

of life. Furthermore, with opsin sequence alignments and

multiple comparisons of amino acid replacements, we pro-

posed that nine amino acid substitution sites are likely to

determine the direction and the magnitude of spectral shifts

in coleoid visual pigments.
2. Material and methods
(a) Animals
Five coastal coleoids—Idiosepius notoides, Euprymna tasmanica, Sepio-
teuthis lessoniana, Sepia plangon and Octopus australis—were collected

using a seine net (water depth 1–3 m) close to Moreton Bay Research

Station, Stradbroke Island, Queensland. Another three octopus

species—Callistoctopus dierythraeus, Hapalochlaena maculosa and

Octopus tetricus—were collected in Moreton Bay (water depth

5–10 m) by a local shellfish supplier (Queensland Sustainable

Sealife). Habitats and living depth range of selected animals are

listed in table 1. Animals were maintained in a 400 l tank of artificial

seawater lit by standard daylight fluorescent tubes on a 12 L : 12 D

cycle and used for MSP within a week of capture.

(b) Retinal preparation
Hubbard & St George [13] found that the photochemical reactions

of squid rhodopsin and photo-products were pH-dependent
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in vitro. Using this feature, different mounting solutions were

employed to examine the photosensitivities of coleoid photo-

receptors as follows: (i) standard mounting solution (0.1 M

phosphate buffer saline (PBS) (17–515DPBS, Lonza, USA) mixed

with 6% sucrose, pH 7.4); (ii) alkaline mounting solution (pH of

standard mounting solution is adjusted to 10 using 0.1 M

NaOH); (iii) diluted hydroxylamine solution (50% w/v hydroxyl-

amine solution (Merck, Germany) diluted using 0.1 M PBS to

25%, 10% and 1%).

Animals were dark-adapted overnight prior to the retinal

preparation for MSP. The specimen was anaesthetized in cold

seawater mixed with 2% MgCl2 and then decapitated. Under

dim red illumination, eyecups were removed and equally

divided into four quadrants. Three retinal samples of each

quadrant were selected and embedded in 10% sucrose mixed

with the optimal cutting temperature compound (OCT)

(Tissue-Tek, Sakura Finetek, USA) for cryosectioning at 2208C
also under dim red illumination. Transverse sections of the

retina (12 mm thickness) were collected with a coverslip (22 �
64 mm #1, Menzel-Glaser, Germany). With a drop of mounting

solution, the sample was covered with a circular glass coverslip

(10 mm diameter #0, Chance Propper, UK) and sealed with

silicone vacuum grease.

(c) Microspectrophotometry operation and data analysis
Operation of MSP followed a standard protocol developed for

vertebrate or invertebrate photoreceptors [30,31]. The measuring

light beam was set to a size of around 2 � 15 mm and placed par-

allel to the long axis of the rhabdome. Baseline and sample scans

were made from tissue-free and cellular regions of the prep-

aration, respectively. Subsequently, the visual pigments were

bleached using a white light beam. The bleaching process was

repeated in some cases until effective visual pigment bleaching

occurred. Best-fit visual pigment nomograms were used to deter-

mine the lmax of each sample following the methods developed

by MacNichol [32], Govardovskii et al. [12] and Hart et al. [31].

Data from three or more individual measurements were

averaged (electronic supplementary material, table S1).

A hypsochromic shift (blue shift, approx. 5 nm) introduced

by the visual pigment purification process and detergent extrac-

tion has previously been reported in measurement of lmax in

several animals including cephalopods [7,12]. In an effort to

determine the variance in coleoid lmax between two methods,

comparisons of ESP and the current MSP data across four coastal

coleoid groups were then used to determine the offset value for

further analyses.

(d) Phylogenetic analyses
Determination of cephalopod phylogenetic relationships fol-

lowed the classification published by Allcock et al. [33]. In

order to cover the major lineages of cephalopod, 28 sequenced

opsins from 10 orders were downloaded from GenBank

(table 1) for analyses, including representatives inhabiting differ-

ent light environments [18–20]. All these selected samples

include 12 full-length opsin transcripts and 16 partial opsin

transcripts (more than 198 amino acids in the transmembrane

region). Alignments of opsin were constructed from amino acid

sequences using the multiple sequence alignment (MUSCLE)

method with MEGA 6 (molecular evolutionary genetics analysis

program v. 6.06-Mac) [34] and then refined visually using

numerous highly conserved amino acid sites. Nautilus pompilius
was used as the outgroup. Two types of opsin trees were con-

structed: (i) using 12 full-length opsin transcripts and (ii) using

partial opsin transcripts by 28 species. The phylogenetic tree of

cephalopod opsin was generated by the maximum-likelihood

method and the bootstrap confidence values (1000 replicates)

were calculated with MEGA 6 [34].
The phylogenetic signal was estimated with Pagel’s l using

the package CAPER v. 0.5.2 of the software program R v. 3.2.3

as implemented in the RStudio v. 0.99.891 (2016). The relation-

ship between lmax and environmental characters (electronic

supplementary material, table S3) was determined using the

phylogenetic generalized least-squares (PGLS) method with the

CAPER package in RStudio.
(e) Sequence analyses and site predictions responsible
for spectral tuning

The numbers of amino acid sites which differed among

12 full-length cephalopod opsins were summed in four ways as

follows: (i) the total number of sites that differed; (ii) the

number of differences occurring within the transmembrane

regions; (iii) the number of difference at sites within the

chromophore binding pocket; (iv) the number of sites in the chro-

mophore binding pocket which differed in amino acid polarity.

Potential functional amino acid substitutions were searched for

by comparing known key tuning sites [11]. In addition, substi-

tutions differing in amino acid polarity in the chromophore

binding pocket were identified by multiple comparisons of

amino acid alignments and then inspected using the function

of estimate position-by-position rates in MEGA 6 [34].
3. Results
(a) Photochemistry reactions under different mountants
Comparisons of lmax values obtained from initial absorbance

measurements in different mountants showed no significant

difference within species (e.g. I. notoides, less than 4 nm,

n ¼ 30; figure 1). However, the photo-chemical reactions of

visual pigment in each of the three mountants were different,

particularly the reaction speed and the associating spectral

absorbance of the photo-products (figure 1).

The bleaching procedure using the diluted hydroxylamine

solution (pH 9.8–11) was remarkably fast. Thirty seconds of

white light irradiation sufficiently bleached visual pigments

as indicated by a significant drop in the main absorbance

peak at, for example, 492 nm, and a peak of photo-

product appearing at short wavelengths (approx. 360 nm)

(figure 1b–d). Irradiation using this method also caused a

large area of partially bleached visual pigments near the

beam, making it difficult for subsequent MSP measurements.

This method was therefore rejected.

Using a standard PBS mountant, repeated exposure to

bright white light for at least four 5 min periods was required

for significant effect of bleaching, resulting in 2–4 nm of spec-

tral peak shift between the paired scans (rhodopsin versus

acid-metarhodopsin; figure 1e). After long periods of

irradiation, over 90% of scans showed movement artefacts

between the paired-measurements (n ¼ 75), again making

this method not ideal for accurate MSP.

The alkaline mountant shortened the duration of the

bleaching process and revealed distinctive changes in spectra

and peak positions between scan pairs. A 2 min white

light irradiation was sufficient to bleach visual pigments

(figure 1f ) and the partially bleached area around the beam

was reduced to approximately 50 mm diameter, allowing

effective measurement of neighbouring photoreceptors. This

method was therefore chosen as the best for subsequent

species comparisons.



1.2

no
rm

al
iz

ed
 a

bs
or

ba
nc

e
no

rm
al

iz
ed

 a
bs

or
ba

nc
e

no
rm

al
iz

ed
 a

bs
or

ba
nc

e

no
rm

al
iz

ed
 a

bs
or

ba
nc

e
no

rm
al

iz
ed

 a
bs

or
ba

nc
e

l m
ax

 (
nm

)

lmax differences between ESP and MSP

1.0

0.8

0.6

0.4

0.2

–0.2

1.2

1.0

0.8

0.6

0.4

0.2

–0.2

0
350 450 550 650 750

350 450 550 650 750

1.2

1.0

0.8

0.6

0.4

0.2

–0.2

0
350 450 550 650 750

1.2

(a) (b)

(c) (d)

(e)

(g)

( f )

1.0

0.8

0.6

0.4

0.2

–0.2

0
350 450 550

wavelength (nm) wavelength (nm)

650 750

1.2

1.0

0.8

0.6

0.4

0.2

–0.2

510

500

490

480

470
bobtail squid

E493(n = 2)

M499(n = 1)

E495(n = 7)
E495(n = 4)

E499(n = 1)

M503(n = 1)

M486(n = 4)

E477(n = 5)

loliginid squid cuttlefish octopod

0
350 450 550 650 750

0

10% hydroxylamine
pH 10.6

pH 7.4 pH 10

1% hydroxylamine
pH 9.8

25% hydroxylamine
pH 11

Rh

S

Figure 1. Samples of coleoid microspectrophotometric measurements using different mountants (I. notoides). (a) A sample of the MSP retinal preparation seen via an
infrared image converter. Arrowhead indicates the light beam; S, screening pigment granules; Rh, rhabdominal layer. Scale bar, 20 mm. (b – d) Mean pre-bleached
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(b) lmax from microspectrophotometry
Using the new MSP protocol developed here (alkaline moun-

tant), visual pigment distribution across the retina was
mapped in eight coastal coleoid species (table 1; electronic

supplementary material, table S1). No difference was found

between visual pigment absorbance over any of the retinal
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areas examined within each species (electronic supplementary

material, table S1). The spectral sensitivities between species

can be categorized into two groups: (i) lmax close to 485 nm

in four coastal octopods (484–488 nm); and (ii) lmax close to

500 nm in four coastal decapodiform coleoids (493–504 nm).

In addition, the MSP results showed that lmax values are con-

sistently longer (approx. 6 nm) than ESP data where four

groups of coleoids were examined with both methods

(figure 1g). As a result, for effective comparison, previous

ESP data were offset by 6 nm prior to the following analyses.

(c) Cephalopod opsin analyses and correlation
of lmax with habitat

Estimation of the phylogenetic signal, Pagel’s l, showed

similar results in two opsin trees, representing a strong

phylogenetic relationship where Pagel’s l ¼ 0.9637 for 12

full-length opsin transcripts (test of l ¼ 1, p ¼ 0.64) and

0.9247 for 28 partial transcripts (test of l ¼ 1, p ¼ 0.11),

respectively. In contrast with the ancestral form of visual pig-

ment of Nautilus (lmax 473 nm) [17], the spectral sensitivity of

coleoids possesses some degree of bathochromatic (longer

wavelength) shift (8–32 nm; figure 2). Phylogenetic linear

regression showed that their lmax changes to longer wave-

lengths are correlated with habitat (PGLS, n ¼ 12, adjusted

R2 ¼ 0.2204, t ¼ 22.17, p ¼ 0.058; PGLS, n ¼ 28, adjusted

R2 ¼ 0.35, t ¼ 23.62, p , 0.002; electronic supplementary

material, tables S3 and S4).

Another analysis focused on 19 decapodiform opsins

which revealed a weak phylogenetic signal, Pagel’s l ¼

0.2705 (test of l ¼ 1, p , 0.001). However, the corresponding

PGLS analysis showed again that the lmax values are strongly

correlated with habitat (PGLS, n ¼ 19, adjusted R2 ¼ 0.7176,

t ¼ 24.9506, p , 0.0002), most particularly the ambient light

conditions of their habitat (table 1; electronic supplementary

material, tables S3 and S4).

Both opsin trees showed that a close relationship exists

between oegopsid and sepiolid opsins despite their spectral

sensitivity differentiating by more than 10 nm, indicating

that amino acid substitutions between these two groups

could be the key sites in determining spectral tuning. A com-

parison of 12 full-length opsin sequence alignments revealed

a high degree of conservation in both cytoplasmic and extra-

cellular loops as well as TM1, 2, 6 and 7 (tables 2 and 3;

electronic supplementary material, table S2). The numbers

of amino acid sites that differed among 12 species are

summed in table 2. Examining Nautilus first, the ratio of

amino acid substitutions between the transmembrane and

non-transmembrane region is close to 1 : 1 among 12

cephalopods. Comparing within the 11 coleoid species,

more differences of amino acid substitutions were observed

in the transmembrane regions (approx. 60%; electronic sup-

plementary material, table S2). Along with the substitutions

in the transmembrane region within the 11 coleoids, changes

located in the chromophore-binding pocket versus those out-

side the pocket were more frequent at a ratio of 7 : 3. In

addition, 28 sites in the transmembrane region were ident-

ified with more variability than the rest of the amino acid

sites (table 3). Taking into account the numbers of sites

where substitutions altered the amino acid polarity and the

tuning model developed by Bellingham et al. [11], nine sites

of particular importance in coleoid opsin function are

suggested (tables 3 and 4).
4. Discussion
The new MSP protocol established here (alkaline mountant)

significantly accelerates the bleaching process and makes

assessment of cephalopod spectral sensitivity more accurate.

As the spectral peak of alkaline metarhodopsin appears at

much shorter wavelengths separated from the main peak of

the visual pigment, one major difficulty in determining an

isolated spectral curve for rhodopsin is resolved. In most

invertebrates, a bistable metarhodopsin is formed on

exposure to light and this method may be useful in other

invertebrate taxa also.

Aside from this methodological advance, the direct MSP

evidence presented here indicates that the eight species of

coleoid examined all possess a single visual pigment. As a

result, unless the unlikely optical solution for colour vision

recently suggested by Stubbs & Stubbs [35] can be proved,

colour-blindness remains a common feature in all examined

coastal coleoids so far.

As many coastal coleoids live in shallow waters and are

under intense predatory pressure, it is perhaps surprising

that they have not evolved colour vision for predatory avoid-

ance, mating interactions or indeed their own also very

aggressive predatory feeding style [1]. They are famously

masters of camouflage, a strategy that presumably is used

in all these necessary behavioural interactions. Aside from

spending most of their time hidden, ‘dressed’ in effective

camouflage, octopus and cuttlefish can easily switch color-

ation into high-contrast black and white patterns to

emphasize their existence, startle potential threats or attract

mates [1]. In addition, it has recently been suggested that

coleoids have developed polarization vision and polarization

signals in place of colours [36,37]. As the cephalopods were

among the first animals to evolve complex visual abilities, it

is fascinating to speculate that polarization vision may have

evolved before colour vision and indeed in shallow water

environments it has some advantages [36,37].

Bellingham et al. [11] developed the first spectral tuning

model for coleoids. Although their model suggests that there

are four main substitution sites (127, 167, 205 and 270) critical

in spectral tuning (table 3), the substitution occurring at the

site 205 (F205Y indicating from phenylalanine to tyrosine at

site 205) was only found in one species (table 2 in [11]). Our

current study also noted that F205Y was only found in one

other pelagic species, Illex coindetii, suggesting that this site is

unlikely to be critical in coleoid spectral tuning. In addition,

three of the other sites proposed by Bellingham et al. were

then further tested here to see whether the estimated lmax

values using their model are well matched with the current

MSP results. Our MSP results for S. lessoniana are well matched

with the estimated lmax (approx. 500 nm), as are the results for

the octopods (approx. 485 nm). However, a mismatch between

the Bellingham et al. estimated lmax and current MSP results

was found in cuttlefish (D10 nm), bobtail squid (D12 nm)

and pygmy squid (D7 nm). Along with these mismatched

lmax estimates, two other inconsistencies between our results

and the Bellingham et al. model are identified. First, align-

ments of 28 opsin sequences showed that the substitution of

F270S and the resulting 5 nm green-shift only occurred in

Alloteuthis subulata. It is also not possible to explain how the

other 13 coastal decapodiform coleoids studied here possess

the green-shifted lmax without the substitution F270S.

Second, the substitution at site 127 and its hypothesized
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Table 2. Amino acid changes among cephalopod opsins.

among 12
cephalopods

among 11
coleoids

among 8
decapodiforms

among 3
myopsids

among 3
octopods

total numbers of AA differences 188 123 80 29 15

total numbers of AA differences in the

transmembrane region

105 72 43 18 14

total numbers of AA differences in the

chromophore-binding pocket

54 44 29 12 7

total numbers of AA polarity changes in

the chromophore-binding pocket

26 20 12 3 3

Table 3. Estimates of the potential tuning sites in coleoids.

transmembrane
helices

sites with high relative evolutionary rate
estimated by MEGA 6

known tuning sites (Bellingham
et al. [11])

possible tuning sites
(amino acid polarity
changes)

TM1 36, 50, 54

TM2 98

TM3 105, 113, 120, 127 127, (A127S or A127 T, 12 nm shift) 105, 127

TM4 161, 164, 165, 167 167, (A167S, 22 nm shift) 165, 167

TM5 195, 196, 202, 206, 207, 208, 210, 211, 214, 217 205 (F205 T, 0 nm shift) 195, 196, 210, 211, 214

TM6 254, 258, 268, 271, 279 270, (F270S, 5 nm shift)

Table 4. List of possible tuning sites in determining spectral shifts of coleoid.

group

possible tuning sites (amino acid substitutions)

105 127 165 167 195 196 210 211 214

Idiosepiida (lmax 493 nm, 1 species) M S M A P S M L I

Sepiolida (lmax 499 nm, 1 species) H A L A Y A C F T

Myopsida (lmax 500 nm, 3 species) N/Q T I/T A A/S/T S/T M C/F I/V

Sepiida (lmax 499 nm, 2 species) M/N A/S L S S/Y A/V C F L

Oegopsida (lmax 487 nm, 1 species) F A L A S T F G L

Octopoda (lmax 485 nm, 3 species) K A V S S/P N/S M L I/V
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12 nm shift is also problematic, particularly in decapodiforms.

This substantial suggested shift underestimates the sepiolid’s

lmax, whereas the lmax of pygmy squid is overestimated. Thus,

it is clear that these three proposed sites of the Bellingham

et al. model alone cannot explain the spectral changes of coleoids,

indicating the existence of additional mechanisms in coleoid

spectral tuning.

Both of the opsin trees generated in our analysis show a

close relationship between oegopsids and sepiolids, however,

their spectral sensitivities are more than 10 nm variation

(figure 2). These groups contain diverse species with a

broad geographical distribution. Their habitats range from

coastal waters (less than 100 m) to mid-water (200–1000 m),

where ambient brightness could vary over 1000 times and
the spectral range or colour of the water they inhabit may

vary from green to blue [6,38,39].

PGLS results also indicate that the lmax of mid-water

squid is most likely to be the result of adaptation to blue

open ocean realms they inhabit and is similar to spectral

tuning adaptations found in many deep-sea fishes [10,23].

This also indicates that the amino acid replacements occur-

ring between these two coleoid groups are likely to be

those responsible for spectral tuning to different habitats.

To date, the full-length opsin transcripts are only available

in Todarodes pacificus and Euprymna scolopes, whereas the

other available opsins in these two groups contain a large

portion of unsequenced opsin-coding regions. The nine

amino acid substitution sites potentially critical in coleoid
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spectral tuning proposed in this study therefore have to be

further tested when full-length opsins can be matched to

corresponding MSP or ESP.

Finally, it is worth noting that Strugnell et al. [27] discov-

ered a close relationship between octopod opsins, grouping

coastal and deep-sea octopods in the same cluster of the

opsin tree (appendix 2 in [27]). Both these results and ours

suggest that the octopods respond less to changes in light

environment than do squid or cuttlefish. One possible expla-

nation for this is the generally benthic foraging behaviour of

octopods that often relies on tactile and chemoreception input

more than vision. In contrast to the visual predators (e.g.

squid and fish) that rely on visual information [6,10], octopod

vision might therefore be under reduced selection pressure, at

least in terms of tuning lmax to precisely match the dominant

spectra of their realm.

In summary, all examined coastal coleoids possess a

single visual pigment, indicating an inability to distinguish

colours in these visual predators. Our current data also
show that coleoid opsins have undergone spectral tuning in

decapodiforms, whereas octopod visual pigments are not

tuned to match with their dwelling light conditions. Further-

more, the low substitution rate of opsin and monochromacy

of coleoids make using their opsin genes combined with

spectral measurement an effective molecular marker in

studying functional adaptation and evolutionary history in

these remarkable creatures.
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