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Muscle contractions that load in-series springs with slow speed over a long

duration do maximal work and store the most elastic energy. However, time

constraints, such as those experienced during escape and predation beha-

viours, may prevent animals from achieving maximal force capacity from

their muscles during spring-loading. Here, we ask whether animals that

have limited time for elastic energy storage operate with springs that are

tuned to submaximal force production. To answer this question, we used a

dynamic model of a muscle–spring system undergoing a fixed-end contrac-

tion, with parameters from a time-limited spring-loader (bullfrog: Lithobates
catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca
gregaria). We found that when muscles have less time to contract, stored elastic

energy is maximized with lower spring stiffness (quantified as spring

constant). The spring stiffness measured in bullfrog tendons permitted less

elastic energy storage than was predicted by a modelled, maximal muscle

contraction. However, when muscle contractions were modelled using biologi-

cally relevant loading times for bullfrog jumps (50 ms), tendon stiffness

actually maximized elastic energy storage. In contrast, grasshoppers, which

are not time limited, exhibited spring stiffness that maximized elastic energy

storage when modelled with a maximal muscle contraction. These findings

demonstrate the significance of evolutionary variation in tendon and apodeme

properties to realistic jumping contexts as well as the importance of consi-

dering the effect of muscle dynamics and behavioural constraints on energy

storage in muscle–spring systems.
1. Introduction
In most cases, muscle contractile force is transmitted to skeletal structures through

elastic structures, inextricably coupling muscle and spring dynamics. Many ani-

mals use muscles to temporarily store energy in their springs, such as tendons,

and the stored energy can be recovered later to help power movement. The time

available for muscles to load in-series springs is important, because stored elastic

energy is proportional to force, and muscle force declines with contraction velocity

[1]; therefore, the force capacity, and consequently the energy storage capacity, of

the system is limited by muscle velocity and activation dynamics. Some animals

store elastic energy over long time periods prior to movement [2–4], whereas

others use power amplification systems with time-limited storage phases [5–7].

Given that the time available for spring-loading varies across animals and

movement types, the relationship between spring properties such as mechanical

spring stiffness (defined as spring constant and referred to simply as ‘stiffness’

in this study) and muscle-loading dynamics may impact performance (figure 1).

For example, in situations where rapid spring-loading is beneficial (e.g. escape

jumps and predatory ambushes), organisms may not have enough time to fully

load their springs before the onset of movement. Although these organisms are

not generating maximal muscle force, it is possible that their muscle–spring prop-

erties maximize elastic energy storage for submaximal force production. Few
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Figure 1. During a fixed-end contraction of a muscle – spring system, the stored elastic energy depends on spring stiffness and the force the muscle generates. (a) At rest,
the maximum force the muscle can generate (red circle) is much higher than the force of the spring (blue circle). While the muscle contracts, maximum muscle force (red
line) decreases due to the muscle’s length – tension properties, and the spring is stretched, thereby increasing spring force. Maximum force capacity is reached when
maximum muscle force and spring force coincide. (b) When given infinite time for contraction, all spring systems reach maximum force capacity and intersect with the
muscle’s length – tension curve (red line). In this example, the stored energy (area of the triangle formed) is higher in the stiffer spring system (light blue; k2) than the
more compliant system (dark blue; k1). (c) This relationship changes, however, when contraction duration is reduced to 75 ms, because the muscle does not reach
maximum force production in this duration owing to muscle velocity and activation effects. At this shortened duration, the less stiff spring system (k1) stores more
energy. The present study tests this proof-of-concept demonstration. (Online version in colour.)
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studies have examined the evolutionary variation of spring

properties [8,9], yet the diversity of elastic systems suggests a

range of mechanical, functional and behavioural influences on

their form and function.

Here, we test whether and how springs are tuned differently

to permit maximal energy storage for time-limited, submaximal

force production versus non-time-limited, maximal muscle con-

tractions. We developed a dynamic muscle–spring simulation

of a fixed-end contraction (figure 1) and used it to compare

time-limited (bullfrog: Lithobates catesbeiana) and non-time

limited (grasshopper: Schistocerca gregaria) jumping systems.

Both frogs and grasshoppers require elastic elements to achieve

their high-power jumping performance [10–13]. Bullfrogs

exhibit time-limited jumps in which a fast response is necessary,

whereas grasshoppers perform longer-term muscle contractions

in advance of movement and thus are less impacted by time

limitations. We used existing, published data from these

muscle–spring systems [10,14,15] to simulate spring-loading

over a range of allowable storage times. We addressed the follow-

ing two questions. (i) How does variation in the time available for

muscle contraction influence the amount of energy stored in

springs with different stiffness? (ii) Do the values of spring stiff-

ness of bullfrogs and grasshoppers maximize energy storage

given the distinct loading regimes of their jumping behaviour?
2. Methods
We ran simulations of bullfrog and grasshopper muscle–spring

systems with varying spring stiffness (ksimulation) and determined

which ksimulation resulted in maximal energy storage (kmaxE). We

focused on spring stiffness, because this single value determined
the relationship between force and spring stretch. Additionally,

because spring stiffness is a mechanical property, it allowed us

to compare the mechanical behaviour of springs that are com-

posed of different materials. We omitted the duration of muscle

contraction using static models and included the duration of

muscle contraction using dynamic models. After all simulations

were run, we compared published results of spring stiffness

from bullfrog tendons (Kbullfrog) and grasshopper apodeme-

cuticular springs (Kgrasshopper) with the results of the simulations.

Below, we outline how the simulations predicted energy storage in

muscle–spring systems as a function of ksimulation.

Two factors, spring stretch (Dxs) and spring stiffness

(ksimulation), were required in order to calculate stored energy:

energy ¼ 1

2
ksimulationDx2

s : ð2:1Þ

Determining Dxs was complicated by the interaction between

muscle and spring. For example, an increase in ksimulation

suggested higher energy storage (equation (2.1)); but springs

with higher values of ksimulation stretch less for a given muscle

force. Consequently, it was possible to increase ksimulation such

that the resulting decrease in Dxs reduced stored energy. There-

fore, to account for the interactions between muscle and spring,

we developed the following muscle–spring model.
(a) Muscle – spring model
We simulated dynamics within muscle–spring systems by con-

necting, in series, a model of a muscle to a model of a spring

(figure 1). Specifically, we connected a Hill-type muscle to a

Hookean spring [1,5,16]. We kept constant the muscle properties

across all simulations while varying the spring stiffness, ksimulation.

Muscle and spring models were mathematically connected

and implemented in R (v. 3.2.1, Vienna, Austria). In the following
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Figure 2. In the Hill-type muscle model, force depends on three components: length, velocity and activation. The contributions of each component are
mathematically defined in equations (2.2) – (2.4). Each plot was generated using properties of bullfrog plantaris longus muscle.
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sections, we explain how different instances of the model were

used to predict force and elastic energy storage over a range of

contraction scenarios.
(i) Hill-type muscle model
We used a Hill-type muscle model to predict muscle force as a

function of three factors: muscle length, muscle velocity and

muscle activation [5]. The relative contributions to muscle force

by these three factors are described by equations (2.2)–(2.4):

Flength(Dxm, L0, aL, bL, s) ¼ e�ðjðððxmÞbL Þ�1Þ=sjÞaL

, ð2:2Þ

Fvelocity(v, av, bv) ¼ 1� ðv=vmaxÞ
1þ ðv=ðvmax=4ÞÞ ð2:3Þ

and

Factivation(tcontraction, ract) ¼
ract � tcontraction : ract � tcontraction , 1

1 : ract � tcontraction � 1

�

ð2:4Þ

where xm is the length of the muscle with units of muscle lengths;

aL, bL and s are phenomenological parameters that were fitted to

describe the shape of the muscle’s length–tension curve; v is

muscle shortening velocity (Dxm/Dt); vmax is the maximum short-

ening velocity of muscle contraction; tcontraction is the time the

muscle has been contracting; and ract is the linear rate of

muscle activation. We used each of these three functions in the

Hill-type muscle model to scale maximum force production;

therefore, these functions were evaluated from 0 to 1 and

represented the fraction of maximum force that was produced

by a single component (i.e. length, velocity or activation)

independent of all others (figure 2).

Each of the factors impacting muscle force production were

combined to estimate muscle force (Fmuscle) by multiplying the

results of equations (2.2)–(2.4) with each other and the maximum

tetanic force of the muscle (Fmax),

Fmuscle ¼ Fmax � Flength � Fvelocity � Factivation: ð2:5Þ

In this model, maximum tetanic force was generated when each

of the constituent effects on muscle force (Flength, Fvelocity and

Factivation) equalled 1.
(ii) Hookean spring model
We represented the series elastic component of the muscle–

spring model with a linear, Hookean spring. Although biological

springs are not Hookean, many springs, including those of bull-

frogs and grasshoppers, approximate linear behaviour over a
significant region of the force–displacement curve [10,17]. For

this model, spring force was determined only by the displace-

ment through which it is stretched (Dxs) and the spring

stiffness (ksimulation):

Fspring ¼ �ksimulationDxs: ð2:6Þ

(iii) Static muscle – spring model
We allowed the muscle and spring models to interact by setting

two groups of variables equal: Fmuscle equalled Fspring, and the

muscle shortening length change equalled the negative of spring

stretch length change (i.e. Dxm ¼ 2Dxs; see figure 1 for schematic):

Fmax � Flength(Dxm, L0, aL, bL, s) � Fvelocity(v, vmax)

� Factivation(tcontraction, ract) ¼ �ksimulationDxs: ð2:7Þ

To simplify the model, variables that described muscle proper-

ties (i.e. variables that were only used to determine the shape of the

Hill-type muscle components) were held constant for a given

muscle. We further simplified equation (2.7) to represent a static,

steady-state solution by setting the dynamic components (Factivation

and Fvelocity) to 1:

Fmax � Flength(Dx, L0, aL, bL, s) ¼ �ksimulationDx, ð2:8Þ

with Dx ¼ Dxm ¼ 2Dxs.

Solving for Dx in equation (2.8) resulted in the maximum

internal stretch of that particular spring by its in-series muscle.

This value was used to calculate maximum stored elastic energy

in the static simulations, the case in which contraction time to

store spring energy is not limited (see figure 1 for schematic).

(iv) Dynamic muscle – spring model
The dynamic muscle–spring model was identical to the static

model with one exception: we did not set Factivation and Fvelocity

equal to 1 in equation (2.7). Holding all muscle properties con-

stant and considering velocity as Dxm and Dt resulted in the

dynamic model

Fmax � Flength(Dx, L0, aL, bL, s) � Fvelocity(Dx, Dt)

�Factivation(tcontraction, ract) ¼ �ksimulationDxs: ð2:9Þ

Solving for Dx at each time step was complicated by the

relationship between muscle length and contraction velocity,

because Dxm affected muscle force in two ways. First, Dxm

affected Flength directly; values of Dxm/L0 smaller than 1 (as a

result of muscle shortening contraction) decreased muscle force

(figure 2). Second, for a given Dt, greater values of Dxm resulted

in greater contraction velocities. This reduced muscle force



Table 1. These muscle parameters define the length – tension and force – velocity relationships of contracting muscle of bullfrogs and grasshoppers, and were
compiled from previously published data.

parameter value for bullfrog value for grasshopper definition

Fmax 42.7 Nc 13.1 Na maximum tetanic force

vmax 124.1 mm s21c 7.0 mm s21a maximum contraction velocity

L0 11.2 mmc 4.0 mma resting length of muscle

tcontraction 100 msc 300 msa time until maximum in vitro muscle activation

aL 2.08b 2.08b determines shape of length – tension relationship

bL 22.89b 22.89b determines shape of length – tension relationship

s 20.75b 20.75b determines shape of length – tension relationship

mass 213.9 – 373.0 gc 1.5 – 2.0 ga range of body mass
aBennet-Clark [10].
bAzizi & Roberts [14].
cSawicki et al. [15].
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Fvelocity (equation (2.3)). Given that contractions causing larger

muscle excursions Dxm increased force production by the

spring and reduced force production by the muscle (owing to

both Flength and Fvelocity), the challenge was to determine, at

every time step of the simulation, which value of Dx satisfied

equation (2.9).

To satisfy all force, displacement and velocity assumptions, we

employed a numerical technique that calculated Fmuscle and Fspring

for many values of Dx at each time step. Starting with the first time

step, we tested 5000 equally spaced Dxm (with units of fraction of

L0) and plugged them into equation (2.9), and thereby generated

many hypothetical combinations of Fmuscle and Fspring. We then

selected the value of Dxm that resulted in the smallest difference

between Fmuscle and Fspring. We repeated this numerical technique

for all subsequent time steps until the muscle and spring reached

static equilibrium (i.e. when the change in muscle length between

two time steps fell below an arbitrary value of 0.0001 L0).

(b) Inputs to the muscle – spring model
Muscle parameters. Simulations of a bullfrog and grasshopper

were conducted using parameter values for components of

the Hill-type model taken from previous studies (table 1)

[10,14,15]. Although bullfrog muscles are pre-stretched to lengths

of 1.3 L0 prior to tendon loading [14], grasshopper muscles begin

close to 1.0 L0 before jumping [10]. Therefore, to make results

from the bullfrog and grasshopper comparable, simulated con-

tractions always started at the muscle resting length (bullfrog:

L0 ¼ 11.2 mm [15,18]; grasshopper: L0 ¼ 4 mm [10]), and all com-

puted length changes were converted to and reported as strain

(i.e. *L0
21). The shape of Factivation, which was not reported in

the literature, was approximated as a line with slope ract. The

slopes of ract were chosen such that maximum activation

occurred within biologically realistic muscle contraction times

for both systems (within 100–300 ms). Based on published

data, we estimated the duration of muscle contraction before

the onset of jumping (tcontraction) as 50 ms in the bullfrog [14]

and 300 ms in the grasshopper [10].

Spring parameters. Two values of spring stiffness were defined:

(i) the actual experimentally measured spring stiffness of the

tendon/apodeme-cuticular spring (Kbullfrog or Kgrasshopper depend-

ing on the simulation) and (ii) the values of spring stiffness used in

the simulation to determine maximal energy storage (ksimulation).

We estimated Kbullfrog as 6.69 N mm21 using published data

from a fixed-end contraction [18]. The spring system in grasshop-

pers was composed of two springs in series, the apodeme

(arthropod tendon) and the cuticular semilunar process. We calcu-

lated Kgrasshopper as the effective spring stiffness of these two
springs (15.37 N mm21) by rearranging the standard equation

for two springs in series, which resulted in the equation

Kgrasshopper ¼
Kapodeme � KSLP

Kapodeme þ KSLP
, ð2:10Þ

where Kapodeme and KSLP are the stiffness values of the apodeme

(31.4 N mm21) and semilunar process (30 N mm21), respectively

[10]. The values of ksimulation were uniformly generated from 5 to

350 N *L0
21 increments of 0.1 N *L0

21.

Simulation parameters. We simulated all muscle contractions

with time steps of 0.001 s. The total number of steps was not

determined before simulation. Instead, simulations terminated

when change in muscle length reduced to less than 0.001 L0
21

between time steps.

Identification of kmaxE. The determination of the spring stiff-

ness that permitted maximal energy storage in the static

simulations was straightforward. The value of Dx in equation

(2.8) was solved for many values of ksimulation. The stored

energy for each simulation was calculated using equation (2.1).

The value of ksimulation that resulted in the greatest stored

energy was recorded as kmaxE.

Obtaining kmaxE from the dynamic muscle–spring model fol-

lowed a similar process; however, the data required an additional

pre-processing step. For each time step, Dx was calculated for

various values of ksimulation via equation (2.9).

To test the effect of muscle contraction duration (tcontraction),

we ran simulations with truncated duration to exclude time

steps that were greater than tcontraction. From the truncated data-

set, kmaxE was determined using the methods above for the

static and dynamic muscle–spring models.
3. Results
(a) Static simulation
For both the bullfrog and the grasshopper, the amount of

stored elastic energy was maximized for an intermediate

spring stiffness (figure 4). As ksimulation increased, stored

energy rose, levelled off and declined. In the bullfrog, the

spring stiffness that permitted maximal energy storage

(kmaxE; dotted lines in figure 4) equalled 20.98 N mm21,

more than double the measured value of bullfrog tendon.

The amounts of energy stored with kmaxE and Kbullfrog were

20.43 and 14.13 mJ, respectively (table 2). In the grasshopper,

kmaxE equalled 18.0 N mm21 and the amounts of energy
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stored with kmaxE and Kgrasshopper were 2.24 and 2.21 mJ,

respectively (table 2).

(b) Dynamic simulations
As tcontraction increased, more elastic energy was able to be

stored. For example, maximal elastic energy values stored

at 50, 100 and 300 ms were 5.09, 14.46 and 20.43 mJ, respect-

ively, for the bullfrog and 0.03, 0.14 and 1.08 mJ for the

grasshopper (table 2). In addition, all values resulting from

the 5000 ms dynamic simulation matched those of the

static simulation; therefore, because we reached the static

steady-state solution by 5000 ms, we did not simulate

muscle contraction past this time step.

Similar to the static simulation, dynamic simulations also

revealed that an intermediate spring stiffness resulted in

maximal stored energy; however, the value of kmaxE was

dependent on tcontraction (figures 3 and 4). Our simulation of

the bullfrog muscle–spring system also showed that kmaxE

was higher for faster rates of contraction (figure 3); therefore,

as a point of comparison between the bullfrog and the grass-

hopper, unless otherwise stated, all reported results were

taken from simulations at the highest ract tested, resulting in

tetanic contractions occurring in 100 ms.

In the bullfrog, kmaxE for a realistically time-limited contrac-

tion (50 ms) was 7.14 N mm21, less than half that predicted by

the static solution (20.98 N mm21). This difference was a direct

consequence of the force–velocity property of the frog muscle.

Additionally, Kbullfrog (6.69 N mm21) was much closer to kmaxE

at 50 ms (7.14 N mm21) than to the kmaxE of the static

simulation (20.98 N mm21). Alternatively, kmaxE in the grass-

hopper for a biologically relevant contraction duration

(300 ms) was 12.0 N mm21, which matched the result

predicted by the static solution (table 2). Regardless of simu-

lation, as tduration increased, so did kmaxE until the solution

generated by the static solution was reached. This was shown

by the rightward shift of the dotted line in figure 4 as time

increased. When considering the highest value of ract used

in the simulations, kmaxE did not level out until 150 ms
(figure 3). Additionally, the peak values of energy storage all

occurred at the highest rates of activation (see the electronic

supplementary material).
4. Discussion
By simulating the dynamic interaction between muscle and

spring during a fixed-end contraction, we asked two questions:

(i) Does reducing the time available for spring-loading affect

which springs store the most energy? (ii) Do the values of

spring stiffness in bullfrogs and grasshoppers permit maxi-

mum energy storage based on their contrasting loading

regimes? For both the bullfrog and the grasshopper, the time

available for muscle contraction determined which spring stiff-

ness permitted maximal energy storage. As time restriction

increased (i.e. as less time was available for muscle contrac-

tion), the values of spring stiffness that permitted maximal

stored energy decreased (figure 4). Although the greatest

amounts of elastic energy were predicted using the static sol-

ution, this solution was not reached until 5000 ms in the

grasshopper, a duration of muscle contraction that is much

greater than what occurred in other experiments (table 2). Con-

sequently, static simulations may be insufficient to model

muscle–spring systems in some cases. The static solution, how-

ever, offered an upper bound of kmaxE and maximum stored

energy in biological systems.

In both the bullfrog and the grasshopper, empirically

measured values of spring stiffness approximately matched

kmaxE when taking time-limited loading into account. In the

bullfrog, dynamic simulation revealed that when the duration

of muscle contraction was restricted to biologically relevant

contraction durations (50 ms), kmaxE and Kbullfrog were similar

(7.14 and 6.69 N mm21, respectively). Therefore, the incorpor-

ation of muscle dynamics into the simulation not only allowed

the muscle–spring model to behave in a more realistic way, but

it also countered the results of the static simulation and

suggested that bullfrog tendons maximize energy storage at

short time scales. Conversely, results from the dynamic simu-

lation of the grasshopper muscle–spring system suggested

that the grasshopper spring system maximized energy at rela-

tively long time scales. In the case of grasshoppers, which load

their springs with longer durations than bullfrogs (300 and

50 ms, respectively), the static simulation provided reasonable

estimates of kmaxE and maximal stored energy. It is important to

note that biological springs can be tuned over evolutionary

time to perform a multitude of mechanical behaviours over a

wide range of loading regimes; therefore, there may be func-

tional reasons that explain mismatch between our predictions

of optimal stiffness and the stiffness with which organisms

operate. Regardless, these two cases of dynamic fixed-end con-

tractions demonstrate that muscle–spring system performance

depends on the interaction between storage time available and

muscle–spring properties.

The dynamic simulation of the bullfrog also demonstrated

the importance of dynamics for all rates of muscle activation.

At the fastest muscle activations, kmaxE did not level out until

150 ms (figure 3); therefore, bullfrog muscle–spring systems

that complete energy storage within 150 ms are more sensitive

to muscle dynamics than those that do not. Given that maximal

in vitro activation of bullfrog muscle is reached in 100 ms [15],

this further demonstrated the importance of muscle dynamics

in bullfrog spring systems.
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Figure 4. The duration of muscle contraction (tcontraction) determines whether the spring stiffness of bullfrog tendon (Kbullfrog, indicated by arrow) permits maximal
energy storage. For example, in the static simulation, Kbullfrog does not coincide with the peak of the curve (indicated by dotted line). Results from the static
simulation suggest that Kbullfrog does not permit maximal energy storage. Conversely, during time-limited muscle contractions (50 ms), Kbullfrog is closer to the
peak of the curve. The leftward shift of the peak as tcontraction is reduced suggests that muscle – spring dynamics become increasingly important with shorter dur-
ations of muscle contraction. Conversely, in grasshoppers, the static solution is a close approximation of the results from the biologically relevant loading time
(300 ms). Results from simulations that occur at biologically relevant loading times are boxed. Note that the scale of the y-axis is different in each panel.

Table 2. As the duration of muscle contraction approaches biologically relevant durations (italicized values), kmaxE approaches the measured spring stiffness
(Kbullfrog and Kgrasshopper). Static simulations accurately model systems that exhibit relatively long loading times, such as the grasshopper (grey-shaded values).
Dynamic simulations are necessary for systems that exhibit time-limited contraction, such as the bullfrog (unshaded).

tcontraction

(ms)

bullfrog grasshopper

kmaxE

(N mm21)
Kbullfrog

(N mm21)
Emax

(mJ)
Ebullfrog

(mJ)
kmaxE

(N mm21)
Kgrasshopper

(N mm21)
Emax

(mJ)
Egrasshopper

(mJ)

50 7.14 6.69 5.09 5.09 6.50 15.37 0.04 0.03

100 15.17 6.69 14.46 12.19 6.75 15.37 0.14 0.13

200 20.98 6.69 20.25 14.12 8.75 15.37 0.53 0.51

300 20.98 6.69 20.43 14.13 12.00 15.37 1.08 1.07

5000 20.98 6.69 20.43 14.13 18.00 15.37 2.24 2.21

static 20.98 6.69 20.43 14.13 18.00 15.37 2.24 2.21
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The results of the simulations hinted at the relationship

between compliant springs and energy storage. As muscle con-

traction duration decreases, the total amount of elastic energy

that can be stored decreased (figure 4). Additionally, the sensi-

tivity of kmaxE to muscle dynamics increased as the duration of

muscle contraction decreased (figure 3). Therefore, in muscle–

spring systems that are time-limited, reducing spring stiffness

could help maximize energy in situations in which stored

energy is decreased owing to short contraction durations. In

short, when muscle dynamics became important, optimal

spring stiffness decreased.

Given that the results from the simulation were generated

by connecting a Hill-type muscle model to a Hookean spring

model, it is important to note the limitations of these constitu-

ent models in the context of this study. The Hill muscle

model has been shown to accurately represent general

trends in the relationship between the dynamics of muscle

activation and force production [19–21]. This relationship,

however, was highly dependent on activation dynamics
[22,23] and may not have been accurately represented in

this study. Instead of focusing on the intricacies of neuronal

firing, we simplified muscle activation as a linear ramp to

test, in general, whether muscle activation rate affected

time-limited energy storage. To that effect, the model demon-

strated that muscle dynamics played a part in determining

which spring stiffness permitted maximal energy storage.

Additionally, our muscle–spring model does not

incorporate inertial effects of muscle mass on contraction vel-

ocity [24] or activation-dependent shifts in the muscle

length–tension relationship [25]. As a first approximation of

how these effects may affect our interpretation of our results,

we conducted a sensitivity analysis of our model by perturb-

ing each parameter +20% (including Vmax and starting

length to represent inertial and activation effects, respect-

ively). We found that while increases in Vmax led to

increases in Emax, predictions of kmaxE were relatively insensi-

tive (see the electronic supplementary material); therefore,

inertial effects had little effect on our predictions of optimal
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spring stiffness. Conversely, the most sensitive parameter in

the simulation was the starting length of the muscle. Our

model predicted peak energy storage when muscles began

activating on the descending limb of the length–tension

curve (approx. 1.1 L0, regardless of study system; see elec-

tronic supplementary material). Consequently, starting

muscles at these lengths required decreases in spring stiffness

(243.75% and 250.0% in bullfrogs and grasshoppers,

respectively). These analyses indicate that because kmaxE is

highly dependent on the muscle length–tension curve,

activation-dependent effects probably affect the relationship

between spring mechanics and muscle physiology. In order

to accurately model this in our simulation, however, more

information is needed about how muscle activation affects

the shape of the length–tension curve in regions that span

the full excursion that muscles experience during fixed-end

contractions. Data regarding activation-dependent length–

tension curves should be incorporated in future simulations

as they become available.

The results assumed that muscle contracts at rates such

that maximal activation occurs within 100 ms. In reality,

different jumps from the same animal could vary in muscle

activation rate, thereby affecting the amount of spring stretch.

The simulations show that bullfrog muscles that took longer

than 100 ms to reach maximal activation stored less elastic

energy for kmaxE (figure 3). Because the simulations were sen-

sitive to variation in muscle activation rate, reported values of

Emax and kmaxE should not be interpreted as exact predictions

of optimal bullfrog performance. Nonetheless, these values

do provide a qualitative view of how muscle and spring

parameters interact during time-limited energy storage.

Another simplification of the model involved the use of

a linear spring. Most biological structures, including bullfrog

tendons, exhibit a toe region of low spring stiffness early in

the force–displacement curve followed by a linear region of

higher spring stiffness. Many studies remedy this by measuring

spring stiffness in the linear region of the force–displacement

curve. In addition, it is important to note that the simulation

only predicted the amount of energy stored, but other factors

such as mass, material properties and morphological lever

systems directly impact the unloading of energy [26,27].

Our dynamic simulations revealed a phenomenon that

potentially affects all spring systems that are transiently

loaded by muscle. That is, muscles that cannot develop iso-

metric force because of time restriction can achieve significant

amounts of elastic energy storage when coupled with springs

of lower stiffness than would be predicted in the static case.

For example, because bullfrogs lack morphological latches,

they are not able to load their springs with peak isometric

force. Instead, the bullfrog uses a dynamic catch mechanism,

which temporarily resists force via inertial loads and mechan-

ical advantage about moving joints [28]. The dynamic catch is

able to resist some muscle contraction to permit spring-loading,

but not long enough for isometric contractions to develop. With

the exception of salamanders and chameleons, which probably

contain anatomical latches [29,30], and toads, which have been

hypothesized to store energy via co-contraction of antagonistic

muscle [31], it is likely that vertebrates are inherently subject to

time-limited energy storage, and potentially benefit from

springs less stiff than expected.

Conversely, we predict that some invertebrate systems with

anatomical latches may operate with relatively higher spring

stiffness that can permit maximal energy storage over long
storage times. Systems that have anatomical latches, and those

that use rigid connections of body parts to resist muscle contrac-

tion, can develop isometric contractions during spring-loading.

For example, snapping shrimp (Alpheus californiensis), trap-jaw

ants and froghoppers (Philaenus spumarius) contain body parts

that lock together to form a latch and have springs that are con-

nected to slow, forceful muscles that contract isometrically for

up to several seconds [2–4,32–34]. Given the amount of

power amplification observed in these systems, it is likely that

these muscle–spring systems are operating with spring stiffness

that permits maximal energy storage.

In some systems, the determination of an optimal spring

stiffness can be complicated by an active latch, in which an

antagonist muscle contracts to keep a system latched.

Active latches may permit variation in the amount of stored

energy prior to movement [35–37]. For example, the bush

cricket can use changes in both joint angle and activation of

the latching muscle to determine how much force holds the

latch in place [36]. Meanwhile, a larger muscle can load the

spring until it exceeds the force of the latch, thereby initiating

movement. Given that the bush cricket can control the

amount of energy stored, it is possible that it operates with

a spring stiffness that results in the most stored energy for

a wide range of situations. Although this idea is speculative,

this study provides the tools necessary to test this hypothesis

in other active latch systems in future work.
5. Conclusion
When testing for maximal energy storage, it is important to

consider the dynamic interaction of muscle and spring. Our

simulations revealed that within the realm of biologically rel-

evant time scales, the more time available for loading by

muscle, the stiffer the series spring required for maximum elas-

tic energy storage. Muscles that load in-series springs over

shorter time scales benefit from less stiff springs. At short

time scales, muscle force is small owing to low activation and

high velocity, and less stiff springs allow the spring to stretch

more for a given amount of force. Thus, it is necessary to deter-

mine the effect, if any, of muscle dynamics on energy storage

before concluding whether or not muscle–spring systems

maximize energy storage.

Ethics. All animal information was based on previously published
datasets.

Data accessibility. All R code used for simulations can be found at http://
dx.doi.org/10.17605/OSF.IO/Z385A. Data generated from the simu-
lation have been uploaded to Dryad (http://dx.doi.org/10.5061/
dryad.089cr).

Authors’ contributions. M.V.R. implemented the mathematical model, ran
all dynamic simulations, analysed the data and prepared the manu-
script, G.P.S. conceived the original idea of the static model and
guided the study to include grasshoppers, S.N.P. helped prepare
the manuscript and identified key points/questions of the study,
G.S.S. helped develop the dynamic model and simulations, provided
data from bullfrogs, offered insight on data analysis/interpretation
and helped edit the manuscript.

Competing interests. We have no competing interests.

Funding. This research was supported by grants awarded to M.V.R.
(DOE FG02-97ER25308) and S.N.P. (NSF IOS-1439850).

Acknowledgements. The authors thank W. M. Kier, K. K. Smith, D. M.
Boyer and E. Azizi for providing feedback on the manuscript. We
also appreciate comments and contributions from P. Green, P. S. L.
Anderson, K. Kagaya, R. Crane. We thank the DOE CSGF for training
provided for high-speed computing.

http://dx.doi.org/10.17605/OSF.IO/Z385A
http://dx.doi.org/10.17605/OSF.IO/Z385A
http://dx.doi.org/10.17605/OSF.IO/Z385A
http://dx.doi.org/10.5061/dryad.089cr
http://dx.doi.org/10.5061/dryad.089cr
http://dx.doi.org/10.5061/dryad.089cr


8
References
rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20161561
1. Hill AV. 1938 The heat of shortening and the
dynamic constants of muscle. Proc. R. Soc. Lond. B.
126, 136 – 195. (doi:10.1098/rspb.1938.0050)

2. Ritzmann R. 1973 Snapping behavior of the shrimp
Alpheus californiensis. Science 181, 459 – 460.
(doi:10.1126/science.181.4098.459)

3. Ritzmann R. 1974 Mechanisms for the snapping
behavior of two alpheid shrimp, Alpheus
californiensis and Alpheus heterochelis. J. Comp.
Physiol. 95, 217 – 236. (doi:10.1007/BF00625445)

4. Burrows M. 2007 Neural control and coordination of
jumping in froghopper insects. J. Neurophysiol. 97,
320 – 330. (doi:10.1152/jn.00719.2006)

5. Zajac FE. 1989 Muscle and tendon: properties,
models, scaling, and application to biomechanics
and motor control. Crit. Rev. Biomed. Eng. 17,
359 – 411.

6. Zajac FE, Gordon ME. 1989 Determining muscle’s
force and action in multi-articular movement. Exerc.
Sport Sci. Rev. 17, 187 – 230.

7. Wilson AM, Watson JC, Lichtwark GA. 2003
Biomechanics: a catapult action for rapid limb
protraction. Nature. 421, 35 – 36. (doi:10.1038/
421035a)

8. Patek S, Rosario MV, Taylor J. 2013 Comparative
spring mechanics in mantis shrimp. J. Exp. Biol.
216, 1317 – 1329. (doi:10.1242/jeb.078998)

9. Rosario MV, Patek SN. 2015 Multilevel analysis of elastic
morphology: the mantis shrimp’s spring. J. Morphol.
276, 1123 – 1135. (doi:10.1002/jmor.20398)

10. Bennet-Clark HC. 1975 The energetics of the jump
of the locust Schistocerca gregaria. J. Exp. Biol. 63,
53 – 83.

11. Marsh RL, John-Alder HB. 1994 Jumping
performance of hylid frogs measured with high-
speed cine film. J. Exp. Biol. 188, 131 – 141.

12. Peplowski MM, Marsh RL. 1997 Work and power
output in the hindlimb muscles of Cuban tree frogs
Osteopilus septentrionalis during jumping. J. Exp.
Biol. 200, 2861 – 2870.

13. Roberts TJ, Marsh RL. 2003 Probing the limits to
muscle-powered accelerations: lessons from jumping
bullfrogs. J. Exp. Biol. 206, 2567 – 2580. (doi:10.
1242/jeb.00452)

14. Azizi E, Roberts TJ. 2010 Muscle performance during
frog jumping: influence of elasticity on muscle
operating lengths. Proc. R. Soc. B 277, 1523 – 1530.
(doi:10.1098/rspb.2009.2051)

15. Sawicki GS, Sheppard P, Roberts TJ. 2015 Power
amplification in an isolated muscle-tendon is load
dependent. J. Exp. Biol. 218, 3700 – 3709. (doi:10.
1242/jeb.126235)

16. Winters J. 1990 Hill-based muscle models: a
systems engineering perspective. In Multiple muscle
systems: biomechanics and movement organization
(eds JM Winters, SL-Y Woo), pp. 69 – 93. New York,
NY: Springer.

17. Hollinger JO. 2011 An introduction to biomaterials.
Boca Raton, FL: CRC/Taylor & Francis.

18. Sawicki GS, Robertson BD, Azizi E, Roberts TJ. 2015
Timing matters: tuning the mechanics of a
muscle – tendon unit by adjusting stimulation phase
during cyclic contractions. J. Exp. Biol. 218,
3150 – 3159. (doi:10.1242/jeb.121673)

19. Cofer D, Cymbalyuk G, Reid J, Zhu Y, Heitler WJ,
Edwards DH. 2010 AnimatLab: a 3D graphics
environment for neuromechanical simulations.
J. Neurosci. Methods 187, 280 – 288. (doi:10.1016/j.
jneumeth.2010.01.005)

20. Winters TM, Takahashi M, Lieber RL, Ward SR. 2011
Whole muscle length – tension relationships are
accurately modeled as scaled sarcomeres in rabbit
hindlimb muscles. J. Biomech. 44, 109 – 115.
(doi:10.1016/j.jbiomech.2010.08.033)

21. Richards CT, Sawicki GS. 2012 Elastic recoil can either
amplify or attenuate muscle-tendon power, depending
on inertial vs. fluid dynamic loading. J. Theor. Biol. 313,
68 – 78. (doi:10.1016/j.jtbi.2012.07.033)

22. Josephson RK. 1985 Mechanical power output from
striated muscle during cyclic contraction. J. Exp. Biol.
114, 493 – 512.

23. Stevens ED. 1996 The pattern of stimulation
influences the amount of oscillatory work done by
frog muscle. J. Physiol. 494, 279 – 285. (doi:10.
1113/jphysiol.1996.sp021490)

24. Ross SA, Wakeling JM. 2016 Muscle shortening
velocity depends on tissue inertia and level
of activation during submaximal contractions.
Biol. Lett. 12, 20151041. (doi:10.1098/rsbl.
2015.1041)

25. Holt NC, Azizi E. 2016 The effect of activation level
on muscle function during locomotion: are optimal
lengths and velocities always used? Proc. R. Soc. B
283, 20152832. (doi:10.1098/rspb.2015.2832)

26. McHenry MJ, Claverie T, Rosario MV, Patek SN. 2012
Gearing for speed slows the predatory strike of a
mantis shrimp. J. Exp. Biol. 215, 1231 – 1245.
(doi:10.1242/jeb.061465)

27. Anderson PSL, Claverie T, Patek SN. 2014 Levers and
linkages: Mechanical trade-offs in a power-
amplified system. Evolution 68, 1919 – 1933.
(doi:10.1111/evo.12407)

28. Astley HC, Roberts TJ. 2014 The mechanics of elastic
loading and recoil in anuran jumping. J. Exp. Biol.
217, 4372 – 4378. (doi:10.1242/jeb.110296)

29. de Groot JH, van Leeuwen JL. 2004 Evidence for an
elastic projection mechanism in the chameleon
tongue. Proc. R. Soc. Lond. B. 271, 761 – 770.
(doi:10.1098/rspb.2003.2637)

30. Deban SM, O’Reilly JC, Dicke U, van Leeuwen JL.
2007 Extremely high-power tongue projection in
plethodontid salamanders. J. Exp. Biol. 210,
655 – 667. (doi:10.1242/jeb.02664)

31. Nishikawa KC. 1999 Neuromuscular control of prey
capture in frogs. Phil. Trans. R. Soc. Lond. B 354,
941 – 954. (doi:10.1098/rstb.1999.0445)

32. Gronenberg W, Tautz J, Holldobler B. 1993 Fast trap
jaws and giant neurons in the ant Odontomachus.
Science 262, 561 – 563. (doi:10.1126/science.262.
5133.561)

33. Patek SN, Baio J, Fisher B, Suarez A. 2006
Multifunctionality and mechanical origins: ballistic
jaw propulsion in trap-jaw ants. Proc. Natl Acad. Sci.
USA 103, 12 787 – 12 792. (doi:10.1073/pnas.
0604290103)

34. Patek SN, Dudek DM, Rosario MV. 2011 From
bouncy legs to poisoned arrows: elastic movements
in invertebrates. J. Exp. Biol. 214, 1973 – 1980.
(doi:10.1242/jeb.038596)

35. Burrows M, Morris G. 2001 The kinematics and
neural control of high-speed kicking movements in
the locust. J. Exp. Biol. 204, 3471 – 3481.

36. Burrows M. 2003 Jumping and kicking in bush
crickets. J. Exp. Biol. 206, 1035 – 1049. (doi:10.
1242/jeb.00214)

37. Kagaya K, Patek SN. 2016 Motor control of ultrafast,
ballistic movements. J. Exp. Biol. 219, 319 – 333.
(doi:10.1242/jeb.130518)

http://dx.doi.org/10.1098/rspb.1938.0050
http://dx.doi.org/10.1126/science.181.4098.459
http://dx.doi.org/10.1007/BF00625445
http://dx.doi.org/10.1152/jn.00719.2006
http://dx.doi.org/10.1038/421035a
http://dx.doi.org/10.1038/421035a
http://dx.doi.org/10.1242/jeb.078998
http://dx.doi.org/10.1002/jmor.20398
http://dx.doi.org/10.1242/jeb.00452
http://dx.doi.org/10.1242/jeb.00452
http://dx.doi.org/10.1098/rspb.2009.2051
http://dx.doi.org/10.1242/jeb.126235
http://dx.doi.org/10.1242/jeb.126235
http://dx.doi.org/10.1242/jeb.121673
http://dx.doi.org/10.1016/j.jneumeth.2010.01.005
http://dx.doi.org/10.1016/j.jneumeth.2010.01.005
http://dx.doi.org/10.1016/j.jbiomech.2010.08.033
http://dx.doi.org/10.1016/j.jtbi.2012.07.033
http://dx.doi.org/10.1113/jphysiol.1996.sp021490
http://dx.doi.org/10.1113/jphysiol.1996.sp021490
http://dx.doi.org/10.1098/rsbl.2015.1041
http://dx.doi.org/10.1098/rsbl.2015.1041
http://dx.doi.org/10.1098/rspb.2015.2832
http://dx.doi.org/10.1242/jeb.061465
http://dx.doi.org/10.1111/evo.12407
http://dx.doi.org/10.1242/jeb.110296
http://dx.doi.org/10.1098/rspb.2003.2637
http://dx.doi.org/10.1242/jeb.02664
http://dx.doi.org/10.1098/rstb.1999.0445
http://dx.doi.org/10.1126/science.262.5133.561
http://dx.doi.org/10.1126/science.262.5133.561
http://dx.doi.org/10.1073/pnas.0604290103
http://dx.doi.org/10.1073/pnas.0604290103
http://dx.doi.org/10.1242/jeb.038596
http://dx.doi.org/10.1242/jeb.00214
http://dx.doi.org/10.1242/jeb.00214
http://dx.doi.org/10.1242/jeb.130518

	Muscle-spring dynamics in time-limited, elastic movements
	Introduction
	Methods
	Muscle-spring model
	Hill-type muscle model
	Hookean spring model
	Static muscle-spring model
	Dynamic muscle-spring model

	Inputs to the muscle-spring model

	Results
	Static simulation
	Dynamic simulations

	Discussion
	Conclusion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


