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Abstract. The purpose of this study was to compare computed tomography (CT) low-contrast detectability from
human readers with observer model-based surrogates of image quality. A phantom with a range of low-contrast
signals (five contrasts, three sizes) was imaged on a state-of-the-art CT scanner (Siemens’ force). Images were
reconstructed using filtered back projection and advanced modeled iterative reconstruction and were assessed
by 11 readers using a two alternative forced choice method. Concurrently, contrast-to-noise ratio (CNR), area-
weighted CNR (CNRA), and observer model-based metrics were estimated, including nonprewhitening (NPW)
matched filter, NPW with eye filter (NPWE), NPW with internal noise, NPW with an eye filter and internal noise
(NPWEi), channelized Hotelling observer (CHO), and CHO with internal noise (CHOi). The correlation coeffi-
cients (Pearson and Spearman), linear discriminator error, E , and magnitude of confidence intervals, jCI95%j,
were used to determine correlation, proper characterization of the reconstruction algorithms, and model preci-
sion, respectively. Pearson (Spearman) correlation was 0.36 (0.33), 0.83 (0.84), 0.84 (0.86), 0.86 (0.88), 0.86
(0.91), 0.88 (0.90), 0.85 (0.89), and 0.87 (0.84), E was 0.25, 0.15, 0.2, 0.25, 0.3, 0.25, 0.4, and 0.45, and jCI95%j
was 2.84 × 10−3, 5.29 × 10−3, 4.91 × 10−3, 4.55 × 10−3, 2.16 × 10−3, 1.24 × 10−3, 4.58 × 10−2, and 7.95 × 10−2

for CNR, CNRA, NPW, NPWE, NPWi, NPWEi, CHO, and CHOi, respectively. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.3.035506]
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1 Introduction
X-ray computed tomography (CT) systems contain sophisticated
and complex technology with an exceptionally large number of
operational settings/modes. New technologies are being intro-
duced on modern CT systems that could allow for very low-
dose imaging while maintaining the diagnostic value of the
examination.1 However, their clinical implementation requires a
robust and objective evaluation to ensure patient safety andoptimal
use. Therefore, image quality assessment plays a critical role in the
design, optimization, and implementationof newCT technologies.

The most defensible definition of image quality follows the
guidelines outlined in ICRU report 54, which defines image
quality as the effectiveness by which an image can be used
for its intended task.2 Under this general definition, physical
characteristics of the image, such as noise or resolution, may
influence image quality but are not metrics of image quality
themselves. In other words, resolution is not necessarily a metric
of image quality, but it is likely that any proper task-based image
quality metric would be sensitive to changing resolution proper-
ties of the imaging system, especially if the visualization or
measurement of fine details is important to the clinical task.

Because clinical images are evaluated by radiologists, the
gold standard of image quality is to assess how well radiologists

can perform a clinical task on a set of images. For example, to
assess the impact of a new reconstruction algorithm on liver
lesion detection, it would be necessary to (1) scan a large num-
ber of patients with suspected liver lesions, (2) reconstruct the
images with the standard and new algorithm, (3) perform a
series of blinded reading sessions, and (4) quantitatively assess
the detection rates for both datasets. This type of clinical trial is
clearly resource intensive and logistically challenging. Further,
optimizing a CT protocol often requires the investigation of
many different scan and reconstruction settings, such as dose,
tube voltage, bow-tie filtration, pitch, automatic exposure con-
trol, convolution kernel, and iterative strength. This sizeable
parameter space makes protocol optimization via clinical trials
practically impossible. Therefore, surrogate metrics of image
quality that can be measured in phantoms (or patient images
if possible) offer a sensible alternative. For such metrics to
be useful, they must (1) be representative of clinical image qual-
ity (i.e., highly correlated with radiologist performance for a
specific clinical task), (2) be generalizable such that images
with varying noise and resolution properties can be compared
(e.g., scanner A versus scanner B, or reconstruction A versus
reconstruction B), and (3) be practical to measure with a reason-
able number of images.
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As described in great detail by Barrett et al.,3 image quality
metrics based on observer models constitute a rich and active
field of research and have been proposed to meet the above
criteria. In this work, we consider the task signal detection.
Mathematically, an observer model can be described as an oper-
ator that transforms the input image data, g, into a single scalar
test statistic, λ. Here, g is the vector lexicographically ordered to
contain all the image pixels. The observer makes a decision by
comparing λ with some threshold, λt (if λ > λt, then the decision
is “signal-present,” otherwise it decides “signal-absent”). As a
metric of image quality, it is useful to look at the distributions
of λ under ensembles of signal-present and signal-absent cases
(acquired under identical conditions). A commonly used metric
to summarize those distributions is the detectability index,
d 0 (pronounced d-prime), defined as

EQ-TARGET;temp:intralink-;e001;63;587d 02 ≡
½λ̄0 − λ̄1�2

1∕2 · ½σ20 þ σ21�
; (1)

where λ̄0, λ̄1, σ20, and σ21 are the means and variances of the
test statistic under signal-present and signal-absent conditions,
respectively.4 As defined above, d 0 is essentially the signal-to-
noise ratio of the observer model in discriminating signal-
present and signal-absent images. Images of high quality are
those that lead to a greater separation (i.e., less overlap) in the
signal-present and signal-absent distributions of λ and thus
higher d 0. Note that d 0 serves as a scalar summary of the sep-
aration between two probability distributions. In the case that λ
is normally distributed (in both signal-present and signal-absent
cases), then the separation is fully parameterized by d 0 and d 0 is
an appropriate description. If λ is not normally distributed, then
d 0 may not be appropriate. Fortunately, for medical image data,
λ can be assumed to be normal in most cases with appeals to the
central limit theorem.5

Different observer models process image data differently and
also vary in how much prior information they have with respect
to the detection task. Recent literature in using observer models
for CT image quality assessment contains instances of several
different paradigms. For example, the signal known exactly
(SKE) paradigm is commonly used.6,7 In this paradigm, the
observer model is assumed to have knowledge about all signal
characteristics including size, shape, contrast, and location and
uses this information when processing the image data to output a
test statistic. Another common paradigm is to allow for the loca-
tion of the signal to vary and have the observer perform a search
throughout the image.8–10 The test statistic for search-capable
models is typically not normally distributed, thus, d 0 is not a
good summary statistic for their detection performance. In
another paradigm, the signal’s characteristics are known only
statistically thus allowing for variability of the signal to be
incorporated.11 For all these paradigms, it is also possible to con-
sider anatomical background variability.12–15 Readers are further
pointed to Barrett et al.3 for a comprehensive review of observer
model theory and Abbey et al.16,17 for foundational work on
the practical considerations of assessing image quality with
observer models. Due to the nature of the human detection
data used as the basis of this study, we consider only the SKE
paradigm with a uniform background in the remainder of this
paper, with full recognition that other paradigms merit future
comparison.

Within the SKE paradigm, for the same ensemble of images,
different observer models will have a different d 0, and there are

many potential models to choose from. Broadly speaking, three
general approaches are commonly used to assess tomographic
images under this paradigm. The first approach is to use simple
first-order image statistics, such as contrast-to-noise ratio (CNR)
as direct surrogates of low-contrast detectability.18,19 Although
this approach is not based on mathematical observer models, it is
nevertheless considered in this paper due to its prevalence (par-
ticularly in clinical papers). The second approach is to measure
physical aspects of the imaging system, such as the modulation
transfer function (MTF) and noise power spectrum (NPS) and
then compute d 0 based on an analytical relationship between d 0
and the system MTF/NPS for a given observer model.6,20–23

This approach most often uses a nonprewhitening (NPW)
matched filter observer model whose d 0 can be computed in
the Fourier domain. The third approach utilizes large ensembles
of image data to estimate the observer model’s d 0 directly from
the signal-present and signal-absent images. The most common
model used with this approach is a channelized Hotelling
observer (CHO).9,24–26

The correlation between detection accuracy of the models
and humans has been explored individually for each of these
approaches. However, to our knowledge, a comparison between
these approaches utilizing the same image data (along with cor-
responding human reader data) has not been reported in the con-
text of multi-row detector computed tomography images.
Therefore, the goal of this work was to compare CT low-contrast
detectability as measured by a human perception experiment
with several observer model-based estimates of detectability.
The objectives were to (1) ascertain the strength of the correla-
tion between the humans and models, (2) assess if the models
can be used to characterize how different reconstruction algo-
rithms affect detectability, and (3) evaluate the practicality of
measuring the model’s performance with a finite number of
image realizations.

2 Materials and Methods
The image data and human detection data for this study are
drawn from a subset of data acquired as part of a previously
published paper designed to assess the impact of iterative
reconstruction on low-contrast detectability.27 The phantom
design, image acquisition protocol, and human perception
experiment are described in detail in the aforementioned paper
and a brief description is given below. This project was finan-
cially supported by Siemens Healthcare but the authors main-
tained full control over all data and had absolute autonomy
over inclusion/exclusion of any results or information that may
present a conflict of interest to the supporting party.

2.1 Phantom Design and Image Acquisition

A custom phantom was designed as a cylindrical disk (diameter
165 mm; axial length 30 mm) containing 45 low-contrast inserts
of five contrast levels (5, 9, 12, 15, and 20 HU at 120 kVp) and
three sizes (6, 4, and 2 mm diameter) with repeats of each insert
located at three radial distances (33, 48.75, and 64.5 mm). The
phantom was fabricated using a multimaterial three-dimensional
(3-D) printer (Objet Connex, Stratasys Ltd.) and imaged 20
repeated times on a third-generation dual-source CT system
(SOMATOM Force, Siemens Healthcare). Images were cap-
tured at 2.9 mGy CTDIVol and reconstructed at 0.6 mm slice
thickness using filtered back projection (FBP) and advanced
modeled iterative reconstruction (ADMIRE, strength-3) with
the BF44 kernel (Fig. 1). Each image series contained 15 slices
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of interest resulting in a total of 300 image realizations
(15 slices × 20 repeats) for each reconstruction condition.

2.2 2AFC Human Detection Experiment

A two alternative forced choice (2AFC) multireader diagnostic
performance experiment was carried out in order to assess the
dependence of lesion detectability on signal contrast, signal size,
and reconstruction algorithm. Under the signal known exactly/
background known exactly (SKE/BKE) paradigm, a custom–

user interface was designed in which two images were
shown to a human observer, one containing the signal and one
containing only noise. The observer was asked to choose which
of the two images was most likely to contain the signal. The
signal-present images represented circular regions of interest
(ROIs), 15 mm in diameter, drawn about the phantom’s cylin-
drical inserts (signal is always centered in the ROI). The signal-
absent images of the same size were taken from independent
uniform regions of the phantom at the same phantom radius.
For a given combination of the reconstruction algorithm, insert
size, and insert contrast, 15 image trials were shown to each
observer and the observer scores were taken as the accuracy
across those 15 trials. A total of 11 observers participated in
the study (6 physicists, 1 physics resident, 3 doctoral students,
and 1 radiologist). For each condition, the average score across
observers was computed. Also 95% confidence intervals were
computed as CI95% ¼ 1.96 · STDðAÞ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

#Readers
p

, where A is
the detection accuracy for a given observer. All images were
viewed in clinical reading-room ambient lighting conditions
using a display calibrated to the DICOM standard and at a win-
dow width of 250 HU and window level of 75 HU. A total of 20
contrast/size/reconstruction conditions were tested as described
in Table 1. As mentioned above, these human reader data

represent a subset of data from a previous study that spans a
wider range of conditions (3 versus 1 dose levels) compared
with this current study. The raw binary 2AFC responses from
that full dataset were analyzed with a generalized linear mixed
effects statistical model (binomial distribution with a probit link
function) to confirm that ADMIRE had a significant effect on
detection accuracy.

2.3 Model Detection Accuracy

A total of eight image quality figures of merit were considered
for this study, including both traditional pixel-value-based met-
rics and observer model-based metrics. The metrics can be di-
vided into three main groups: (1) traditional pixel-value metrics,
(2) NPW matched filter metrics, and (3) CHO metrics. These
metrics were extracted from the image data as described below
for each reconstruction, size, and contrast condition shown in
Table 1.

2.3.1 Traditional pixel-value metrics

The traditional pixel-value metrics considered were CNR and
area-weighted CNR (CNRA). CNR was defined as

EQ-TARGET;temp:intralink-;e002;326;184CNR ¼ μs − μb
σb

¼ C
σb

; (2)

where μs is the attenuation (in Hounsfield units) of the signal, μb
is the attenuation of the background, C is the contrast, and σb is
the standard deviation of pixel values in the background ROI.
The nominal contrast of each signal (see Fig. 1) was used for this
calculation and the noise was taken as the standard deviation of
pixel values in a background annulus-shaped ROI surrounding
the signal having an outer radius of 7 mm (∼17 pixels) and an

FBP ADMIRE

20 mm

165 mm

6 mm
4 mm

2 mm

5 HU 9 HU
12 HU

15 HU

20 HU20 HU

15 HU

12 HU

TangoPlus

(a) (b)

Fig. 1 (a) Diagram of the contrast-detail phantom and (b) example CT images of phantom for FBP (left)
and ADMIRE (right). The top row shows a single-image realization, while the bottom row is the expected
(i.e., average) image over all 300 realizations.
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inner radius of 1.5 mm (∼4 pixels), 3 mm (∼7 pixels), and
4.5 mm (∼11 pixels) for the 2, 4, and 6 mm nominally sized
signal, respectively. Noise was measured for each slice using
the ensemble of 20 repeated scans, and the final CNR value
was averaged across all 15 slices and 95% confidence intervals
were computed as CI95% ¼ 1.96 · STDðCNRÞ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

#Slices
p

. Note
that this formulation of confidence intervals assumes that each
slice is an independent sample. This assumption is based on the
fact that the images were acquired in axial mode and there is no
overlap between slices. Thus, any correlations across slices
would be due only to detector cross talk, which is likely a min-
imal effect.

The CNRA was computed as

EQ-TARGET;temp:intralink-;e003;63;314CNRA ¼
ffiffiffiffi
A

p
· CNR; (3)

where A is the nominal area of the signal. As shown in Fig. 1, the
phantom contains three sized signals: 6, 4, and 2 mm in diam-
eter. The 95% confidence intervals were calculated in the same
way as with CNR.

2.3.2 Nonprewhitening matched filter

The NPW matched filter is a linear observer model whose tem-
plate, ωNPW, is the difference between the expected signal, ḡs,
and the expected background, ḡb (i.e., ωNPW ¼ ḡs − ḡb). Thus,
the NPW observer forms its test statistic, λNPW, as

EQ-TARGET;temp:intralink-;e004;63;163λNPW ¼ ωt
NPWg ¼ ðḡs − ḡbÞtg ¼

XN
i¼1

ðḡsi − ḡbiÞ · gi; (4)

where N is the number of pixels in the image (or ROI).2,4,28

Under the assumption that the noise is wide-sense stationary
(at least locally within an small ROI), and that the system
behaves in a quasi-linear fashion, the detectability index for

the NPW observer, d 0
NPW, was computed in the Fourier domain

as29

EQ-TARGET;temp:intralink-;e005;326;730d 0
NPW

2 ¼
hRR jWðu; vÞj2 · TTF2ðu; vÞdu dv

i
2

RR jWðu; vÞj2 · TTF2ðu; vÞ · NPSðu; vÞdu dv ; (5)

where u and v are the spatial frequencies in the x and y direc-
tions, respectively, Wðu; vÞ is the task function (i.e., the Fourier
transform of the signal to be detected), TTFðu; vÞ is the task
transfer function (i.e., the contrast-dependent MTF),30 and
NPSðu; vÞ is the noise power spectrum. For this phantom, the
signals to be detected were uniform circular disks and thus
Wðu; vÞ was the Fourier transform of a disk, given as

EQ-TARGET;temp:intralink-;e006;326;601Wðu; vÞ ¼
ffiffiffiffiffi
3r

p

4f
J1ð2π · f · rÞ; (6)

where r is the radius of the disk, f is the radial spatial frequency
(f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
), and J1 is a Bessel function of the first kind.

The TTF was measured from the large rods in the low-contrast
detectability phantom with a circular ROI (radius of 20 mm,
∼49 pixels) using the method described by Richard et al.30 and
refined by Chen et al.31 For each image slice, the NPS was
measured by first subtracting the ensemble averaged image
from each realization to remove the mean signal and achieve
noise-only images. Using all pixels within a radius of 10 mm
(∼15 pixels) from the center of the signal, the autocorrelation
of the noise, RNðΔx;ΔyÞ, was estimated where Δx and Δy are
the distance between two pixels in the x and y directions, respec-
tively. The NPS was computed by taking the two-dimensional
(2-D) Fourier transform of RNðΔx;ΔyÞ as

EQ-TARGET;temp:intralink-;e007;326;401NPSðu; vÞ ¼ p2 · jF ½RNðΔx;ΔyÞ�j; (7)

where p is the pixel size and F ½� denotes the discrete 2-D
Fourier transform.32 The d 0

NPW was estimated for each slice
and averaged. The d 0

NPW was measured for each slice using the
ensemble of 20 repeated scans and the final value was averaged
across all 15 slices and 95% confidence intervals were computed
as CI95% ¼ 1.96 · STDðd 0

NPWÞ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Slices

p
.

The NPW observer was extended to include an eye filter,
EðρÞ, that models the human visual system’s sensitivity to dif-
ferent spatial frequencies.28,33–35 This model was called the
NPW matched filter with eye filter (NPWE). The eye filter was
defined as

EQ-TARGET;temp:intralink-;e008;326;248EðρÞ ¼ jηρa1 · e−a2ρa3 j2 ; (8)

where ρ is the angular spatial frequency in cycles/degrees, a1,
a2, and a3 are the constant parameters with values of 1.5, 3.22,
and 0.68, respectively, and η normalizes the function to have a
maximum of one.36 The image domain radial spatial frequency,
r (r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
), was converted to angular spatial frequency, ρ,

with

EQ-TARGET;temp:intralink-;e009;326;151ρ ¼ r ·
FOV · R · π
D · 180

; (9)

where FOV is the reconstructed field of view of the image
(209 mm), R is the viewing distance (assumed to be 475 mm),
andD is the display size (350 mm). Thus, EðρÞ was defined as a
function of u and v. When the eye filter is applied, the

Table 1 Different conditions considered in the human detection
accuracy experiment. Here, the size represents the diameter of the
signal and the listed nominal contrast is for 120 kVp. Each combina-
tion of size and contrast was tested for with reconstruction algorithm,
resulting in 20 total conditions.

Condition
#

Reconstruction
algorithm

Nominal size
(mm)

Nominal contrast
(HU)

1, 2 FBP/ADMIRE 2 12

3, 4 FBP/ADMIRE 2 15

5, 6 FBP/ADMIRE 2 20

7, 8 FBP/ADMIRE 4 9

9, 10 FBP/ADMIRE 4 12

11, 12 FBP/ADMIRE 4 15

13, 14 FBP/ADMIRE 6 5

15, 16 FBP/ADMIRE 6 9

17, 18 FBP/ADMIRE 6 12

19, 20 FBP/ADMIRE 6 15
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detectability index for the NPWE model observer, d 0
NPWE, was

calculated as22

EQ-TARGET;temp:intralink-;e010;63;730d0
NPWE

2¼
hRR jWðu;vÞj2 ·TTF2ðu;vÞ ·E2ðu;vÞdudv

i
2

RR jWðu;vÞj2 ·TTF2ðu;vÞ ·NPSðu;vÞ ·E4ðu;vÞdudv:

(10)

The d 0
NPWE and corresponding confidence intervals were mea-

sured using the same methods as with the NPW model.
The NPW model was alternatively modified to include a

component of internal noise (i.e., human visual system noise).
This model was called the NPW matched filter with internal
noise (NPWi). The internal noise, Nðu; vÞ, was assumed to
have a constant (i.e., white) power spectrum whose magnitude
is proportional to the pixel variance:

EQ-TARGET;temp:intralink-;e011;63;576Nðu; vÞ ¼ αNPW

�
R

1000

�
2

· σ2; (11)

where αNPW is a proportionality constant, R is the viewing
distance [same as in Eq. (9)], and σ2 is the pixel variance, com-
puted as the 2-D integral of NPSðu; vÞ.22,37 With this internal

noise factor added, the detectability index for the NPWi model
observer, d 0

NPWi, was calculated as22

EQ-TARGET;temp:intralink-;e012;326;730d 0
NPWi

2

¼
hRR jWðu;vÞj2 · TTF2ðu;vÞdudv

i
2

RR ½jWðu;vÞj2 · TTF2ðu;vÞ ·NPSðu;vÞþNðu;vÞ�dudv :

(12)

The d 0
NPWi and corresponding confidence intervals were mea-

sured using the same methods as with the NPWmodel. The pro-
portionality constant, α, was empirically chosen such that it
maximized the correlation between the model and human data
when performing linear regression analysis (see Sec. 2.5). This
was done by computing the average correlation (over 100 ran-
dom resamples, each containing 75% of the data) for many
potential values of α.

Finally, the NPW model was extended to include both the
eye filter and internal noise simultaneously. This model was
called the NPW matched filter with eye filter and internal
noise (NPWEi), and its detectability index, d 0

NPWEi, was calcu-
lated as22

EQ-TARGET;temp:intralink-;e013;63;499d 0
NPWEi ¼

hRR jWðu; vÞj2 · TTF2ðu; vÞ · E2ðu; vÞdu dv
i
2

RR ½jWðu; vÞj2 · TTF2ðu; vÞ · NPSðu; vÞ · E4ðu; vÞ þ Nðu; vÞ�du dv : (13)

The d 0
NPWEi and corresponding confidence intervals were mea-

sured using the same methods as with the NPW model.

2.3.3 Channelized Hotelling observer

The CHO is a linear model that operates on channelized image
data, meaning image data that have been passed through M
number of filters.4,38,39 Each filter produces a single scalar output
and thus the collection of filter outputs is anM × 1 vector called
“channel outputs,” denoted gc. The transformation of image
data, g, to the channelized data, gc, can be described as a matrix
multiplication:

EQ-TARGET;temp:intralink-;e014;63;297gc ¼ Utg; (14)

where U is an N ×M matrix where each column corresponds to
a separate channelizing filter (N is the number of pixels in the
image or ROI). For a given image, the test statistic, λCHO, is com-
puted by taking the inner product of a template,ωCHO, with gc as

EQ-TARGET;temp:intralink-;e015;63;222λCHO ¼ ωt
CHOgc: (15)

The CHO template is formed by taking the difference between
the expected channel output when the signal is present and the
expected channel output when the signal is absent, multiplied by
the inverse of the intraclass channel scatter matrix as

EQ-TARGET;temp:intralink-;e016;63;147ωCHO ¼ S−1c ½ḡsc − ḡbc�; (16)

where ḡsc is the expected (i.e., average) channelized output
when the signal is present, ḡbc is the expected channelized out-
put when the signal is absent, and Sc is the intraclass channel
scatter matrix, defined as the average of the channel output

covariance matrices, under the signal-present and signal-absent
conditions.

The detectability index for the CHO model, d 0
CHO, is given

as4

EQ-TARGET;temp:intralink-;e017;326;382d 0
CHO

2 ¼ ½ḡsc − ḡbc�tS−1c ½ḡsc − ḡbc�: (17)

Following a recent publication by Yu et al.,38 Gabor filter
channels were utilized in this study. Such filters have been
designed to emulate the human visual system.34,39 AGabor filter,
Gðx; yÞ, is an exponential function with a given center location,
ðx0; y0Þ, and channel width, ws, that is modulated by a sinusoid
with a given central frequency, fc, orientation, θ, and phase, β,
expressed as40

EQ-TARGET;temp:intralink-;e018;326;273

Gðx; yÞ ¼ cosf2πfc½ðx − x0Þ cos θ þ ðy − y0Þ sin θ� þ βg
· e−4 lnð2Þ½ðx−x0Þ2−ðy−y0Þ2�∕w2

s : (18)

The center location was chosen to be the center of the signal. A
total of 60 Gabor filters (i.e.,M ¼ 60) were used corresponding
to six channel passbands: ½1∕128; 1∕64�, ½1∕64; 1∕32�,
½1∕32; 1∕16�, ½1∕16; 1∕8�, ½1∕8; 1∕4�, and ½1∕4; 1∕2� cycles∕
degrees, four orientations: 0, 2π∕5, 4π∕5, and 6π∕5, rad, and
two phases: 0 and π∕2 rad. ws and fc were taken as the widths
and centers of the passbands, respectively. The passbands were
converted to cycles∕mm using the inverse of Eq. (9) and the
same viewing conditions described in Sec. 2.4.2 (image FOV
of 209 mm, viewing distance of 475 mm, and image display
size of 350 mm). The filters were designed to be the same size
(in pixels) as the images that were shown to the human observ-
ers. Figure 2 shows the images of the 60 filters.
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Using the 300 image realizations, ḡsc, ḡbc, and Sc were esti-
mated for each reconstruction, signal size, and signal contrast
condition. Based on those estimates, the CHO model’s detect-
ability index, d 0

CHO, along with 95% confidence intervals were
estimated using a method described by Wunderlich et al.41

The CHO model was further extended to include internal
noise, denoted CHOi. The covariance matrix of the internal
noise, Nc, was assumed to be diagonal (i.e., noise between chan-
nels was uncorrelated) with values proportional to the variance
of the channel outputs (i.e., proportional to the diagonal ele-
ments of Sc) as

EQ-TARGET;temp:intralink-;e019;63;342Nci;j ¼
�
αCHO · Sci;j; i ¼ j
0; otherwise

; (19)

where Nci;j and Sci;j are the i 0th∕j 0th elements of Nc and Sc,
respectively, and αCHO is a proportionality constant. The detect-
ability index for the CHOi model, d 0

CHOi, is given as4

EQ-TARGET;temp:intralink-;e020;63;264d 0
CHOi

2 ¼ ½ḡsc − ḡbc�t½Sc þ Nc�−1½ḡsc − ḡbc�: (20)

The method described by Wunderlich et al. to estimate CHO
performance and confidence intervals does not include the
internal noise component, and a closed-form expression for
obtaining unbiased estimates of d 0

CHOi and corresponding
exact confidence intervals based on sample estimates of ḡsc,
ḡbc, and Sc is currently an open problem. As such, a simulation
approach was used in which zero-mean normally distributed
internal noise was added to the channel outputs. After adding
the noise, d 0

CHOi and its corresponding 95% confidence interval
were obtained using theWunderlich method on the updated (i.e.,
after adding internal noise) estimates of ḡsc, ḡbc, and Sc. This
process was repeated 1000 times for each condition and the final
estimate of d 0

CHOi and its confidence interval was taken as the
average across the 1000 repeated trials. As with the NPWi
model, the internal noise proportionality constant, αCHO, was

empirically chosen such that it maximized the coefficient of
determination (R2) between the model and human data when
performing linear regression analysis (see Sec. 2.5).

2.4 Statistical Analysis

The model-based image quality metrics (CNR, CNRA, d 0
NPW,

d 0
NPWE, d 0

NPWi, d 0
NPWEi, d 0

CHO, and d 0
CHOi) were transformed

(along with their corresponding confidence intervals) to detec-
tion accuracy, Ax, using

EQ-TARGET;temp:intralink-;e021;326;356Ax ¼ Φ
�

xffiffiffi
2

p
�
; (21)

where x is the image quality metric of interest and ΦðÞ is the
standard normal cumulative distribution function. The results
from the 2AFC perception experiment were compared with
the detection accuracy as predicted by each observer model
using linear regression analysis. The goal of the analysis was
to assess the models with respect to the criteria given in
Sec. 1 (i.e., highly correlated with human performance, correctly
characterizes images with varying noise and resolution proper-
ties, and reasonable to measure with a finite number of images).
The Pearson and Spearman correlation coefficients (rp and rs,
respectively) were used as a goodness of fit metrics. The slope of
each regression line was normalized to unity for easier visual
comparison.

In our experience, image quality metrics that do not consider
changes in noise texture or resolution tend to predict a greater
improvement in detection accuracy for iterative algorithms
(compared with FBP) than manifest with human readers. The
result is a situation where the model often predicts a pair of
FBP and iterative image sets to have similar quality, but the
humans performed better with the FBP images. This is an unde-
sirable property for an observer model and is manifest by dis-
tinct separation of the FBP and iterative data on a human versus
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Fig. 2 Montage of the 60 Gabor filters used to channelize the image data.
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model regression plot. A demonstration of this scenario is
shown in Fig. 3. For a good observer model, one would not
expect the FBP and ADMIRE data to be easily separable by
a linear discriminator. Thus, the error rate, E, of the linear clas-
sifier was used as a metric of how well each model observer can
properly characterize different reconstruction algorithms (larger
E implies a better model).

Finally, the averagewidth of the 95% confidence intervals for
each model’s detection accuracy was computed to demonstrate
how precisely the model performance can be estimated using a
finite number of image realizations.16 This value is important
because it speaks to the minimum effect magnitude that could
be detected using the observer model. For example, if the con-
fidence interval is 10%, one would likely not be able to observe
effects of less than 10% using that observer model with that cor-
responding number of images. In practice, we have found that
many factors of interest (e.g., dose or iterative algorithms) affect
detection accuracy in a relatively subtle manner. All computa-
tions were done in MATLAB (Mathworks).

3 Results
From the 2AFC experiment, the human accuracy ranged from
about 50% (i.e., guessing) to 87%. On average, CI95% (repre-
senting interobserver variability) was �7%. In general, perfor-
mance increased with increasing contrast, dose, and signal size
(Fig. 4). Based on the linear mixed effects model, ADMIRE
increased detection accuracy compared with FBP (P < 0.001).
The internal noise proportionality constants were found to be
approximately 30 and 4.5 for αNPW and αCHO, respectively.
From the linear regression analysis (Fig. 5), Pearson (Spearman)
correlation was 0.36 (0.33), 0.83 (0.84), 0.84 (0.86), 0.86 (0.88),
0.86 (0.91), 0.88 (0.90), 0.85 (0.89), and 0.87 (0.84) for CNR,
CNRA, NPW, NPWE, NPWi, NPWEi, CHO, and CHOi,
respectively. The linear discriminator error was 0.25, 0.15,
0.2, 0.25, 0.3, 0.25, 0.4, and 0.45, and the magnitude of the
95% confidence intervals of the model’s detection accuracies
was 2.84 × 10−3, 5.29 × 10−3, 4.91 × 10−3, 4.55 × 10−3,
2.16 × 10−3, 1.24 × 10−3, 4.58 × 10−2, and 7.95 × 10−2 for

CNR, CNRA, NPW, NPWE, NPWi, NPWEi, CHO, and
CHOi, respectively (Fig. 6). The correlations were statistically
significant (95% significance level) for all models except CNR
(P ¼ 0.1 for CNR and P < 0.001 for all other models).

4 Discussion
The data show how CNR and CNRA are inadequate metrics of
image quality. In fact, CNR had no statistically significant cor-
relation with human performance, probably due to the fact that it
is not task specific. Although CNRA had a relatively high cor-
relation, it was found to be inadequate for properly assessing
reconstruction algorithms that produce images with varying
noise and resolution properties. As can be seen in Fig. 4, for
the same CNRA, the human observers performed better with
the FBP images compared with the ADMIRE images. Thus,
the linear discriminator was able to separate those cases with
few errors and CNRA should not be used to assess the impact
of iterative reconstruction on low-contrast detectability.

As opposed to CNR, the NPW family of models (NPW,
NPWE, NPWi, and NPWEi) had a higher correlation with
humans and they were reasonable in characterizing FBP and
ADMIRE images. Also, the error bars were small with the
given number of image realizations. Further, the NPWEi
model had the strongest observed correlation among all the
models due to (1) the fact that it incorporated the eye filter,
which attempts to weight the data by spatial frequencies for
which the human observers are most sensitive, and (2) the
fact that it incorporated internal noise, which attempts to model
inconsistencies in the human perception of signals. Despite
these encouraging results, the measurement of NPW model per-
formance in the Fourier domain relies on some assumptions
about the imaging system (quasi-linearity) and the noise statis-
tics (stationarity). Under the conditions used in this study (uni-
form background with an SKE task), those assumptions appear
to have been valid. However, for more complicated detection
tasks, such as if the signal is only known statistically or if
the background is inhomogeneous, those assumptions may
not be valid and thus these Fourier-based metrics may not be
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Fig. 3 Example of (a) a poor model and (b) a better model in terms of properly characterizing the effects
of iterative reconstruction. FBP and iterative images with different detection accuracies as measured by
human readers are predicted to have similar detection accuracy by the poor model. This results in data
that are easily separable by a linear discriminator (i.e., low-error rate). In contrast, the data are not easily
separable for the better model (i.e., high error rate). Note that both correlation coefficients were similar
between the poor and better models in this example.
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as strongly correlated with human performance. Also, for the
CNR and NPW-based calculations, the nominal contrast was
used as opposed to an estimated contrast measured from the
reconstructed images. This was done because we have empiri-
cally found that the nominal contrast to be a good approximation
of measured contrast (for large signals). For the smaller signals,
the measured contrast can be reduced due to spatial blurring.
CNR is typically measured in a large signal thus avoiding
the effect of spatial blurring on contrast. Because of this,
using the nominal contrast is more consistent with what
CNR values typically represent. In defining the task function
for the NPW-based calculations, it was actually necessary to
use the nominal contrast because the task function by definition
describes an idealized (i.e., preimaging) version of the object to
be imaged. It should be noted that using the nominal contrast
helps to narrow the confidence intervals of CNR, CNRA,
and NPW-based measures. However, if the nominal contrast
was not representative of the image contrast, one would expect
this to be negatively impact the model’s correlation with human
performance.

The CHOmodel demonstrated a high correlation with human
performance, and this correlation was further improved by
incorporating internal noise in the CHOi model. Also, these
models properly assessed FBP and ADMIRE images as demon-
strated by large errors of the linear discriminators on the regres-
sion plots (E ¼ 0.4 and 0.45 for CHO and CHOi, respectively).
The downside of these models is the relatively large magnitude
of the error bars for the number of images used (approximately
5% to 8% on average). This implies that for this number of
images, it would be difficult to precisely assess two different
conditions that had a difference in human performance of
less than 5%. The CHO models have wider confidence intervals
compared with the NPWmodels in this study due to the fact that
the assumptions made in conjunction with the NPW models
(nominal contrast, noise stationarity, and a quasi-linear shift-
invariant system) allowed us to estimate the NPW model’s per-
formance precisely. In contrast, the large number of parameters
in CHO model must be estimated (expected channel outputs and
covariances) directly from the data, which propagates into rel-
atively high uncertainty for estimating the model’s performance.
Thus, despite the overall strong correlation of the CHOi model
with human observers, it may not be practical to acquire the rel-
atively large ensemble of images needed to compute it,

especially when attempting to optimize a clinical protocol
over a large parameter space (e.g., dose, reconstruction algo-
rithm, kernel, slice thickness, and so on). The major advantage
of the CHO and CHOi models is that they do not assume a linear
system or stationary noise statistics. Thus, they can confidently
be used for more complicated detection tasks (i.e., inhomo-
geneous backgrounds) with highly nonlinear systems, provided
that a large number of images for such evaluations are
available.3 Unfortunately, acquiring a large number of image
realizations is not always feasible when assessing commercial
CT systems, and simulation techniques, while extremely valu-
able, cannot always properly simulate proprietary components
of a commercial system (e.g., tube current modulation, beam
hardening corrections, reconstruction algorithms, and so on).
It should be noted that recent work on search capable models
has been shown to provide better statistical power with the same
number of images compared with SKE CHO observers.8–10 In
this study, search-capable observers were not considered
because the human reader results were conducted using the SKE
paradigm.

Also, CHO performance for each imaging condition was
computed using the method described by Wunderlich et al.41

This method estimates the model’s d 0 by first estimating the
CHO parameters (i.e., expected difference in channel outputs
and covariance matrices) using the entirety of available data
and then computing d 0 based on an analytical function of those
parameters. An alternative method would be to use a training/
testing technique in which the model’s template is estimated
with a portion of the data and then applied to the remaining
data [see Eq. (15)] to get distributions of the CHO test statistic
for signal-present and signal-absent cases. These distributions
are then used to estimate d 0 [see Eq. (1)].42 The advantage of
using this training/testing method would be that the estimated
model performance would be less susceptible to over-fitting
biases. The tradeoff is that the precision of the estimate would
likely be degraded. With this being said, both methods to esti-
mate CHO performance are used in recent literature.

In comparing the NPW and CHO models, it should also be
noted that the NPW models were calculated based on measured
CT system parameters (e.g., NPS/MTF) and their corresponding
d 0 values were computed based on analytical equations relating
the NPS/MTF to d 0 in the Fourier domain. In contrast, d 0 for the
CHO models was estimated directly from the ensemble of
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signal-present/signal-absent images. This is consistent with the
approaches generally used for each of these models based on
recent literature,6,9,20–26 and thus, we attempted to be consistent
with those practices. As a result, the data from this study re-
present a comparison between not only different observer
models but also between different approaches and assumptions
made to estimate the models’ performances. It would be pos-
sible to estimate the NPW performance directly from the sig-
nal-present/signal-absent images in a similar fashion to the
CHO models. One would not expect the results to change sig-
nificantly but the size of the confidence intervals would likely
increase.

This study used a linear discriminator error, E, to evaluate
how well different models properly assess images from different
reconstruction algorithms. This metric was devised to be sensi-
tive to the situation illustrated in Fig. 3, which is often observed
when simple image quality metrics, such as CNR, are used to
compare image quality across images having known differences
in noise–magnitude, noise–texture, and resolution. However, E
alone should not be interpreted as a comprehensive validation of
a model. In other words, a model with low E is likely a poor
model, but a model with high E could be poor or good. The
three metrics noted in this work (correlation, linear discriminator
error, and magnitude of confidence intervals) should be
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considered jointly when assessing the validity of an observer
model. To our knowledge, there is no standard metric available
in the literature to capture the phenomenon illustrated in Fig. 3.
Future work may expand on this metrology with the use of non-
linear classifiers or k-means clustering methods and further
robustness test could be performed using Monte Carlo
methods.43,44

Some limitations of this study should be acknowledged.
First, the task examined was relatively simple with a uniform
background and geometric 2-D signals under the SKE para-
digm. Real clinical tasks deviate from this simplistic paradigm
in several ways, including the fact that patients are not uniform,
lesions can have complex 3-D shapes, and the radiologists need
to perform a visual search when making a diagnosis. This over-
simplified paradigm can sometimes lead to spurious optimiza-
tions where quantum noise is reduced as much as possible (often
at the expense of resolution). In reality, a single image is used for
multiple tasks and thus minimizing quantum noise may be good
for a specific low-contrast detection task but might degrade per-
formance for other tasks. Future work will be focused on updat-
ing this methodology to make it more clinically realistic.
Second, only one dose level was considered and thus it was
not possible to assess if each observer model properly charac-
terized the effects of changing dose. Third, the human detection
data were relatively noisy (i.e., large error bars). This is due to

the fact that a limited number of trials [Eq. (15)] were performed
for each condition. Ideally, many more trials would be used to
minimize intraobserver variability. However, as stated in Sec. 2,
the data used for this study represent a subset of data from a
previous study.27 In that previous study, a larger image param-
eter space was considered (compared with this current study).
Because of this, the perception experiments done in that pre-
vious study were limited by the total number of images that
could reasonably be shown to the observers. Finally, the internal
noise parameters were chosen to maximize correlations between
the models and humans, which means that the reported corre-
lation coefficients are probably about as large as possible. It is
possible that if other criteria were used for optimization (e.g.,
mean square error), the internal noise parameters may have
been different.

5 Conclusion
The findings of this study imply that the NPWand CHO families
of model observers provided strong correlation with human
observer performance and correctly characterized the
differences in image quality of FBP and iteratively reconstructed
images. Thus, these models are good candidates to be used to
help optimize CT scan protocols in terms of low-contrast detect-
ability. Future work is needed to compare a broader range of
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observer models including visual search and signal/background
variability.
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