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SUMMARY

In multidimensional cancer omics studies, one subject is profiled on multiple layers of omics activities.
In this article, the goal is to integrate multiple types of omics measurements, identify markers, and build
a model for cancer outcome. The proposed analysis is achieved in two steps. In the first step, we analyze
the regulation among different types of omics measurements, through the construction of linear regulatory
modules (LRMs). The LRMs have sound biological basis, and their construction differs from the existing
analyses by modeling the regulation of sets of gene expressions (GEs) by sets of regulators. The construc-
tion is realized with the assistance of regularized singular value decomposition. In the second step, the
proposed cancer outcome model includes the regulated GEs, “residuals” of GEs, and “residuals” of reg-
ulators, and we use regularized estimation to select relevant markers. Simulation shows that the proposed
method outperforms the alternatives with more accurate marker identification. We analyze the The Cancer
Genome Atlas data on cutaneous melanoma and lung adenocarcinoma and obtain meaningful results.
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1. INTRODUCTION

Profiling studies have been extensively conducted in cancer research. The early studies are often limited by
being “1D” and collecting a single type of omics data. In recent research, multidimensional studies are gain-
ing significant popularity. In such studies, multiple types of omics data are collected on the same subjects.
A representative example is The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/), which
has generated gene expression (GE), copy number variation (CNV), DNA methylation (DM), microRNA
expression (ME), protein expression (PE), and other types of data for multiple cancer types. Multidimen-
sional data provide valuable insights beyond 1D data (Cancer Genome Atlas Network, 2012).

For presentation clarity, we consider data with GE, CNV, and DM measurements, which match the data
analyzed in Section 4. Methodological development in this article has been guided by the findings gener-
ated in biological studies (Kristensen and others, 2014), which include the following: (C1) GE is regulated
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by CNV, DM, and other regulators. Compared with its regulators, GE has a more direct effect on cancer out-
comes. (C2) CNV and DE can have indirect effects on cancer outcomes mediated through GE. They may
also have direct effects not captured by GE, for example through post-transcriptional regulations. (C3) The
regulation relationship is more complicated than one (regulator) to one (GE). Instead, it is expected that
sets of regulators, each of which is composed of multiple CNVs and/or DMs, regulate sets of GEs. This
has been the basis of regulatory network analysis, gene co-expression analysis, and others. (C4) Among a
large number of profiled GEs, CNVs, and DMs, only a small subset is associated with cancer.

The analysis of multidimensional data has been conducted in the literature. The frameworks of some
existing studies are summarized in Figure 1. van Iterson and others (2013) and Li and others (2012) ana-
lyze the regulations among GE, CNV, DM, and ME. Such studies address (C1), however, do not asso-
ciate genetic variants with cancer outcomes. Daemen and others (2009) selects important features from
each individual data type and models cancer outcomes using integrated information. Witten and Tibshirani
(2009) proposes to jointly select GEs and array CGH measurements by conducting sparse canonical corre-
lation analysis (CCA). However, in such studies, the information across different types of measurements is
treated equally, without accounting for the fact that GE is the downstream product. Under more comprehen-
sive frameworks that accommodate the gene regulation, Wang and others (2013) and Jennings and others
(2013) analyze the regulation of GE by CNV, DM, and ME and then link GE with cancer outcomes. How-
ever, such a strategy does not accommodate the direct effects of regulators on cancer.

To address the limitations of existing studies, we propose a new analysis framework (Figure 1). Our
approach addresses (C1) and (C3) by constructing the linear regulatory modules (LRMs) that link dif-
ferent types of omics measurements. (C2) is addressed by allowing for “residual” signals that cannot be
captured by the LRMs. And we further consider sparse models to address (C4). Compared with the existing
frameworks, our approach is unique in accommodating both GE and regulator signals, and the intercon-
nections between the two are modeled using the LRMs. Our approach includes several of the existing ones
as special cases and is more flexible. In what follows, the proposed method is described in Section 2. In
Section 3, we conduct simulations and comparisons with the alternatives. The analysis of TCGA data is
presented in Section 4. The article concludes with discussions in Section 5. Additional numerical results
are provided in the Supplementary Materials (available at Biostatistics online).

2. METHODS

For a subject, let xpx ×1 = (x1, x2, . . . , x px )
T denote the px GE levels and zpz×1 = (z1, z2, . . . , z pz )

T denote
the pz regulators. With for example p1 CNV and p2 DM measurements, z is the vector obtained by stacking
the measurements together with pz = p1 + p2. Denote y as the outcome variable. The analysis goal is to
model y using x and z while properly accommodating their regulation relationship. Assume n iid subjects.
Denote the design matrices of GEs and regulators as Xn×px and Zn×px , respectively, and the outcome vector
as Yn×1.

2.1 Analysis framework and rationale

We start with a simple regression model that describes the additive effects of GEs and regulators, that is,
y ∼ φ(xTβx + zTβ z), where the form of φ(·) is known, and βx and β z are the regression coefficients. This
model includes the first and second existing analysis frameworks in Figure 1 as special cases. To better
describe cancer biology, we need to accommodate the regulation between x and z. Under the extreme sce-
nario where xTβx and zTβ z explain the same variation in y, zTβ z can be viewed as a “mega regulator” of
xTβx , and the above model suffers from an identifiability problem. It is possible that xTβx and zTβ z con-
tain largely overlapping information, which has motivated the development of the collaborative regression
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Fig. 1. Modeling strategies. (a) Upper panel: the existing and proposed analysis frameworks. (b) Lower panel: rep-
resentation of the LRMs. The entire rectangle represents the transition matrix from a variety of regulators to GEs.
Each gray block represents an LRM that consists of a set of GEs and a set of regulators. The white areas represent no
detectable regulations.

method (Gross and Tibshirani, 2015). Our strategy differs from the collaborative regression and others as
follows. Genes (Regulators) form functional sets, and the regulation relationship is “localized”. This moti-
vates us to consider multiple connections in the form of xTv = a + zTu + ε, where u and v are (sparse)
parameter vectors, a is a constant representing a stable state of a set of genes, and ε consists of “random
noises” occurred during the transcription from DNA to mRNA that are not controlled by the measured reg-
ulators. We refer to each linear connection as an LRM. A graphical representation is provided in the lower
panel of Figure 1, where each block represents one LRM that links a set of GEs and a set of regulators.

With the LRMs, an integrated model consists of three parts that possibly contribute to cancer outcomes:
(i) a collective representation of the GEs that are regulated, (xTV)T, where each column of V corresponds
to a loading vector v. This part is linked to the regulators through the LRMs; (ii) x̃, which corresponds to
the “residual” GE signals regulated by other mechanisms; and (iii) z̃, which corresponds to the “residual”
regulator signals that may affect outcomes through channels other than GE. Overall, we propose the model

y ∼ φ(xTVβ1 + x̃Tβ2 + z̃Tβ3), (2.1)

where β1,β2, and β3 are the regression coefficients.
With different values of the regression coefficients, model (2.1) includes the following as special

cases: the model with GE (or CNV, DM) only (Kim and others, 2013), the model with decomposed GEs
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Table 1. Outline of the proposed method

Step 1. Estimate U and V, the loading matrices of LRMs
(a) Estimate �, the transition matrix from z to x

For the j th row of �, θ j , its estimate θ̂ j is obtained by fitting a penalized linear model for E(x j ) =
a j + zTθ j

(b) Compute the LRM loading matrices U and V by conducting regularized SVD on �̂. Pre-specify K , the
total number of LRMs. Initialize k = 1. Repeat (i) and (ii) for k � K
(i) Apply rank-1 sparse SVD on �̂, and obtain the singular vectors uk and vk and singular value dk

(ii) Update �̂ = �̂ − ukdkvT
k and k = k + 1

Step 2. Estimate the regression coefficients β1, β2, and β3
(a) Calculate XV, ZU, and the residuals X̃ and Z̃
(b) Fit the regression model y ∼ φ(xTVβ1 + x̃Tβ2 + z̃Tβ3) with the Lasso penalization

(Wang and others, 2013), and the additive model of GEs and regulators (Zhao and others, 2015). It is thus
more flexible and more comprehensive. With (C4), the regression coefficients are sparse with a small num-
ber of non-zero components. Note that the regulated GEs (xTV) are linked to the regulators. The proposed
method is thus able to achieve simultaneous marker selection across multiple types of omics measurements,
which is not feasible with the alternative methods described in Figure 1, and generates more interpretable
results. In the following subsections, we provide details on components of the proposed method. An outline
is available in Table 1.

2.2 Estimating the LRMs

We first write all of the LRMs collectively as

E(xTVpx ×K | z) = a1×K + zTUpz×K , (2.2)

where U and V both contain K columns of loading vectors, aT is a vector of constants, and K is the num-
ber of LRMs. Here, the grouping structure of genes in an LRM is defined using one column of U and the
corresponding column of V. We impose two conditions on the columns of U and V (the loading vectors
uk and vk for k ∈ {1, . . . , K }). First, U and V have orthogonal columns. That is, uk ⊥ uk ′ for k �= k ′, and
similarly for vk’s. Loosely speaking, this condition postulates that the regulation relationships do not have
overlap with each other. GEs and their regulators in different LRMs are expected to have different function-
alities. Similar weak or no overlap assumptions have been considered in the literature (Ciriello and others,
2012). The second is that both uk’s and vk’s are sparse. One GE is regulated by at most a small number of
regulators, and a regulator affects at most a small number of GEs.

Under the above conditions, we construct the LRMs with the assistance of singular value decomposition
(SVD). If we multiply V to both sides, Equation (2.2) becomes a regression problem with x as outcomes
and z as predictors. Hence we can consider the linear model that regresses each single GE onto the entire
vector of regulators. That is, E(x j | z) = α j + zTθ j for j ∈ {1, . . . , px }, where α j is an intercept, and θ j is
a vector of regression coefficients. Under the sparsity condition, we estimate θ j with penalized regression

θ̂ j = arg min
θ j

{‖X j − α j − Zθ j‖2
2 + λ‖θ j‖1} for j = 1, . . . , px , (2.3)

where λ > 0 is the data-dependent tuning parameter. Here the Lasso penalization (Tibshirani, 1996) is
adopted for its computational simplicity and satisfactory performance. We impose the same λ on all
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θ j ’s to ensure comparability. Denote α as the vector of α j ’s and �pz×px = (θ1, . . . , θ px ). The above
regression models can be collectively written as E(xT) = αT + zT�. With the orthogonality condition
and Equation (2.2), we perform SVD on the transition matrix �:

� = UDVT = (u1, . . . , uK )D(v1, . . . , vK )T, (2.4)

where D is a diagonal matrix with d1, . . . , dK as the first K diagonal elements. The loading vectors defined
here may differ from those in (2.2) by scaling factors, which can be absorbed into D.

With SVD, we decompose the estimated regression coefficient matrix �̂ = ÛD̂V̂
T
. Without the sparsity

condition, the LRMs correspond to the first K columns of Û and V̂. With the sparsity condition, regular-
ization needs to be incorporated in SVD. Specifically, we adopt the sparse SVD (SSVD, Lee and others,
2010) which recursively solves for rank-1 sparse singular vectors, i.e., the sparse vectors corresponding to
the largest singular values. For the first singular vectors and singular value (d1, u1, v1), we use the Lasso
penalized estimation to obtain a sparse solution

(d̂1, û1, v̂1) = arg min
d1,u1,v1

‖�̂ − d1u1vT
1 ‖2

F + λ|d1u1|1 + λ|d1v1|1, (2.5)

where ‖ · ‖F denotes the Frobenius norm. We then update �̂ = �̂ − d̂1û1v̂T
1 . The rest of the singular values

and singular vectors can be obtained recursively in a similar manner.

REMARK 2.1 Multiple methods can perform SSVD (Lee and others, 2010; Witten and others, 2009;
Yang and others, 2014). However, when the dimensions of x and z are large, the rank-1 approximation
procedures need to be recursively performed for a large number of times, and the existing methods may
fail to produce sparse solutions and/or run into convergence problems. To deal with this issue and also to
reduce computer time, it is beneficial to focus on a smaller sub-matrix of � for each rank-1 approximation.
To obtain this sub-matrix, we first conduct a non-sparse SVD and then apply a hard thresholding to u and
v to reduce the numbers of non-zero elements to a manageable level (say, a few hundred). We then perform
SSVD on this sub-matrix of � where the columns and rows correspond to the non-zero elements of u’s
and v’s after thresholding. Note that this strategy is not essential and does not have a significant impact
when px and pz are not very large (in our simulation, px = pz = 1000).

2.3 Modeling the cancer outcomes

With the LRMs, we can partition the effects of GEs and their regulators into three parts: (i) the K sets of
regulated GEs XV = (Xv1, . . . , ), or equivalently, ZU, the K sets of regulators. Note that as XV and ZU
carry the same information, only one is needed. We choose using XV as GE is more closely related to
cancer outcomes; (ii) X̃n×px , which consists of the residual GE signals; and (iii) Z̃n×pz , which consists of
the residual regulators signals.

We implement the following procedure to calculate X̃ and Z̃. Take X̃ as an example, and Z̃ can
be computed in the same manner. For the j th GE, denote the residual effect as X̃ j . Define S j as the
index set of all LRMs that contain the j th GE; that is, S j = {k : vk j �= 0, k = 1, . . . , K }, where vk j is
the j th entry of vk . If S j = ∅, the empty set, then the j th GE is not regulated, and X̃ j = X j . When
S j �= ∅, let VS j be the sub-matrix of V that contains columns with indices in S j . Then X̃ j = (I −
XVS j ((XVS j )

T(XVS j ))
−1(XVS j )

T)X j , which is the projection of X j onto the orthogonal space of XVS j.
This projection removes all the GE information contained in the LRMs. Note that this procedure yields a
X̃ with which the column space of (X̃, XV) preserves exactly the column space of X. However, it is also
noted that the column space of Z is not exactly preserved since the column space of XV is not exactly
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equal to that of ZU. A small proportion of information in Z may be sacrificed with the expectation that
similar information can be captured in XV.

With the above decomposition, we consider model (2.1) for the cancer outcome. With n iid observations,
denote by Ln(Y, XVβ1 + X̃β2 + Z̃β3) the loss function. To accommodate the high dimensionality and
(C4), we estimate the unknown regression coefficients by minimizing the penalized loss function

Ln(Y, XVβ1 + X̃β2 + Z̃β3) +
3∑

m=1

λ‖βm‖1. (2.6)

Lasso is adopted again for the consistency of analysis. Note that it is possible to use different tunings for
different terms. However, this may significantly increase computational cost. In addition, it may not be
entirely necessary since the three terms are on a relatively similar scale.

2.4 Connections with the existing methods

A key step of the proposed method is the reconstruction of the column spaces of X and Z. It is noted that
both XV and X̃ belong to the column space of X, and similarly for Z. Thus the naive additive linear model
(Zhao and others, 2015) is a special case of the proposed method. The construction of XV has a connection
with some of the existing dimension reduction techniques, for example principal component analysis. The
linear combination form also shares a certain similarity with the (sparse) CCA (Witten and others, 2009)
and partial least squares (PLS, Geladi and Kowalski, 1986). However, the proposed method has unique
properties and advantages. First, it accommodates the natural order of omics measurements, with GE at
the downstream of its regulators. Thus it is more sensible to use regression as opposed to correlation
analysis for the present problem. The loading vectors of PLS are obtained through maximizing covariance.
The existing theories for sparse PLS require that the covariance matrix of z has a latent eigenstructure
(Chun and Keleş, 2010), which not necessarily holds for the gene regulators. In contrast, the proposed
method derives the loading vectors directly from regression coefficients and may better suit the need and
interpretation of multidimensional omics data analysis.

2.5 Heuristic theoretical justifications

Consistency of the proposed method relies on several key estimation procedures and conditions. First,
� needs to be consistently estimated. For a specific GE, under mild regularity conditions on the design
matrix Z and signal strengths, with probability 1 − (2/

√
π)pzc−1

n e−c2
n/2, consistency can be achieved,

where cn = o(n−1/2−c0) is a diverging sequence (Fan and Lv, 2010). The dimension pz can grow with
n as long as log(pz) = o(n1−2c0), and c0 � 0 is a constant. Note that the proposed method for estimat-
ing � essentially performs px penalized estimations. With the Bonferroni approach, to ensure the overall
consistency, we require that 1 − (2/

√
π)px pzc−1

n e−c2
n/2 → 1. If px and pz are of the same order, then

log(px ) = o(n1/2−c0) ensures the overall consistency in the estimation of �. The consistency of U and V
is ensured under the orthonormality and sparsity conditions on the true loading vectors. Estimating the βm’s
is a “standard” penalization problem. Special attention may be needed on the design matrix (XV, X̃, Z̃) as
different components are interconnected.

3. SIMULATION STUDY

We conduct simulation to assess performance of the proposed method (referred to as Integrated). In addi-
tion, we are interested in comparing against alternatives. To the best of our knowledge, there is no approach
in the literature that searches for the LRM (or similar forms that identify sets of linked GEs and regulators).
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The following alternatives, which can also link omics measurements with outcomes, are considered.
(a) The Lasso-Separate approach regresses the outcome on X and Z separately using Lasso and then com-
bines results. (b) The Lasso-Joint approach regresses the outcome on X + Z using Lasso. (c) The iterative
sure independence screening approach (ISIS, Fan and Lv, 2008) marginally searches for candidate features
of X and Z and iteratively performs variable selection. (d) The collaborative regression approach (CollReg,
Gross and Tibshirani, 2015) models X and Z jointly and also encourages them to explain similar variation
in Y. With the proposed method, the rank-1 SSVD is realized using the R code provided by Lee and others
(2010) with default settings. Approaches (a) and (b) are conducted using the R package glmnet. ISIS is
conducted using the SIS package. The collaborative regression is conducted with manipulation of the data
matrix, following Gross and Tibshirani (2015).

Data are generated as follows. First, the rows of Zn×pz are independently generated from a multivariate
normal distribution with covariance matrix �, where �i j = 0.5|i− j |. Then uk and vk for k = 1, . . . , 50
are generated. Each uk or vk contains five randomly selected non-zero entries, with values generated
from uniform (0.5, 1). We compute � as

∑K
k=1 ukvT

k ; X is generated as X = Z� + E, where the rows
of En×px are iid and follow a multivariate normal distribution with covariance matrix �. Finally Y =
XVβ1 + Xβ2 + Zβ3 + ε, with the components of ε iid and following a normal distribution. Note that we
use X and Z, as opposed to X̃ and Z̃, in the residual parts because the construction and identification of
the residuals should be up to the method.

We simulate four scenarios which represent different complexity of LRMs and individual effects.
(Scenario 1) The locations of non-zero components in uk’s (vk’s) are mutually exclusive. This makes the
LRMs having no overlap and � having a blockwise structure. The individual effects in β2 and β3 are not
involved in any LRM. This scenario is standard for the proposed method, and the next three scenarios add
more complexity to demonstrate a certain degree of robustness of the proposed method. (Scenario 2) The
locations of non-zero components in uk’s and vk’s are randomly selected without reinforcing exclusive-
ness. With a chance of overlapping non-zero entries, this creates a violation of the orthogonality condition.
(Scenario 3) The locations of non-zero individual effects are randomly generated from those of genes in
the non-zero LRMs to force overlapping signals. Under the above three scenarios, there are five non-zero
entries in β1 and also five non-zero individual effects in both β2 and β3. (Scenario 4) We generate two
non-zero entries in β1 and twenty non-zero entries in both β2 and β3. Under all scenarios, the non-zero
components of β1 are generated uniformly from (0.15, 0.25) or (0.25, 0.5) to represent weak or strong sig-
nals. The non-zero components of β2 and β3 are generated uniformly from (0.25, 0.5). We set n = 100, 200
and px = pz = 500, 1000.

The proposed and alternative methods involve tuning parameters. For a comprehensive evaluation, we
consider a sequence of tuning parameter values and use the receiver operating characteristic (ROC) curve
and partial area under the ROC curve (PAUC) to compare different methods. Since Lasso can select at
most n non-zero variables, and the total number of truly associated GEs and regulators is 60 (except for
Scenario 3 which has 50), we compute the partial AUC up to n − 60 falsely selected variables. Simulation
results for px = pz = 1000 are summarized in Table 2. The ROC plots for Scenario 1 with px = pz = 1000
are shown in Figure 2. More simulation results are provided in the Supplementary Materials (available at
Biostatistics online).

Under all simulation settings, the proposed method has higher PAUCs than the competing alternatives
for both GE and regulator selection. Consider for example Scenario 1 with strong signals, which is the eas-
iest setting for identifying the important x variables. For n = 200, the proposed method has mean PAUC
0.95, while Lasso-Separate, Lasso-Joint, ISIS, and CollReg have PAUCs 0.80, 0.82, 0.51, and 0.81, respec-
tively. For n = 100, all methods have smaller PAUC values: 0.68 (Integrated), 0.48 (Lasso-Separate), 0.46
(Lasso-Joint), 0.23 (ISIS), and 0.48 (CollReg). Similar conclusion can be drawn for Scenario 3. An inter-
esting pattern is observed here: Integrated may start with a lower ROC curve when false positive rates are
small, with about four false non-zero variables. This is because that the estimated LRM may contain false
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Table 2. Simulation. PAUC: mean (SD) based on 200 replicates. px = pz = 1000

GE (x) selection Regulator (z) selection

Signal level Weak Strong Weak Strong

n 100 200 100 200 100 200 100 200

Scenario 1
Integrated 0.57 (0.13) 0.94 (0.03) 0.68 (0.09) 0.95 (0.03) 0.58 (0.15) 0.93 (0.04) 0.68 (0.11) 0.94 (0.03)
Lasso-Separate 0.30 (0.08) 0.60 (0.07) 0.48 (0.07) 0.80 (0.06) 0.16 (0.06) 0.48 (0.09) 0.23 (0.07) 0.66 (0.08)
Lasso-Joint 0.30 (0.08) 0.62 (0.07) 0.46 (0.07) 0.82 (0.06) 0.12 (0.05) 0.27 (0.05) 0.12 (0.05) 0.28 (0.05)
ISIS 0.26 (0.08) 0.41 (0.08) 0.23 (0.08) 0.51 (0.06) 0.15 (0.07) 0.40 (0.09) 0.15 (0.07) 0.57 (0.08)
CollReg 0.29 (0.08) 0.60 (0.08) 0.48 (0.08) 0.81 (0.06) 0.17 (0.07) 0.51 (0.09) 0.25 (0.07) 0.68 (0.08)

Scenario 2
Integrated 0.51 (0.13) 0.87 (0.05) 0.66 (0.10) 0.89 (0.04) 0.51 (0.13) 0.86 (0.06) 0.68 (0.09) 0.88 (0.03)
Lasso-Separate 0.34 (0.08) 0.64 (0.06) 0.53 (0.09) 0.83 (0.07) 0.22 (0.07) 0.58 (0.07) 0.30 (0.07) 0.74 (0.07)
Lasso-Joint 0.32 (0.08) 0.65 (0.07) 0.51 (0.09) 0.84 (0.06) 0.16 (0.05) 0.33 (0.06) 0.17 (0.05) 0.34 (0.06)
ISIS 0.18 (0.08) 0.42 (0.06) 0.27 (0.09) 0.55 (0.07) 0.15 (0.07) 0.48 (0.08) 0.21 (0.07) 0.65 (0.07)
CollReg 0.33 (0.08) 0.63 (0.06) 0.53 (0.09) 0.83 (0.07) 0.23 (0.07) 0.61 (0.08) 0.32 (0.07) 0.76 (0.07)

Scenario 3
Integrated 0.58 (0.16) 0.86 (0.13) 0.78 (0.12) 0.97 (0.07) 0.56 (0.18) 0.87 (0.11) 0.73 (0.20) 0.98 (0.05)
Lasso-Separate 0.34 (0.10) 0.52 (0.11) 0.54 (0.11) 0.73 (0.10) 0.27 (0.08) 0.56 (0.09) 0.33 (0.08) 0.70 (0.09)
Lasso-Joint 0.33 (0.10) 0.50 (0.11) 0.53 (0.11) 0.72 (0.10) 0.20 (0.07) 0.37 (0.07) 0.20 (0.07) 0.38 (0.07)
ISIS 0.19 (0.11) 0.36 (0.12) 0.26 (0.11) 0.48 (0.10) 0.18 (0.08) 0.49 (0.09) 0.24 (0.09) 0.64 (0.09)
CollReg 0.35 (0.11) 0.53 (0.12) 0.54 (0.11) 0.75 (0.10) 0.28 (0.08) 0.58 (0.09) 0.35 (0.09) 0.73 (0.09)

Scenario 4
Integrated 0.22 (0.11) 0.66 (0.09) 0.34 (0.08) 0.70 (0.07) 0.16 (0.11) 0.56 (0.11) 0.30 (0.10) 0.62 (0.08)
Lasso-Separate 0.17 (0.06) 0.48 (0.09) 0.23 (0.07) 0.57 (0.08) 0.14 (0.06) 0.43 (0.07) 0.16 (0.06) 0.51 (0.08)
Lasso-Joint 0.16 (0.06) 0.51 (0.08) 0.22 (0.07) 0.60 (0.08) 0.14 (0.07) 0.43 (0.06) 0.13 (0.05) 0.44 (0.07)
ISIS 0.10 (0.06) 0.36 (0.08) 0.12 (0.06) 0.39 (0.08) 0.09 (0.06) 0.34 (0.07) 0.10 (0.06) 0.40 (0.08)
CollReg 0.17 (0.06) 0.46 (0.08) 0.23 (0.06) 0.56 (0.08) 0.14 (0.06) 0.42 (0.07) 0.17 (0.06) 0.51 (0.08)

variables, and selecting a module forces these variables to enter the model. The alternative methods, based
on individual selection, are less likely to make mistakes early on since only variables with very strong sig-
nals are selected. However, as we allow slightly higher false positive rates, the proposed method quickly
surpasses the other methods in terms of true positive rate. The variables with weaker signals can still be
picked up by the LRMs due to the stronger combined signals, while the alternatives have a substantial
chance to miss these individual ones completely. This pattern is also observed under other settings espe-
cially for Scenario 2. Scenario 4 represents another interesting situation where there is little room for the
proposed method to take advantage of, since most of the important effects contribute individually. Con-
structing LRMs brings less benefit especially to the regulator selection, although the proposed method
has a higher selection rate under large models. Overall, across the whole spectrum, Integrated has higher
identification accuracy. For regulator selection, Integrated completely dominates in both PAUCs and ROC
curves with its capability of correctly identifying the LRMs. Since the indirect contribution from z to the
outcome may be partially explained by x, collinearity occurs between the two types of covariates. Hence
Lasso-Joint usually performs the worst. CollReg is often the second best since it is able to simultaneously
identify both x and z. However, some individual variables can be missed due to the miss-match of the two
spaces since the individual x signals cannot be explained by the individual z signals.

4. ANALYSIS OF TCGA DATA

We analyze the TCGA data on skin cutaneous melanoma (SKCM) and lung adenocarcinoma (LUAD).
Data were obtained in October of 2015. Measurements are available on GE (obtained using the Illumina
HiSeq 2000 RNA Sequencing Version 2 analysis platform), DM (obtained using the Illumina Infinium
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Fig. 2. ROC curves under simulation Scenario 1. px = pz = 1000. Integrated, solid; Lasso-Separate, dashed; Lasso-
Joint, dotted; ISIS, dot-dashed; CollReg, long-dashed; TP, true positive; FP, false positive.
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HumanMethylation450 platform), and CNV (obtained using the Genome-Wide Human SNP Array 6.0
platform). For GE and DM, we use the level 3 processed data downloaded from the TCGA website. For
CNV, we calculate and map using the raw SNP Array data and TCGA-Assembler (Zhu and others, 2014).
Beyond the omics measurements, we also collect data on two clinical variables: age and gender. The cancer
outcome of interest is overall survival. Below we describe the SKCM data analysis results. Additional
details are provided in the Supplementary Materials (available at Biostatistics online). Results for LUAD
are also provided in the Supplementary Materials (available at Biostatistics online).

With standard data processing, we obtain measurements on 469 subjects (with 156 failures) and 20 531
GEs, 21 231 DMs, and 24 958 CNVs. In principle, the proposed method can be directly applied. Given
the small sample size, we conduct screening to reduce dimensionality and improve stability. Specifically,
we conduct marginal screening, select the top 200 measurements (of each type) with the largest marginal
variances, and then pool all the screened measurements. This leads to px = 572 unique GEs and pz = 1144
(DM and CNV) regulators. This marginal screening combines the most active measurements from each
type and is suitable for the purpose of data integration. For linking the omics measurements with survival,
we adopt the accelerated failure time (AFT, Stute, 1993) model. For details on fitting the AFT model, we
refer the reader to Liu and others (2013).

When applying the proposed method, we choose the tuning parameters for Lasso penalties using cross-
validation. The proposed method also involves the number of LRMs and sub-matrix size. Although they
can be determined based on subjective judgment, we explore a more data-driven approach, which can
also serve the purpose of sensitivity analysis. Specifically, we randomly select 3

4 of the subjects to form
the training data. A model is generated using the proposed method and training data and used to make
prediction for the remaining 1

4 subjects. As the outcome is subject to censoring, the Harrell’s concordance
index (C-index, Harrell and others, 1982) is adopted to evaluate prediction performance. This procedure
is repeated 200 times, and the summary C-index results are provided in Table 5 of the Supplementary
Materials (available at Biostatistics online). We consider the number of LRMs = 150 and 300 and sub-
matrix size = 25, 50, and 100 and observe that prediction performance is not sensitive to those choices.
The dual (number of LRMs, sub-matrix size) = (300, 25) slightly outperforms and is used in downstream
analysis.

The proposed method identifies 9 LRMs as well as 6 GE and 21 regulator residual effects. A total of 68
unique omics measurements are involved, including 16 GEs, 33 CNVs, and 19 DMs. More detailed results
are provided in Table 3. The identification results are meaningful. Specifically, we identify CDKN2B,
which has been identified for multiple cancer types. A recent study shows that the depletion of p15, which
is encoded by CDKN2B, in benign nevi promotes progression to melanoma (McNeal and others, 2015).
The human leukocyte antigen (HLA) class II genes, including HLA-DRB1 and HLA-DRB5, can regulate
cytokine production in melanoma patients, and this mechanism may also help determine the risk of disease
recurrence (Campoli and Ferrone, 2008). Another marker, the eukaryotic translation elongation factor 1-
alpha 1, has been found to inhibit p53-, p73-, and chemotherapy-induced apoptosis. Wit and others (2002)
reported high levels of eEF1A1 in melanomas. Zinc-finger proteins, such as ZNF630, function as inter-
action modules that bind DNA, RNA, and others to alter the binding specificity of a particular protein.
A variety of zinc-finger proteins have been found to be associated with melanoma. RGS1 in module 4 is a
molecular prognostic marker for melanoma. A significant association has been found between increased
RGS1 expression and poorer relapse-free survival (Rangel and others, 2008). TYRP1 in module 4 is cor-
related with distant metastasis-free survival, overall survival, and Breslow thickness (Journè and others,
2011). This association has been independently validated.

The identified LRMs are also meaningful. We observe several pairs of different measurements of
the same gene in the LRMs (e.g., modules 6, 8, and 9), which provides a natural interpretation of the
LRMs. We note that such a structure may not be identified by the simple joint modeling. In addition,
measurements involved in module 7 are highly enriched with genes down-regulated in metastases (from

614



Integrating multidimensional data

Table 3. Analysis of the TCGA SKCM data: markers identified using the proposed method. Values in “()”
are the estimated regression coefficients or loadings

LRMs

LRM #1 (−1.02) #2 (0.85) #3 (0.16) #4 (−0.08) #5 (−0.04)

GE DDX3Y (0.98) XIST (0.96) CA8 (−0.62) GCDKN2B (0.88) VGF (0.46)
HIST1H2AE (−0.22) LOC146481 (0.12) DNAH9 (0.19) SLC1A1 (0.48) CHRFAM7A (0.36)

ZNF630 (0.25) C6orf57 (0.42) SAMHD1 (−0.35)
APEX2 (−0.64) CA5B (−0.74)

DM PRKY (−0.73) PRKY (0.14) IGSF5 (−1.00) RGS1 (0.11) ZBED2 (1.00)
APEX2 (−0.68) APEX2 (0.98) ABCA6 (−0.67)

HERC2P4 (0.06) TYRP1 (0.66)
FCGR3B (0.09) MUC15 (0.31)

LRM #6 (−0.24) #7 (0.18) #8 (0.04) #9 (0.02)

GE C6orf57 (−1.00) PCSK2 (−1.00) RSF1 (0.55) XAGE1D (0.22)
CLNS1A (0.84) LOC146481 (0.11)

UBQLNL (0.97)

CNV GSTM1 (0.05) SERPINB3 (0.66) CLNS1A (1.00)
C6orf57 (−0.91) SERPINB4 (−0.74)
COL9A1 (−0.38) LGALS7B (0.16)
C14orf39 (0.08)

DM LOC100128675 (0.12) UBQLNL (0.98)
DDX3Y (−0.18)

Residual effects

GE ZNHIT2 (−0.06) GPR150 (−0.06) GGT3P (−0.03) LOC647859 (0.03) NARS2 (0.09)
EIF3IP1 (−0.03)

CNV NCRNA00185 (−0.12) HLA.DRB5 (−0.11) BTNL3 (−0.05) LOC146481 (0.06) RNLS (−0.09)
GOLGA8B (−0.07) DLGAP2 (−0.05) LOC349196 (−0.03) COL21A1 (0.08) SFRP1 (0.00)

GNMT (0.01) ABCB5 (−0.09) CFTR (−0.11) CTSW (0.04) NELL1 (0.12)
FAM178B (−0.02)

DM GSTT2 (0.32) VENTX (−0.03) SDHAP2 (0.00) TMSB4Y (−0.07) RPS4Y1 (0.07)

malignant melanomas) compared with primary tumors with an FDR adjusted p-value <0.002 using the
MSigDB curated by the Broad Institute. A panel of novel melanoma markers has been identified including
the two Serpin peptidase inhibitors (SERPINB3 and SERPINB4 in module 2), which are both linked to
MAPK signaling (Mauerer and others, 2011).

Beyond the proposed, we also apply the alternative methods described in simulation as well as the
random survival forest (RSF) method (Ishwaran and others, 2008). Detailed results are provided in the
Supplementary Materials (available at Biostatistics online). Different methods lead to different identifi-
cation and estimation. In addition, we also compute the C-index summary statistics (except for the ISIS
method, which does not generate predictive models). The proposed method has slightly better prediction.

5. DISCUSSION

Multidimensional data, with their unique comprehensiveness, are gaining significant popularity in can-
cer research. A regularized marker selection and estimation method has been developed, linking multiple
types of omics measurements with cancer outcome. The development has been guided by the regula-
tion of GE by multiple mechanisms and effectively accommodates the underlying biology. The proposed
method advances from some of the GE decomposition alternatives by considering the grouping of GEs. The
inclusion of residual effects is also innovative and has sound biological interpretations. It is possible that
the construction of the LRMs can be achieved by alternative approaches, such as the sparse CCA, sparse
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PLS, and others. Developing and comparing with such alternatives are of interest, however, beyond the
scope of this paper. In simulation, the proposed method shows superior marker identification performance
over several much relevant alternatives. In data analysis, it identifies markers different from those using
the alternatives. The identified markers have important biological implications and satisfactory prediction.

This study inevitably has limitations. The modeling of regulations among omics measurements may
not be comprehensive and accurate enough. However, the current modeling provides a reasonable and
computationally manageable solution. The outcome model describes the three effects in an equal manner,
which has been motivated by Zhao and others (2015). Potentially, this model can be improved to reflect
the “unequal” status of GE and regulators. Moreover, it is possible to extend and accommodate non-linear
effects by considering y ∼ φ(xTV, x̃, z̃). The proposed method involves multiple parameters, which may
need to be determined in a somewhat subjective manner. The sensitivity analysis described in data analysis
and penalized selection in the last step can reduce this subjectiveness to a large extent. Heuristic theoret-
ical justifications have been provided. More rigorous justification may follow in future studies. In data
analysis, the proposed method leads to meaningful findings. A validation study may be needed to support
the findings.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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