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SUMMARY

When a moderate number of potential predictors are available and a survival model is fit with regularization
to achieve variable selection, providing accurate inference on the predicted survival can be challenging.
We investigate inference on the predicted survival estimated after fitting a Cox model under regularization
guaranteeing the oracle property. We demonstrate that existing asymptotic formulas for the standard errors
of the coefficients tend to underestimate the variability for some coefficients, while typical resampling such
as the bootstrap tends to overestimate it; these approaches can both lead to inaccurate variance estimation
for predicted survival functions. We propose a two-stage adaptation of a resampling approach that brings
the estimated error in line with the truth. In stage 1, we estimate the coefficients in the observed data set and
in B resampled data sets, and allow the resampled coefficient estimates to vote on whether each coefficient
should be 0. For those coefficients voted as zero, we set both the point and interval estimates to {0}. In
stage 2, to make inference about coefficients not voted as zero in stage 1, we refit the penalized model in
the observed data and in the B resampled data sets with only variables corresponding to those coefficients.
We demonstrate that ensemble voting-based point and interval estimators of the coefficients perform well
in finite samples, and prove that the point estimator maintains the oracle property. We extend this approach
to derive inference procedures for survival functions and demonstrate that our proposed interval estimation
procedures substantially outperform estimators based on asymptotic inference or standard bootstrap. We
further illustrate our proposed procedures to predict breast cancer survival in a gene expression study.

Keywords: Bootstrap; Ensemble methods; Oracle property; Proportional hazards model; Regularized estimation;
Resampling; Risk prediction; Simultaneous confidence intervals; Survival functions.

1. INTRODUCTION

Many modern medical studies seek to use genomic measurements to predict survival. With a small number
of predictors, the standard Cox proportional hazards model (Cox, 1972) can be used to effectively make
inference about survival functions. When many potential predictors are available, it is often desirable to
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build accurate yet parsimonious models that only use a small number of biomarkers. When the num-
ber of predictors is moderate, an approach using shrinkage to perform simultaneous variable selection
and estimation, such as the lasso, can be effective (Tibshirani, 1996, 1997). Asymptotically, the lasso-
penalized estimator is not consistent in variable selection and has non-regular asymptotic distributions,
which results in difficulty constructing valid confidence intervals (CIs) (Knight and Fu, 2000). Several
alternative penalty functions have been proposed that do possess the so-called oracle properties, in that
they are consistent for variable selection and yield estimators with asymptotic normality. These penalty
functions, including the adaptive lasso, the smoothly clipped absolute deviation (SCAD), and the adaptive
elastic net (aENET), have been adapted to the Cox model (Fan and Li, 2002; Zou, 2006; Zhang and Lu,
2007; Zou and Zhang, 2009; Wu, 2012). There are benefits to each of these approaches; for example, the
aENET has good estimation and variable selection performance in situations with correlated predictors
whose effects are sparse.

For the regression parameters, denoted by θ0 = (θ01, . . . , θ0p)
T, standard error (SE) formulas for the

estimate θ̂ = (θ̂1, . . . , θ̂p)
T based on asymptotic results have been proposed for the adaptive lasso and

SCAD, and could be analogously derived for the aENET (Fan and Li, 2002; Zhang and Lu, 2007). The
basis for the derivation of these formulas is the oracle property, which tells us that the penalized estimator is
asymptotically equivalent to the oracle estimator, the unpenalized estimator fit with only the “true” signals.
The formulas thus rely in part on the accuracy of the variable selection achieved by the penalization: they
provide non-trivial SE estimates for θ̂ j when θ̂ j |= 0, but set the SE to zero when θ̂ j = 0. This tends to yield

accurate SE estimates for non-zero θ0 j ’s, but underestimates the SE of θ̂ j when θ0 j = 0. An alternative
approach would be to obtain variance estimates with commonly used resampling methods such as the
bootstrap. Unfortunately, standard resampling methods tend to overestimate the variance when the true
coefficient is 0, even when the sample size is relatively large. In this paper, we first propose an ensemble
voting-based procedure, an adaptation of resampling leveraging the oracle property, to provide accurate
point and interval estimates for both zero and non-zero coefficients. Building on top of the ensemble
procedure for coefficient estimation, we then propose resampling procedures for making precise inference
about predicted survival functions at any given predictor level.

Specifically, our proposed method proceeds in two stages. In stage 1, we fit the penalized model in
the observed data set and across resampled data sets, and use this collection of estimated coefficients to
vote on which variables belong in the model. For each coefficient θ j , we determine whether the proportion
of {θ̂∗(1)

j , . . . , θ̂
∗(B)
j } which are 0 is higher than a specified fraction p j and if so, we set both the point

and interval estimate for θ j to be {0}. To make inference about coefficients voted as non-zero in stage
1, in stage 2, we refit the model in both the original and resampled data sets with only those surviving
variables. The refit estimates are then used to construct point and interval estimates for these coefficients.
This ensemble voting-based method can be viewed as a compromise between making inferences based on
the oracle property and resampling. Those voted as zero in stage 1 are deemed as “confidently zero” and
hence the oracle property is applied to make inference for these coefficients. Resampling is then used to
make inference about the remaining coefficients. Note that our proposed point estimator resembles the
relaxed lasso estimator (Meinshausen, 2007), with one main difference being that our method determines
the active set based on voting. As shown in numerical studies, the new point estimate does not differ
dramatically from the initial aENET estimate, yet it allows the resampling to more accurately capture its
variability and hence leads to more precise inference.

Our interest lies in inference not only on the coefficients, but also on functions of the coefficients—
specifically, the predicted survival function for new patients. With regularized estimation of the regression
coefficients, proper inference procedures for the survival function are not currently available. Naively
making inference based on asymptotics or the bootstrap can lead to imprecise interval estimation for the
survival functions. We propose to construct point and interval estimates for the survival functions building
on top of the two-stage procedure for coefficient estimation and resampling. Our procedure, benefiting
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from more accurate inference for the zero coefficients, can produce pointwise and simultaneous CIs with
better finite sample performance than those obtained from naive methods.

Our proposed approach shares a number of features with other recent ensemble-based approaches devel-
oped for variable selection. For example, for linear models, the randomized lasso with stability selection
(Meinshausen and Bühlmann, 2010) and the bootstrap lasso (Bach, 2008) both fit lasso-type procedures in
observed and resampled data, and look across the resampled estimators to identify which variables should
and should not be included in the model. They establish results about the consistency of variable selec-
tion guaranteed by these approaches, even when the number of potential predictors is quite large. The idea
behind our proposed point estimator is similar to what is proposed in these papers, and it does inherit oracle
properties from the penalized estimators it uses. However, our goal is to use an ensemble-type approach to
produce both a good point estimate and a good collection of resampled estimators that accurately capture
the variability of the point estimate in finite samples. This joint goal distinguishes our method from previ-
ous work. Furthermore, no existing methods consider downstream inference for survival functions in the
presence of regularization for coefficient estimation.

The rest of the paper is organized as follows. In Section 2, we introduce our ensemble voting-based
procedure, with the main methodological details provided in Section 2.2 and notes on implementation
in Section 2.4. In Section 3.1, we evaluate our method using simulation studies and in Section 3.2, we
demonstrate its usage for predicting the probability of breast cancer progression using a set of genes in
a candidate pathway. In Section 4, we make some final comments and further situate our method in the
context of other existing ensemble approaches.

2. METHODS

We consider the setting in which we have a collection of pZ novel genomic or biological predictors Z, and
wish to use them along with pD clinical covariates D to predict patient survival time T . Due to censoring,
we only observe X = min(T, C) and � = I (T � C), where C is the censoring time assumed independent
of T given W = (DT, ZT)T. The observed data consist of n independent and identically distributed (iid)
random vectors, O = {(Xi ,�i , WT

i )T}i=1,...,n. Without loss of generality, we assume that Z j ’s are stan-
dardized to have mean 0 and variance 1. We further assume that pD is small and all clinical variables are
included in the model; however, pZ may be of moderate size relative to n. We assume a Cox proportional
hazards model for T | W, S(t; W) ≡ P(T � t | W) = g{log �0(t) + θT

0 W}, where g(x) = exp{− exp(x)},
�0(·) is the unknown baseline cumulative hazard function, and θ0 are the unknown log hazard ratio param-
eters. We let Ac = { j : θ0 j = 0, pD < j � p} denote the non-active set of the coefficients for Z and let
A= {1, . . . , p}\Ac, where p = pD + pZ .

2.1 Regularized estimation and initial perturbation

Since pZ is not small and the coefficient vector may be sparse, we may estimate θ0 by maximizing a
penalized log partial likelihood with a penalty providing simultaneous variable selection and estimation.
For clarity, we will use the aENET penalty throughout but identical methods could be pursued using any
penalization with oracle properties. Specifically, we focus on the estimator

θ̂ = (1 + λ2) argmin
θ

⎧⎨
⎩−�̂0(θ) + λ2

p∑
j=pD+1

θ2
j + λ1

p∑
j=pD+1

ŵ j |θ j |
⎫⎬
⎭,

where �̂0(θ) = n−1
∑n

i=1 �i [θ
TWi − log{n�̂(0)(θ , Xi )}] is the log partial likelihood, �̂(0)(θ , s) =

n−1
∑n

i=1 I(Xi � s) exp(θTWi ), ŵ j = |θ̃R j |−1, and θ̃ R = (1 + λ2) argminθ {−�̂0(θ) + λ2
∑p

j=pD+1 θ2
j }.
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Here λ1 and λ2 are non-negative tuning parameters controlling the amount of regularization with both
tending to 0 as n → ∞. Further discussion of tuning parameters is given in Section 2.4.

To construct CIs for θ0, we may rely on asymptotic results similar to those suggested in Fan and Li
(2002) and Zhang and Lu (2007), or resampling methods such as the bootstrap. However, the asymptotic-
based approach tends to underestimate the variability as shown in, for example, Minnier and others (2011),
as well as in the simulation results in Section 3.1. Thus, we turn to resampling to obtain more accurate
assessment of the variability. First, we consider the commonly used wild bootstrap approach (Kosorok,
2007). We generate a vector of iid mean-1-variance-1 random variables, V = (V1, . . . ,Vn)

T, independently
of O, and calculate

θ̂
∗ = (1 + λ∗

2) argmin
θ

⎧⎨
⎩−�̂∗

0(θ) + λ∗
2

p∑
j=pD+1

θ2
j + λ∗

1

p∑
j=pD+1

ŵ∗
j |θ j |

⎫⎬
⎭ ,

where ŵ∗
j = |θ̃∗

R j |−1, θ̃
∗
R = (1 + λ∗

2) argminθ {−�̂∗
0(θ) + λ∗

2

∑p
j=pD+1 θ2

j }, �̂∗
0(θ) = n−1

∑n
i=1 Vi�i [θ

TWi −
log{n�̂(0)∗(θ , Xi )}], and �̂(0)∗(θ , s) = n−1

∑n
j=1 V j I(X j � s) exp(θTW j ). In Appendix A of the Supple-

mentary Material (available at Biostatistics online), we show that �̂0(θ) and �̂∗
0(θ) are asymptotically

equivalent to objective functions that are the sum of iid terms; thus, arguments similar to those given

in Minnier and others (2011) show that
√

n(θ̂
∗ − θ̂) |O D≈ √

n(θ̂ − θ0). Thus, by producing B vectors

V (1), . . . ,V (B), we may find B iid estimators θ̂
∗(1)

, . . . , θ̂
∗(B)

, and use the distribution of
√

n(θ̂
∗(b) − θ̂)

to approximate the distribution of
√

n(θ̂ − θ0), where B is some large number. In practice, we find good
performance when Vi has finite support, such as Vi ∼ 4 · Beta( 1

2 , 3
2 ). One may directly make inference

about θ based on {θ̂∗(b)
, b = 1, . . . , B}; however, variance estimators from this approach tend to be overly

conservative for {θ0 j , j ∈Ac} leading to imprecise interval estimation for survival functions. To produce
valid inference for all coefficients as well as predicted survival, we instead propose the following two-stage
ensemble voting approach.

2.2 Ensemble voting

In stage 1, we obtain θ̂ and {θ̂∗(b)
, b = 1, . . . , B} as described in Section 2.1. Then we let the perturbed

estimators vote, so that for j = pD + 1, . . . , p, if at least p j of {θ̂∗(b)
j , b = 1, . . . , B} are zero, both the

point and interval estimates of θ j are set to {0} for some p j ∈ (0, 1). Details on the choice of p j are given

in Section 2.4. Let ÂV = { j : B−1
∑B

b=1 I(θ̂
∗(b)

j = 0) � p j } be the active set based on voting. Obviously,

{1, . . . , pD} ⊂ ÂV since coefficients for D are not penalized. In stage 2, we repeat the aENET regularized
fitting and resampling using the restricted data {(Xi ,�i , WT

ÂV i
)T, i = 1, . . . , n}, where, for any p × 1

vector W and any set A⊂ {1, . . . , p}, WA denotes the subvector of W corresponding to A. Let θ̂V,ÂV
and

{θ̂∗(b)

V,ÂV
, b = 1, . . . , B} denote the corresponding estimates of the coefficients for WÂV

from the observed
data and perturbations.

Let θ̂V denote the final two-stage point estimator for θ , and let θ̂
∗(b)

V denote the resampled counterpart

of θ̂V based on V (b). Then the elements of θ̂V and θ̂
∗(b)

V , are set to zero for j /∈ ÂV ; and the subvectors

of θ̂V and θ̂
∗(b)

V excluding these elements are, respectively, set to θ̂V,ÂV
and θ̂

∗(b)

V,ÂV
. The variability in

θ̂
∗(1)

V , . . . , θ̂
∗(B)

V now more closely matches the empirical variability of θ̂V , as demonstrated in the simula-
tion studies. Asymptotic oracle properties of these ensemble-based estimators are established in Appendix
A of the Supplementary Material (available at Biostatistics online).
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2.3 Survival functions and CIs

To predict survival probabilities for a future patient with W = wnew, we may estimate �0(t)
based on Breslow’s estimator (Breslow, 1972), �̂0(t; θ̂) = ∫ t

0 �̂(0)(θ̂, s)−1 dN̄ (s), where N̄ (s) =
n−1

∑n
i=1 �i I [Xi � s]. Subsequently, we estimate the survival function S(t0; wnew) as

Ŝ(t0; wnew) = g{log �̂0(t; θ̂) + θ̂
T
wnew}. (2.1)

To construct pointwise CIs for S(t0; wnew) for t0 ∈ [t1, t2] ⊂ (0, τ ), one may estimate the variances based
on the asymptotic properties of θ̂ and �̂0(·), where τ is a time satisfying P(X > τ) > 0. However, such
an explicit estimation approach may underestimate the variability as the case for θ̂ and also is infeasible
when the goal is to obtain simultaneous CIs.

We propose to employ the resampling method for both pointwise and simultaneous CI estima-
tion. Specifically, for each set of V , we first obtain the perturbed estimate θ̂

∗
and then calculate

Ŝ∗(t0; wnew) = g{log �̂∗
0(t0; θ̂

∗
) + θ̂

∗T
wnew}, where �̂∗

0(t; θ̂
∗
) = ∫ t

0 �̂(0)∗(θ̂
∗
, s)−1 dN̄ ∗(s), and N̄ ∗(t) =

n−1
∑n

i=1 Vi I (Xi � t)�i . We demonstrate in Appendix B of the Supplementary Materials (available at
Biostatistics online) that

√
n{Ŝ∗(t0; wnew) − Ŝ(t0; wnew)} |O and

√
n{Ŝ(t0; wnew) − S(t0; wnew)} converge

weakly to the same limiting zero-mean Gaussian process. Thus, we may use the observed real-
izations of Ŝ∗(t0; wnew) to construct CIs for S(t0; wnew). The variance of Ŝ(t0; wnew) may be esti-
mated as σ̂S(t0; wnew)2 = B−1

∑B
b=1{Ŝ∗(b)(t0; wnew) − Ŝ(t0; wnew)}2. A 95% CI at t0 may be calculated

as Ŝ(t0; wnew) ± 1.96σ̂S(t0; wnew). To construct simultaneous CIs, we follow the same strategy as in
Lin and others (1994) based on the resampled realizations. A 95% simultaneous CIs over the range [t1, t2]
can be obtained as {Ŝ(t; wnew) ± c95σ̂S(t; wnew), t ∈ [t1, t2]}, where c95 is the 95th percentile of the distri-
bution of [

√
n supt∈[t1,t2]{|Ŝ∗(b)(t; wnew) − Ŝ(t; wnew)|/σ̂S(t; wnew)}, b = 1, . . . , B]. In finite samples, cov-

erage is improved if we calculate CIs on the logit scale.

2.4 Implementation and tuning

To obtain θ̂ numerically, one may use the algorithm proposed in Wu (2012). Alternatively, one may
use a quadratic approximation to the likelihood similar to those proposed in Wang and Leng (2007)
and Zhang and Lu (2007) to convert to a penalized least squares problem. Specifically, for a given
λ2, let �̂′

R(θ̃; λ2) = ∂�̂R(θ; λ2)/∂θ and �̂′′
R(θ̃; λ2) = ∂2�̂R(θ; λ2)/∂θ∂θT. We take the Cholesky decom-

position of �̂′′
R(θ̃; λ2) = X

T
X, and define Y = (XT)−1{�̂′′

R(θ̃; λ2)θ̃ − �̂′
R(θ̃; λ2)}; we may check that

1
2 (Y − Xθ)T(Y − Xθ) ≈ �̂R(θ; λ2) up to constants. Thus, after a preliminary estimate θ̃ yR is found,

θ̂ ≈ (1 + λ2) argminθ {− 1
2 (Y − Xθ)T(Y − Xθ) + λ1

∑p
j=pD+1 |θ̃R j |−1|θ j |}. We find that this approxima-

tion performs well in finite samples.
We need to select tuning parameters to ensure satisfactory performance of the regularized estimation

and the resampling methods. To this end, we recommend employing weak L2 regularization to avoid over-
shrinkage which can induce bias. For the L1 regularization, we follow the same principles as suggested in
Minnier and others (2011) and consider a modified BIC. Precisely, we select λ2 to guarantee df∗ degrees
of freedom, using the implemented ridge option of coxph in R with df∗ = 0.99 × min{∑n

i=1 �i , p}.
We then select λ1 by minimizing a modified BIC penalty, BIC(λ1) = −2�̂0{θ̂(λ1)} + n0.1d̂f(λ1), where
d̂f(λ1) is simply the number of non-zero elements of θ̂ when λ1 is used for tuning. We repeat tuning
parameter selection for each perturbed estimate. When we recalculate the estimates after ensemble voting,

θ̂V , θ̂
(1)∗
V , . . . , θ̂

(B)∗
V , we use the same tuning parameters as used in the initial estimators θ̂ , θ̂

(1)∗
, . . . , θ̂

(B)∗
.

To choose the proportions p j for determining whether W j should be excluded, we propose here a data-
driven approach that works well in practice, but note that any thresholds p j ∈ (0, 1) will yield the property
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that P{B−1
∑B

b=1 I(θ̂∗(b)
j = 0) � p j |O} → I ( j /∈A) due to the oracle properties of θ̂ and θ̂

∗
. In simula-

tion, the obvious choice p j = 0.5 for all j works relatively well; however, we find that an approach that is
more tuned to the data yields improved performance in finite samples. Specifically, we use a permutation
approach to estimate what the threshold would be under a global null, H0 : Z ⊥ T | D. Since D may be
both associated with T and Z, the standard permutation that breaks the link between W and (X,�) may
not be ideal. To account for the correlation, we propose to first regress Zj against D and obtain residuals
Z̃j for j = 1, . . . , pZ . Let Z̃ = (Z̃1, . . . , Z̃ pZ )

T be the new covariates. Then Z̃ is uncorrelated with D and

remains unrelated to T under H0. Next, for each set of permuted data {(Xi ,�i , DT
i , Z̃

†T

i )T, i = 1, . . . , n},
we fit the aENET regularized Cox model and perform resampling to obtain perturbed estimates of θ0 under

H0, where {Z̃†
1, . . . , Z̃

†
n} represents permuted {Z̃1, . . . , Z̃n}. If we perform M such permutations, and let

p
(m)
j denote the proportion of perturbed values that vote for each θ j to be 0 from the mth permutation, we

may calculate p̄ j = M−1
∑M

m=1 p
(m)
j . We then set p j = min{max(0.05, p̄ j ), 0.95} to ensure that p j ∈ (0, 1)

for the ensemble voting. For ease of implementation, one may also simply choose a common threshold
p = p−1

Z

∑p
j=1 p j when the covariates are standardized, which is what we adopt in our numerical studies

and seems to work well in practice.

3. NUMERICAL STUDIES

3.1 Simulation studies

To assess the performance of the proposed procedures, we generated Z from a multivariate normal distri-
bution with mean 0 and compound symmetry structure with variance 1 and correlation ρ. We considered
settings with pZ = 10, 20, and 30 covariates, and correlations ρ = 0 and 0.5. For simplicity, we did not
include any additional clinical covariates. The underlying signal was linear involving only the first five
covariates; the structure of this signal was h(z) = z1 + z2 + 0.5(z3 + z4 + z5). For each setting, we gen-
erated survival times under the Cox model λ(t; z) = λ0(t) exp{h(z)}, where λ0(t) is the hazard function
from a Weibull(λ = 1, k = 3). The censoring was generated from a uniform distribution with range chosen
to produce ∼50% censoring. We considered small and moderate sample sizes (n = 200 and n = 500).

For prediction of survival time for future patients, we consider three individuals. One is the “baseline”
individual (W(0)) who has all covariates equal to 0; for this individual, the estimate θ̂ appears only in
the estimation of the cumulative baseline hazard �0(·). We also consider two individuals with non-trivial
covariates, where θ̂ appears twice in the survival function estimate (2.1). The individual W(1), with covari-
ate pattern (0, 0, 2, 2, 2, 0, . . . , 0), should emphasize difficulties in estimating the smaller signals. The
individual W(2), with covariate pattern (−0.5, . . . ,−0.5), should emphasize overall difficulties in esti-
mating both the non-zero and zero coefficients. We estimate the survival function and calculate CIs in the
region [t1, t2], where t1 is defined to be the 10th percentile of X and t2 is the 90th percentile of X . We
present results on the CIs for the conditional survival function at t0 = (t1 + t2)/2 as well as simultaneous
CIs for t ∈ [t1, t2].

We compare three methods for interval estimation: the bootstrap; our proposed approach using per-
turbation resampling and voting; and an approach mimicking the asymptotic method. For the asymptotic
method, because formulas do not exist for CIs of the survival function, we mimicked the approach of the
formula by applying aENET to the observed data, identifying which θ̂ j are declared non-zero, and restrict-
ing to these covariates for estimation using resampling. Resampling methods use B = 2000 resamples.
Results presented are based on 2000 simulations.

In Figure 1, we present the biases and the empirical SEs of the two point estimators: the standard
aENET estimator θ̂ and our voting-based estimator θ̂V . For the coefficients θ0 j = 0, the absolute bias is
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Fig. 1. Comparison of the SEs, bias, and 95% CI coverage of θ̂ j , for true model parameters θ0 =
(1, 1, 0.5, 0.5, 0.5, 0, . . . , 0). Shown are values when θ0 j = 0 (with absolute bias displayed), as well as θ01 = 1 and

θ03 = 0.5. Bias and empirical SEs are compared for the base aENET fit (θ̂) and the aENET fit after the voting proce-
dure (θ̂V ); the variability for the base aENET fit may be estimated using either the bootstrap or the asymptotic method,
while the variability for the voting procedure is estimated using the resampled coefficient estimators after voting.
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displayed. The data-adaptive voting threshold p varies between about 45% and 60%, depending on how
“informed” the voters are—for example, when n is larger and p is smaller, a higher proportion of the voters
successfully eliminate the true zeros under the global null, so a higher threshold p may be used. Both θ̂

and θ̂V have negligible bias for zero and non-zero coefficients. For the non-zero signals, the bias is slightly
upward for the strong signals (θ0 j = 1) when n = 200 and p = 20 or 30. For the weaker signals (θ0 j = 0.5),
the aENET estimator has a downward bias as expected for any shrinkage estimator, but the voting-based
estimator shifts the estimators slightly upward with slightly less bias for the weaker signals.

The empirical SEs for θ̂ and θ̂V are nearly identical for the non-trivial signals (θ0 j = 0.5 or 1); when

θ0 j = 0, θ̂V displays a slight increase in variability. This may be because the voting-based estimator actually
tends to include covariates with true θ0 j = 0 at a slightly higher rate than the standard aENET, although the

frequencies of θ j ’s being set to 0 only differ slightly between θ̂ and θ̂V . Under no correlation, when n = 200,

the percent of zero coefficients set to zero was (69%, 70%, 68%) for θ̂ and (60%, 61%, 60%) for θ̂V when
pZ = (10, 20, 30). These frequencies get higher as expected when n = 500: (77%, 79%, 79%) for θ̂ and
(66%, 67%, 66%) for θ̂V . Under 0.5 correlation, when n = 200, the percent of zero coefficients set to zero
was (70%, 70%, 67%) for θ̂ and (69%, 62%, 60%) for θ̂V when pZ = (10, 20, 30); when n = 500: (78%,
80%, 79%) for θ̂ and (66%, 69%, 68%) for θ̂V . The slight over-selection of variables for θ̂V is compensated
with a small gain in retaining the true signals. Both methods always include the strong signals (θ0 j = 1),

but when n = 200, under no correlation θ̂ misses moderate signals (θ0 j = 0.5) (.05%, .06%, .03%) of the

time, while θ̂V misses them (.03%, 0%, .03%) of the time for p = (10, 20, 30). Under 0.5 correlation, these
rates are slightly higher, but with better success again for θ̂V : (1.1%, 1.9%, 2.0%) for θ̂ and (0.7%, 1.4%,
1.6%) for θ̂V .

We have two methods to estimate var{θ̂} (asymptotic and bootstrap) and one to estimate var{θ̂V } (our
proposed resampling with voting method). When θ0 j = 0, the variance calculated using asymptotics tends
to fall below the empirical variance, while the bootstrap variance is typically higher. When θ0 j �= 0, the
asymptotic method agrees with the empirical variance, while the bootstrap variance is still inflated when
n is small. The ensemble-based voting method yields variance estimates that are more consistently in line
with the empirical variance for all θ0 j .

Henceforth, we will compare CI coverage and refer to these by the error estimation method (asymptotic,
bootstrap, and voting)—noting that asymptotic and bootstrap methods are centered at θ̂ while voting-
based methods are centered at θ̂V . The coverage for θ0 j = 0 is high for all methods as expected based
on the oracle properties. For θ01 = 1, we see that the bootstrap method has substantial over-coverage due
to overestimation of the variability, especially when n = 200, while the asymptotic and voting methods
demonstrate near 95% coverage. For the moderate signal θ03 = 0.5, the bootstrap intervals again tend to
over-cover, and the asymptotic intervals exhibit some under-coverage when the number of covariates is
larger. The ensemble voting method falls between these and maintains levels near 95%. In general, we find
that our proposed voting method provides more precise estimation of the sampling variability compared
to both the asymptotic based and bootstrap methods.

The coverage and width of the CIs for the t0-year survival predictions are compared for the 3 individuals
in Figure 2. The conditional survival probabilities at t0 are approximately (0.75, 0.01, 0.93) for the three
individuals (W(0), W(1), W(2)). The bootstrap method tends to produce overly conservative CIs with cov-
erage levels much higher than 95% and substantially broader widths. The asymptotic and voting-based CIs
have very similar widths, but the voting-based coverage is typically higher. For W(0), when all coefficients
are 0, there is little difference between the asymptotic and voting methods. However, especially for W(1),

the asymptotic method can under-cover, while the voting-based CI has coverage near 95% across settings.
In Figure 3, we present results on the simultaneous CIs including their widths and empirical coverage

levels. As with the pointwise intervals, we see that typically the simultaneous CIs based on bootstrap
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Fig. 2. Under the model with θ0 = (1, 1, 0.5, 0.5, 0.5, 0, . . . , 0), CI coverage for t0-year survival, and width, for three
covariate levels: W(0), with all covariates 0; W(1) = (0, 0, 2, 2, 2, 0, . . . , 0); and W(2) = (−0.5, . . . , −0.5).
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Fig. 3. Under the model with θ0 = (1, 1, 0.5, 0.5, 0.5, 0, . . . , 0), simultaneous CI coverage for W(0), with all covariates
0; W(1) = (0, 0, 2, 2, 2, 0, . . . , 0); and W(2) = (−0.5, . . . , −0.5). Also shown are simultaneous confidence widths at
representative times.
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over-cover and are wider, while the asymptotic and voting-based methods are narrower. When n = 500,

coverage of the voting-based method is in general near 95%; when n = 200, the coverage tends to be over
95% for W(0) and W(2). For W(1), we see where our voting method most improves over the asymptotic
method because the ensemble voting provides more specific knowledge of which θ0 j should be set to 0.

The simulations presented above focused on settings where the true non-zero θ0 j were of large or
moderate size, and thus almost always included in the models. We focus on this setting because pre-
cise interval estimation based on shrinkage estimators is feasible with moderate sample sizes. When
some of the true signals are of order O(n−1/2), adaptive lasso-type estimators are expected to yield sig-
nificant bias for such weak signals and it becomes implausible to construct precise CIs as previously
shown in Pötscher and Schneider (2009). To further examine the performance of our proposed proce-
dures under such settings, we present additional simulation results in the Online Supplementary Mate-
rials (Web Appendix C, available at Biostatistics online) which follow the same structure as those above,
but with h(z) = 1 · z1 + 0.8 · z2 + 0.6 · z3 + 0.4 · z4 + 0.2 · z5, and focus in particular on the small sig-
nal θ05 = 0.2. The probability of inclusion of the fifth variable in the support varies between 0.6 and 1.0,
and we see that even the voting approach has empirical coverage levels significantly below the nominal
level for θ05, especially when n = 200. Once n = 1000, coverage returns to the nominal level for θ05 = 0.2
(results not shown). For the survival functions, both asymptotic-based and bootstrap-based procedures tend
to have difficulty in providing precise CIs under this setting, yielding either too low or too high of coverage
levels. On the other hand, the proposed interval estimator for the survival functions based on ensemble and
perturbation yields reasonable coverage levels despite the difficulty in making precise inference about the
regression coefficients of weak signals. This further demonstrates the advantage of our proposed interval
estimation procedures over existing methods based on asymptotic inference or bootstrap.

3.2 Data example

To illustrate our approach, we consider a breast cancer gene expression study previously reported in
Wang and others (2005) consisting of 286 breast cancer subjects, 37% of whom experience breast can-
cer progression (107 events). We consider using the 62 genes belonging to the p53 signaling pathway
(Subramanian and others, 2005) to predict breast cancer progression; this pathway is known to play an
important role in breast cancer progression (Gasco and others, 2002). We build a model predicting sur-
vival, and compare the performance of the standard aENET-penalized Cox model with bootstrap-based
CIs to our voting-based method of point and interval estimators. We are not presenting results based on
the asymptotic formulas because our simulations suggested that they may not always be valid. We stan-
dardized each gene to have mean 0 and variance 1, and we included ER status as an unpenalized control
covariate. Follow-up ranged between 2 months and 14.3 years; the range of observed deaths was between
2 months and 6.7 years. We provide predictions of survival between t1 = 9 months and t2 = 5.1 years.

Figure 4 shows the coefficient estimates with 95% CIs from the aENET using the bootstrap, as well
the estimates and CIs from our perturbation with voting procedure. Our data-adaptive voting threshold p j

was set to be 36%, so if more than 36% of the perturbations agreed that a coefficient should be 0, the
covariate was excluded from the second stage of refitting. The genes in the model and the point estimates
differ only slightly between the two methods, as we would expect based on the simulation studies: 28 genes
are estimated to have non-zero effects in the initial aENET fit, while the voting-based estimate contains
only 24 genes with non-zero effects. The real difference comes in the interval estimation. For example
if we identify genes with nominal 95% CIs that exclude 0, we have only one significant gene (CHEK2)
using the bootstrap, but five using the voting method (CHEK2, CCND3, CCNG1, CDKN2A, RRM2).
CHEK2, a gene included on breast cancer hereditary panels, has been shown to interact with BRCA1
(Economopoulou and others, 2015). The other genes involved in cell cycle control are believed to relate
to survival in numerous cancers including breast cancer; for example, CDKN2A was one of seven genes
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Fig. 4. In the breast cancer study, estimates of the (unpenalized) coefficient for ER status and the (penalized) coeffi-
cients for the variables in the p53 signaling pathway, each with 95% CIs, estimated using the aENET estimate with
bootstrap CIs, and the voting-based method for both point estimation and interval estimation.

found to be useful for breast cancer progression prediction using a DNA methylation panel (Li and others,
2015). The point estimates of the log hazard ratios for these five genes according to the voting-based
estimate are −0.66, −0.38, −0.31, 0.46, and 0.47, respectively. Thus, up-regularization of the first three
genes is protective and of the last two genes is detrimental.
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Fig. 5. Pointwise (left-hand column) and simultaneous (right-hand column) CIs for two individuals in the data set (top
row: ID S246; bottom row: ID S034). The thin dotted line is the predicted survival from the aENET θ̂ ; the thin dashed
line is the predicted survival from voting-based estimate θ̂V . Thick dotted lines are the bootstrap-based confidence
limits around the aENET predicted survival, and thick dashed lines are the voting-based confidence limits around the
voting-based predicted survival.
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To see how the difference in coefficient-level variability estimation impacts the variability estima-
tion of downstream functions, we calculate the predicted survival function and associated CIs using the
two methods for two individuals in the study, whose predicted 3-year survival rates are at the 10th and
90th percentiles; these are displayed in Figure 5. Individual S246 is at the 10th percentile; her predicted
three-year survival probability is 0.49 using the aENET, with a 95% bootstrap CI of (0.00, 1.00)—a virtu-
ally meaningless interval. Her predicted three-year survival is very similar according to the voting-based
estimate—0.48—but the 95% CI is narrower: (0.15, 0.83). The patient’s breast tumor is ER positive, and
the standardized gene expression values for the five genes (CHEK2, CCND3, CCNG1, CDKN2A, RRM2)
are, respectively (−1.07,−1.69,−1.22,−0.25,−0.72). Individual S034 is at the 90th percentile; accord-
ing to the aENET with bootstrap, her predicted three-year survival is 0.93, and a 95% CI is (0.44, 1.00). The
voting-based predicted survival estimate is 0.96 with a much narrower 95% CI of (0.85, 0.99). The patient’s
breast tumor is ER positive, and the gene expression values for the fives genes listed above are (2.13,
−0.15,−2.12,−1.33,−0.72). The pointwise and simultaneous CIs based on the voting procedure are
dramatically narrower than the bootstrap-based limits, demonstrating the ability of our proposed method
to give more precise but still accurate inferential information on the predicted survival.

4. DISCUSSION

In this paper, we proposed an adaptation of a resampling approach to use with a penalization method for

variable selection, in which we use an ensemble of resampled estimators θ̂
∗(1)

, . . . , θ̂
∗(B)

to better inform
our knowledge of which θ j are truly 0, with the goal of improving our estimation of the variability in

θ̂ . We use the ensemble to vote out the unimportant covariates, and then by refitting the model in the

data set and in resampled data sets, we produce estimators θ̂V and θ̂
∗(1)

V , . . . , θ̂
∗(B)

V that can be used for
valid inference. This not only improves precision of interval estimation for regression coefficients but
also provides more precise interval estimation for the survival functions when compared with the standard
bootstrap or asymptotic-based calculations. The voting-based perturbation approach tends to be the most
robust across simulations, and maintains fairly good coverage levels with smaller interval width than the
standard bootstrap. The compromise θ̂V makes in variable selection enables us to reduce the downward bias
for weak shrinkage and provide more accurate estimation of the sampling variability via resampling. In the
context of risk prediction, prediction performance measures such as C-statistics (Uno and others, 2011)
are often of interest for validating prediction models. Extending the proposed method to make precise
inference about prediction accuracy measures warrants further research.

The actual mechanics of the voting based on resampling are similar to those proposed in other work. For
example, Zhu and Fan (2011) perform stepwise selection on bootstrapped samples of the data, and select
variables to be included in the final model based on the bootstrapped samples. Bach (2008) bootstraps the
data and performs lasso on each bootstrapped sample, fitting a final model using unconstrained ordinary
least squares on the variables that are non-zero in every bootstrap lasso fit. Meinshausen and Bühlmann
(2010) subsample the data, perform lasso with a randomized weight, and then include variables that appear
in some proportion of these fits. Our proposed method differs in some key details from these—we build
around a variable selection method that has oracle properties in order to guarantee good asymptotic behav-
ior and choose the voting threshold in a data-adaptive manner for good finite sample performance—but
the general idea is similar. The main difference is that in other ensemble methods, the goal is typically
improvement of variable selection and prediction; in contrast, we use the ensemble-derived knowledge to
refit the model in both the original and the resampled data, in order to use the resampled data to more
accurately assess error; to our knowledge, this has not been done previously. This allows us to achieve our
goal of improving inference on potentially complicated functions of the parameter, such as the predicted
survival.
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SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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