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SUMMARY

Studies often follow individuals until they fail from one of a number of competing failure types. One
approach to analyzing such competing risks data involves modeling the cause-specific hazards as functions
of baseline covariates. A common issue that arises in this context is missing values in covariates. In this
setting, we first establish conditions under which complete case analysis (CCA) is valid. We then consider
application of multiple imputation to handle missing covariate values, and extend the recently proposed
substantive model compatible version of fully conditional specification (SMC-FCS) imputation to the
competing risks setting. Through simulations and an illustrative data analysis, we compare CCA, SMC-
FCS, and a recent proposal for imputing missing covariates in the competing risks setting.
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1. INTRODUCTION

In competing risks analysis, individuals are followed up until they “fail” from one of a set of possible causes
of failure, e.g. cause-specific death. In such situations, it is often of interest to model how the hazard of
failure from the different causes depends on a set of covariates recorded at cohort entry. Arguably, the
most direct approach to analyzing competing risks data is to specify models for the cause-specific hazard
functions (Andersen and others, 2002).

A problem that arises in practice is that one or more covariates contain missing values. While exten-
sive research has been conducted into missing covariates in the context of generalized linear models
(Ibrahim and others, 2005) and the Cox model for single failure type data (Herring and Ibrahim, 2001;
White and Royston, 2009), little has been done on competing risks. Recently, Escarela and others (2016)
proposed a likelihood-based approach for handling incomplete covariates in competing risks analysis,
based on models for the conditional survival distributions. They focused on the case of two partially
observed discrete covariates, and developed a copula-based approach to model specification, under both
missing at random (MAR) and missing not at random (MNAR) mechanisms (Rubin, 1976).
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The simplest and most commonly used approach to handling missing covariates is to fit models of
interest excluding those with missing covariate values, in a so-called complete case analysis (CCA). In
Section 3, we establish a condition under which CCA is valid, and discuss how the observed data can be
used to assess compatibility with this condition. An increasingly popular approach for handling missing
data is to use multiple imputation (MI), usually under the MAR assumption (Carpenter and Kenward,
2013). In Section 4, we describe recent proposals for imputing covariates in the competing risks setting
using standard software. We then propose an approach that ensures covariates are imputed using models
that are compatible with the analyst’s specified cause-specific hazard models. We compare CCA with the
MI approaches in simulations in Section 5. In Section 6, we apply CCA and MI to handle missing covariates
in an analysis of data from the NHANES III study. We conclude with a discussion in Section 7.

2. SETUP AND FULL DATA ANALYSIS

We assume a sample of n independent individuals. For each, we observe vectors of time-independent
baseline covariates X and Z . For the moment, we assume both are fully observed. For each individual, we
assume the existence of a time to failure T and failure indicator D∗ ∈ {1, . . . , K }, where D∗ indicates the
type of failure. As described by Prentice and others (1978), the basic estimable quantities in the competing
risks setting are the cause-specific hazard functions. For cause k, the cause-specific hazard function is
defined as

hk(t | X, Z) = lim
�t→0

P(t � T < t + �t, D∗ = k | T � t, X, Z)/�t

Often the time to failure is censored, and so we further assume the existence of a time to censoring C for
each individual. We observe Y = min(T, C) and D = 1(T < C)D∗, which indicates either the observed
cause of failure or that the individual is censored (D = 0). We assume that censoring is independent, in
the sense that (T, D∗) ⊥⊥ C | (X, Z). An individual’s contribution to the likelihood function, conditional
on X and Z , is then equal to

f (Y, D | X, Z) ∝ exp

[
−

∫ Y

0
h0(u | X, Z) du

]
[h0(Y | X, Z)]I (D=0)

×
K∏

k=1

exp

[
−

∫ Y

0
hk(u | X, Z) du

]
[hk(Y | X, Z)]I (D=k) (2.1)

where h0(t | X, Z) denotes the hazard for the censoring process, given X and Z . When covariates are fully
observed, as described by Prentice and others (1978), inference for a particular (say kth) cause-specific
hazard function can proceed by using standard survival analysis procedures, treating both censoring events
and failures from causes other than k as censored at their time of failure. A popular approach is to assume
a Cox proportional hazards model

hk(t | X, Z) = h0k(t) exp(gk(X, Z , βk)) (2.2)

where hk(t |X, Z) denotes the cause-specific hazard function for cause k, h0k(t) denotes the baseline hazard
function for cause k, βk denotes a vector of cause-specific regression coefficients, and gk(·) denotes a
known function, indexed by βk . The baseline hazard functions h0k(t) can either be assumed to follow a
parametric form or as is more commonly done in the absence of missing covariates, left arbitrary. In this
case, as in Cox’s proportional hazards model, the cumulative baseline hazard H0k(t) = ∫ t

0 h0k(u) du can
be viewed as an infinite dimensional parameter.
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An alternative formulation of the competing risks problem involves postulating the existence of
latent failure times for each cause of failure. This formulation and analyses based on it relies on
strong untestable assumptions surrounding independence of competing risks (Prentice and others, 1978;
Andersen and others, 2002), and so we do not pursue it further here.

3. COMPLETE CASE ANALYSIS

We now consider inference when X is partially observed (Z remains fully observed). We let R denote
whether all components of X are observed (R = 1) or some are missing (R = 0). Without loss of general-
ity, we assume interest lies in fitting a model for the first cause-specific hazard function. In CCA, we fit
a model for this using only those individuals with X completely observed and who therefore have R = 1.
In Appendix A of the Supplementary Materials (available at Biostatistics online), we show that this will
be valid if R ⊥⊥ (T, D∗) | (C, X, Z). This assumption encompasses both MAR mechanisms (e.g. missing-
ness dependent only on Z ) and MNAR mechanisms (e.g. missingness dependent on X , or missingness
dependent on C).

In the special case of single failure type data (i.e. K = 1), Rathouz (2007) established sufficient condi-
tions under which CCA gives valid inferences. Specifically, he showed that valid inferences are obtained
if R ⊥⊥ (T, X) | (C, Z). We note that since single failure time data are a special case of competing risks
with K = 1, our result extends that of Rathouz (2007) in that missingness in X can be dependent on X .
This extension intuitively makes sense in light of the fact that CCA makes no distinction between which
covariates are fully observed and which are partially observed in the full sample.

A special case of the sufficient missingness assumption is when R ⊥⊥ (T, D∗, C) | (X, Z), in which case
missingness in X is covariate dependent. As discussed by Bartlett and others (2014), such an assumption
may sometimes be plausible when, as here, the covariates temporally preceed the outcome. This is because
in order for R �⊥⊥ (T, D∗, C) | (X, Z), there would have to exist another baseline variable V which itself
has an independent effect on (T, D∗, C) and on R.

As with the MAR assumption, in general, it is not possible to verify the assumption R ⊥⊥
(T, D∗) | (C, X, Z) from the observed data. It is, however, possible to check whether the observed data
are compatible with a stronger version of the assumption. Specifically, consider the stronger assump-
tions that R ⊥⊥ (T, D∗, X) | (C, Z) and that X ⊥⊥ C | Z (this condition being unnecessary if there is
no censoring). Then by ignoring the actual cause of failure, the results of Rathouz (2007) imply that:
(1) C ⊥⊥ T | (R = 1, X, Z), (2) C ⊥⊥ X | (R = 1, Z), (3) C ⊥⊥ T | (R, Z), and (4) T ⊥⊥ R | Z . One can then
check whether the observed data are compatible with these implications of the stronger assumptions.
Specifically, (1) implies one can check whether (2) holds by fitting a model for the hazard of censoring
(treating failures as censoring events) conditional on X and Z within the complete cases. If the stronger
assumptions hold, one should find that the hazard for censoring in this model does not depend on X (i.e.
(2) is satisfied). Next, (3) implies that censoring is independent conditional on (R, Z). Thus, (4) can be
checked by fitting a model for the hazard of any failure (i.e. combining the failure types), conditional on R
and Z . If (4) is satisfied, one should find that the hazard of any failure does not depend on R, conditional
on Z . It is important to note, however, that if the observed data are not consistent with the implications of
the stronger assumptions, this does not necessarily mean that the CCA is invalid.

4. MI ASSUMING MAR

As described in the introduction, MI assuming data are MAR is a commonly adopted approach for han-
dling missing covariates. In this section, we first consider the plausibility of MAR. We then describe a
recently proposed MI approach for the competing risks setting. Lastly, we propose an approach that imputes
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covariates from models which are compatible with the analyst’s specified models for the cause-specific
hazard functions.

4.1 Plausibility of MAR

For the moment, suppose that X is either scalar or a vector of covariates which is either entirely miss-
ing or entirely observed. The MAR assumption here means that R ⊥⊥ X | (Y, D, Z). MAR is plausible if
missingness in X is thought to be dependent on Z . Alternatively, if missingness depends on T and/or D∗,
then MAR holds in the absence of censoring (since then Y = T and D = D∗). However, if censoring is
present, and missingness depends on T and/or D∗, following the results of Rathouz (2007) for time-to-
event data, MAR does not hold. Nevertheless, MAR is a useful assumption, since it enables information
to be extracted from the incomplete cases, and provides a starting point for possible MNAR sensitivity
analyses.

4.2 Directly specified imputation models

Imputation models are in practice almost always specified directly as conditional models for the incom-
plete variable(s), conditional on the fully observed variables. In the present context, this means directly
specifying a model for f (X | Y, D, Z). In the simpler context of incomplete covariates in survival analy-
sis, White and Royston (2009) previously derived imputation models for incomplete covariates which are
approximately compatible with a Cox proportional hazards model for the hazard of failure, assuming the
latter contains main effects of X and Z . Specifically, they proposed that the incomplete X be imputed using
an imputation model with Z , D (the binary event indicator) and the baseline cumulative hazard function,
as covariates. A better approximation additionally includes interactions between Z and the baseline cumu-
lative hazard function. Since the baseline cumulative hazard function is not available prior to analysis, they
proposed its approximation by the Nelson–Aalen estimator of the marginal cumulative hazard function.
Through simulations, they demonstrated that their approach gives estimates that typically have little or
small bias, although larger biases can occur with strong covariate effects.

Recently, Resche-Rigon and others (2012) proposed an extension of the results of White and Royston
(2009) to the competing risks setting. Assuming Cox proportional hazards models for each cause-specific
hazard, they showed using a Taylor series expansion that an approximately compatible imputation model
for X uses Z , D (as a factor variable) and H0k(Y ), k = 1, . . . , K as covariates. Resche-Rigon and others
(2012) further showed that this approximation could be improved by including the interactions Z × H0k(·),
k = 1, . . . , K . Since the cumulative baseline hazard functions are not available prior to imputation, they
proposed their approximation by the corresponding Nelson–Aalen estimates of the (marginal) cumula-
tive cause-specific hazard functions. Simulation results suggested that the approach led to estimates with
little bias, and confidence intervals with nominal coverage. They also demonstrated that applying the
approach of White and Royston (2009) treating failures from competing risks which were not of pri-
mary interest as censoring, led to bias. When X is vector valued, and there are multiple missingness pat-
terns, Resche-Rigon and others (2012) proposed using the fully conditional specification MI approach
(van Buuren, 2007).

The approach proposed by Resche-Rigon and others (2012) is attractive since it can be readily imple-
mented using existing software for MI. A potential drawback, however, is that the imputation model used
is only approximately compatible with the assumed models for the cause-specific hazard functions. It
is, therefore, expected that in certain situations (e.g. large covariate effects), the approach may lead to
estimates with appreciable biases. Moreover, as described in detail by Bartlett and others (2015), more
generally it is difficult to choose directly specified imputation models for incomplete covariates that are
compatible with outcome models when the incomplete covariates are assumed to have non-linear effects
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or interactions in the substantive model. These difficulties can, however, be overcome by constructing an
imputation model that is compatible with the assumed models for the cause-specific hazard functions.

4.3 Substantive model compatible covariate imputation

Suppose for the moment that X is scalar, and is MAR. We further assume that for each cause-specific
hazard function, a proportional hazards model conditional on X and Z has been specified, as given in
equation (2.2). To ensure the imputation model for X is compatible with the substantive model, we note
that f (X | Y, D, Z) ∝ f (Y, D | X, Z) f (X | Z). The first part of this is the likelihood contribution given
by equation (2.1). Thus a substantive model compatible imputation distribution for X is, up to a constant
of proportionality, equal to

f (X | Z)

K∏
k=1

exp[− exp{gk(X, Z , βk)}H0k(Y )][h0k(Y ) exp{gk(X, Z , βk)}]I (D=k) (4.1)

where we omit the terms corresponding to the censoring process on the assumption that h0(t | X, Z) =
h0(t | Z). If in a particular application such an assumption is deemed inappropriate, for example based on a
preliminary model fit for the censoring process, this can be handled by treating censoring as an additional
cause of failure and specifying a proportional hazards model for the censoring process conditional on
X and Z .

Thus, having specified models for the cause-specific hazards, the imputation distribution specification
is completed by specifying a model f (X | Z , φ). The model for f (X | Z) can be chosen to be an appro-
priate model depending on the variable type of X . For example, we may use linear, logistic, ordinal, or
multinomial logistic regression models for continuous, binary ordered categorical, and unordered categor-
ical variables, respectively. Count variables can be imputed using Poisson or negative binomial models.
In Appendix B.1 of the Supplementary Materials (available at Biostatistics online), we describe how a
Gibbs sampler can be constructed using this imputation approach, and give details about prior choice.
In Appendix B.2 (see supplementary material available at Biostatistics online), we describe methods for
sampling from the required conditional distributions.

In practice, X is commonly vector valued, with multiple missingness patterns. In this case, a joint
model could in principle be specified for X = (X1, . . . , X p), and imputations be drawn from the posterior
distribution of the missing data using a Gibbs sampler. One approach in this case is to factorize the joint
distribution as a series of univariate conditional models, as proposed by Ibrahim and others (1999).

Here, following the popular chained equations or fully conditional specification approach to MI, we
instead adopt the substantive model compatible fully conditional specification (SMC-FCS) approach
recently proposed by Bartlett and others (2015). Rather than specifying a joint model for f (X | Z), this
approach involves specifying, for each partially observed variable X j , a model f (X j | X− j , Z , φ j ), where
X− j denotes the components of X except the j th. The partially observed X j are then imputed one at a time.
Further details for the algorithm are given in Appendix B.3 of the Supplementary Materials (available at
Biostatistics online).

The SMC-FCS approach ensures that each partially observed variable is imputed from a model that is
compatible with the substantive model, and at the same time permits flexibility since different model types
can be specified for each f (X j | X− j , Z , φ j ), j = 1, . . . , p. A drawback of the SMC-FCS algorithm is
that these models may themselves be mutually incompatible, such that the resulting sampler does not draw
imputations from a well-defined Bayesian joint model. However, given recent theoretical developments
regarding the properties of standard FCS MI (Liu and others, 2013; Hughes and others, 2014), we believe
the possibility of such incompatibility may not be such a great practical concern for SMC-FCS, provided
the models f (X j | X− j , Z , φ j ), j = 1, . . . , p fit well.
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5. SIMULATIONS

In this section, we report the results of simulations to evaluate the performance of CCA and the MI
approaches described previously.

5.1 Simulation 1: covariate-dependent missingness

For datasets of size n = 1000, we first generated three covariates X = (X1, X2, X3) as X1 ∼ Ber(0.5),
X2|X1 ∼ Ber(0.25 + 0.50X1), X3 | X2, X1 ∼ N (−1 + X1 + X2, 1). Event times for two competing causes
were then generated. The first was generated with hazard h1(t | X) = 0.2 × 4t3 exp(Xβ1), with βT

1 =
(β11, β12, β13) = (1, 1, 1). The second was generated with hazard h2(t | X) = exp(Xβ2), with βT

2 =
(β21, β22, β23) = (0.5,−1, 0.75). Censoring times were generated from a uniform distribution between
0.5 and 2. This led to 25% of individuals being censored, 25% failing from cause 1 and 50% from cause 2.

Values in X3 were then made missing (at random) with probability 0.25 + 0.5X1, leading to 50%
missing values. We imputed the missing values in X3 using three different directly specified conditional
imputation models for f (X3 | X1, X2, T, D) using the R package MICE. First, following the results of
Resche-Rigon and others (2012), X3 was imputed using a normal linear regression imputation model,
using the event indicator D as a categorical predictor, the Nelson–Aalen estimates of the (marginal) cumu-
lative hazard functions (i.e. ignoring covariates), ĤN A1(Y ) and ĤN A2(Y ), and X1, X2 as covariates (FCS
competing). Secondly, we used an imputation model based on the more accurate approximation derived by
Resche-Rigon and others (2012), by additionally including interaction terms between each of X1, X2 and
each of ĤN A1(Y ) and ĤN A2(Y ) (FCS competing int.). Thirdly, to explore the impact of ignoring the second
cause of failure at the imputation stage, we also imputed X3 as if it were (single failure type) survival data,
by treating failures from the second cause as if they were censorings when defining D and calculating
ĤN A1(Y ), and omitting ĤN A2(Y ) from the imputation model (FCS survival). Note that here we did not
include the interactions between X1, X2, and ĤN A1(Y ).

Next we imputed X3 using the substantive model compatible approach described in Section 4.3, assum-
ing (correctly here) that X3 | X1, X2 is normal linear regression, and assuming Cox models with linear
covariate effects for both causes of failure (SMC-FCS competing). We then imputed again using the sub-
stantive model compatible approach, acting as if the data were single failure type data, considering failures
only due to cause one (SMC-FCS survival).

For all the imputation methods, five imputations were generated for each dataset. With each imputed
dataset, we fitted Cox proportional hazards models for each cause of failure, and combined estimates of
the two sets of regression coefficients β1 and β2 using Rubin’s rules. Using each imputation, we also esti-
mated the cumulative cause-specific hazard function for cause one at t = 0.5, and obtained standard errors
using the R function survfit. These were similarly combined across the five imputations using Rubin’s
rules.

Table 1 shows the results of the simulations. First, we note the considerable efficiency loss due to miss-
ing data as shown by the larger empirical SDs for complete case estimates compared with full data. In line
with the results of Section 3, CCA is unbiased since missingness is covariate dependent. Estimates based
on FCS MI, accounting for competing risks (FCS competing), showed moderately large biases for most
parameters, and consequently low confidence interval coverage for some parameters. This can be attributed
to the fact that the imputation model used is only approximately compatible with the cause-specific haz-
ard models, and the baseline cumulative hazards are estimated by the marginal Nelson–Aalen cumula-
tive hazard estimator. The estimate of the first cumulative baseline hazard function at t = 0.5 was also
biased upward. Including interactions between the estimated cumulative hazard functions and X1, X2 (FCS
competing inter) reduced the biases considerably. Moreover, confidence interval coverage was improved,
although for β13 coverage was still poor. In line with the simulation results of Resche-Rigon and others
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Table 1. Mean (empirical SD) of estimates across 1000 simulations, with covariate-dependent missing-
ness in X3

Method β11 = 1 β12 = 1 β13 = 1 β21 = 0.5 β22 = −1 β23 = 0.75 γ = 1.25†

Mean
Full data 1.01 1.01 1.01 0.50 −1.00 0.75 1.25
Complete case 1.02 1.01 1.01 0.50 −1.01 0.76 1.24
FCS competing 0.87 1.18 0.59 0.51 −0.88 0.62 1.65
FCS compet inter 0.99 1.10 0.75 0.54 −0.98 0.68 1.43
FCS survival 0.84 1.21 0.56 0.63 −0.70 0.43 1.58
SMC-FCS competing 1.05 1.01 1.00 0.53 −1.01 0.75 1.25
SMC-FCS survival 0.83 1.13 1.00 0.75 −0.58 0.34 1.13

SD
Full data 0.16 0.18 0.08 0.11 0.11 0.05 0.29
Complete case 0.24 0.26 0.13 0.18 0.18 0.07 0.44
FCS competing 0.17 0.19 0.09 0.13 0.13 0.07 0.36
FCS compet inter 0.19 0.20 0.09 0.13 0.13 0.07 0.33
FCS survival 0.17 0.19 0.08 0.12 0.12 0.06 0.35
SMC-FCS competing 0.19 0.21 0.13 0.13 0.14 0.07 0.32
SMC-FCS survival 0.19 0.21 0.13 0.11 0.10 0.04 0.30

Coverage
Full data 95 95 96 95 96 94 94
Complete case 95 95 96 97 95 94 92
FCS competing 91 89 11 95 88 66 92
FCS compet inter 97 95 55 94 96 90 98
FCS survival 88 86 3 84 40 2 95
SMC-FCS competing 94 96 95 94 94 95 94
SMC-FCS survival 85 92 94 49 6 0 87

CI indicates empirical coverage of nominal 95% confidence intervals.
†γ = 100 × H01(0.5) = 1.25.

(2012), performance was worse when the second cause of failure was treated as if it were censoring (FCS
survival), with larger biases and lower confidence interval coverage.

Estimates from SMC-FCS accounting for the competing risks showed little bias and confidence interval
coverage close or slightly below the nominal 95% level. Of particular note, the cumulative baseline hazard
function at t = 0.5 for the first cause of failure was estimated with little bias, and confidence intervals
had only slight under coverage. Comparing empirical standard deviations, we see that SMC-FCS recovers
considerable information for the coefficients of the fully observed covariates X1 and X2, while for the
coefficient of the partially observed X3 there is no efficiency gain. As expected, imputing treating the
second cause of failure as censoring (SMC-FCS survival) led to biased estimates and confidence interval
coverage below the nominal level, particularly (as one might expect) for β2.

5.2 Simulation 2: multiple missingness patterns and interactions

In a second set of simulations, we explored imputation of two covariates with multiple missingness pat-
terns, and the ability of the two imputation approaches to accommodate interactions in the competing
hazards models. Here X2 was made missing with probability 0.75 − 0.5X1, while X3 was made missing
with probability 0.25 + 0.5X1, leading to 50% missingness in each variable. The two cause-specific haz-
ard functions were also modified, additionally including the term X2 X3 in each, with coefficient vectors
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Table 2. Mean (SD) of estimates across 1000 simulations, with missingness in X2 and X3, and X2 X3

interactions present in cause-specific hazard models

Method β11 = 1 β12 = 1 β13 = 1 β14 = −1 β21 = 0.5 β22 = −1 β23 = 0.75 β24 = 1 γ = 1.25†

Mean
Full data 1.01 1.01 1.01 −1.01 0.50 −1.01 0.75 1.00 1.23
Complete case 1.07 1.06 1.04 −1.05 0.51 −1.04 0.77 1.01 1.15
FCS competing 0.79 1.14 0.69 −0.45 0.45 −0.39 0.73 0.15 1.23
FCS compet inter 0.96 1.12 0.64 −0.40 0.53 −0.63 0.78 0.31 1.14
FCS survival 0.76 1.27 0.62 −0.54 0.48 −0.23 0.65 −0.01 1.14
SMC-FCS competing 1.02 1.04 1.01 −1.02 0.51 −1.03 0.77 1.01 1.20
SMC-FCS survival 0.81 1.23 1.01 −0.94 0.70 0.02 0.40 −0.08 1.12

SD
Full data 0.15 0.16 0.10 0.15 0.10 0.12 0.06 0.10 0.34
Complete case 0.37 0.44 0.27 0.39 0.25 0.31 0.16 0.25 0.81
FCS competing 0.17 0.23 0.10 0.11 0.12 0.19 0.08 0.07 0.37
FCS compet inter 0.18 0.27 0.15 0.17 0.13 0.20 0.10 0.09 0.36
FCS survival 0.17 0.23 0.09 0.10 0.11 0.17 0.07 0.07 0.34
SMC-FCS competing 0.19 0.28 0.14 0.27 0.14 0.22 0.10 0.17 0.38
SMC-FCS survival 0.22 0.27 0.14 0.22 0.09 0.08 0.05 0.06 0.36

Coverage
Full data 94 96 96 95 96 96 94 94 93
Complete case 94 95 94 95 94 95 94 95 82
FCS competing 83 95 38 26 94 25 97 0 95
FCS compet inter 97 95 51 44 96 61 96 2 89
FCS survival 80 86 14 28 96 5 80 0 89
SMC-FCS competing 94 94 94 96 95 95 94 94 92
SMC-FCS survival 84 87 94 92 60 0 0 0 87

CI indicates empirical coverage of nominal 95% confidence intervals.
†γ = 100 × H01(0.5) = 1.25.

β1 = (1, 1, 1,−1), β2 = (0.5,−1, 0.75, 1). This led to 33% of individuals failing due to cause 1, and 67%
failing from cause 2. No censoring was imposed.

In the FCS approaches, X2 was imputed using logistic regression, conditioning on X1, X3 and the event
indicator and Nelson–Aalen cumulative hazard estimators as before. In “FCS competing inter” as before
we included interactions between X1 and the Nelson–Aalen cumulative hazard estimates, and similarly
between X2 (X3) and the cumulative hazard estimates when imputing X3 (respectively, X2). Note, however,
that no further modifications were made to attempt to allow for the X2 X3 interactions in the cause-specific
hazard models, with these interaction values simply being passively imputed at the end in the final imputed
datasets.

In the SMC-FCS approaches, X2 was imputed using a logistic model conditional on X1 and X3, and the
X2 X3 interactions were included in the cause-specific Cox models. The number of iterations for SMC-FCS
was increased from its default of 10 to 20, since MCMC convergence plots of initial simulations suggested
more than 10 were required for convergence due to the presence of the interaction term.

Table 2 shows the results. The FCS approaches led to biased estimates and confidence intervals with
very poor coverage for the interaction parameters because FCS (at least as implemented here) does not
account for the interactions in the cause-specific hazard models. In contrast, SMC-FCS accounting for
both competing causes led to valid inferences, while SMC-FCS treating the second cause as censoring as
expected led to very biased estimates of β2 (as expected), although biases for β1 were smaller.
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Three sets of additional simulations are reported in Appendix C of the Supplementary Materials (avail-
able at Biostatistics online). In the first set, missingness was dependent on D, such that CCA was biased,
while SMC-FCS gave valid inferences. In the second set, X3 was made missing with missingness dependent
on X3 (MNAR), such that CCA was unbiased, while the MI approaches were biased. In the final set, miss-
ingness in X3 was again dependent on X1, but with the hazard for the second failure type not dependent on
X3. Here both SMC-FCS approaches were unbiased, with SMC-FCS survival being slightly more efficient.

6. ILLUSTRATIVE ANALYSIS

To illustrate the two MI approaches, we consider data from the third US National Health and Nutrition
Examination Survey (NHANES III), which was conducted between 1988 and 1994. The overall study
involved around 40 000 individuals, and consisted of an in-depth survey of their health and nutrition status,
obtained from physical examinations and interview. Mortality status at the end of 2011 is available through
linkage to the US National Death Index. Here we consider the subset of individuals aged between 60 and
70 at the time of the original survey, which consists of 2583 individuals. By the end of 2011, 1492 (57.8%)
had died. Cause of death was classified using the ICD-10 system. For the illustrative analyses, here we
focus on how the hazard for death due to cardiovascular disease (CVD) relates to the risk factors shown in
Table 3. Here death due to CVD is of primary interest, and deaths due to other causes are competing causes.
We categorize deaths as due to CVD, cancer, and other causes, separating out cancer as it represents a large
proportion of deaths and may have quite different associations with the risk factors than other causes. There
were 358 CVD deaths, 379 cancer deaths, and 755 deaths due to other causes.

We assumed a Cox proportional hazards model for the hazard of death due to CVD, with main effects of
each of the risk factors listed in Table 3, and assuming linear effects (on the log hazard scale) of continuous
variables. The first column of Table 4 shows estimated log hazard ratios for each risk factor based on the
1106 (42.8%) complete cases. This shows statistically significant evidence for independent associations
of each risk factor with hazard of death due to CVD, except for diabetes, with directions of association
as expected based on the prior knowledge of CVD. A global test of the proportional hazards assumption
using Schoenfeld residuals revealed no evidence (p = 0.77) against the assumption.

To investigate whether the CCA is valid, following Section 3, we first argue that the assumption that
X ⊥⊥ C | Z is satisfied here because censoring is almost exclusively due to the length of available follow-
up. Next we fitted a Cox model where events were taken as death from any cause, with fully observed sex,
age, diabetes (dropping the three observations with diabetes missing) and an indicator R of whether the
other risk factors were all available or not, as covariates. Unfortunately, this showed evidence (p < 0.001)
that being a complete case was associated with increased hazard of death, conditional on sex, age, and
diabetes. The data are thus not consistent with an assumption that R ⊥⊥ (T, D∗, X) | (C, Z). Nevertheless,
the CCA may still be valid, if for example missingness in the partially observed covariates is dependent
only on X and Z . This is arguably quite plausible for variables such as smoking and alcohol consumption.

Next we applied the FCS and SMC-FCS approaches to multiply impute the missing covariate values,
using 50 imputations for each method. As in the simulation study, we applied each either accounting for
or ignoring (as censoring) failures from causes of death other than the one of interest (CVD).

Table 4 shows the estimated log hazard ratios and corresponding standard errors. Estimates and standard
errors were very similar across all four MI methods, suggesting that the approximations being made in
the directly specified FCS approach are here quite reasonable. The MI standard errors were uniformly
smaller than those from CCA, even for the coefficients of fully observed covariates. However, the MI
estimates differed materially from the CCA estimates for some risk factors, such as gender, diabetes, and
SBP. Unfortunately, we do not believe it is possible to establish here from the observed data whether
the CCA assumption or MAR (or neither) is true. From considerations of the nature of the variables, a
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Table 3. Descriptive statistics for baseline risk factors in NHANES III

Variable Mean (SD)/no. (%) Number of missing (%)

Sex, female 1302 (50.4) 0
Age (years) 64.4 (2.9) 0
Current smoker 597 (38.9) 1048 (40.6)
Diabetes 427 (16.6) 3 (0.1)
Alcohol consumer† 992 (55.0) 778 (30.1)
Systolic blood pressure (mmHg) 137.8 (19.4) 297 (11.5)
Total cholesterol (mg/dL) 225.6 (45.2) 355 (13.7)
C-reactive protein > 0.21 mg/dL 946 (42.7) 368 (14.2)
Fibrinogen (mg/dL) 330.8 (96.0) 387 (15.0)

†Reported to have had at least 12 alcoholic drinks in the last 12 months.

Table 4. Estimated log hazard ratios (SE) for death due to CVD from NHANES III data

SMC-FCS SMC-FCS
Complete case FCS competing FCS survival competing survival

Male 0.51 (0.18) 0.69 (0.12) 0.69 (0.12) 0.69 (0.12) 0.70 (0.12)
Age (per 10 years) 0.86 (0.27) 0.90 (0.19) 0.91 (0.19) 0.92 (0.19) 0.90 (0.19)
Current smoker 0.59 (0.15) 0.63 (0.13) 0.60 (0.13) 0.63 (0.13) 0.56 (0.13)
Diabetic 0.26 (0.20) 0.74 (0.13) 0.74 (0.13) 0.75 (0.13) 0.75 (0.13)
Alcohol consumer 0.38 (0.16) 0.37 (0.14) 0.38 (0.14) 0.35 (0.14) 0.35 (0.14)
SBP (per 10 mmHg) 0.96 (0.38) 1.38 (0.28) 1.35 (0.28) 1.36 (0.29) 1.35 (0.28)
Cholesterol (mg/mL) 0.34 (0.16) 0.31 (0.12) 0.31 (0.12) 0.31 (0.12) 0.31 (0.12)
CRP (>0.21 mg/dL) 0.45 (0.17) 0.45 (0.12) 0.45 (0.13) 0.45 (0.12) 0.44 (0.12)
Fibrinogen (mg/dL) 0.19 (0.08) 0.13 (0.06) 0.13 (0.06) 0.13 (0.06) 0.13 (0.06)

covariate-dependent MNAR missingness mechanism, under which CCA is valid, is arguably more plausible
than MAR.

7. DISCUSSION

We have explored approaches for handling missing covariates in competing risks analysis when one is
interested in modeling the cause-specific hazard functions. We have shown under what assumptions CCA
is valid, and suggested how the observed data can be checked for compatibility with a stronger version of
this assumption. Even when CCA is valid, it is however inefficient. Recently Bartlett and others (2014)
developed an approach for improving upon the efficiency of CCA for conditional mean models when a
covariate-dependent MNAR mechanism is assumed, and further work is warranted to extend this to survival
and competing risks settings.

Under an MAR assumption, we have proposed a flexible approach to multiply impute missing covariates
in competing risks data, based on proportional hazards models for cause-specific hazards. The approach
automatically handles user-specified covariate effects in these models, including interactions and non-
linear covariate effects. Through simulation we have demonstrated its good finite sample performance,
for both the regression coefficients indexing models for cause-specific hazards and for estimation of the
cumulative cause-specific baseline hazard functions. In contrast, we have empirically shown that directly
specified approximately compatible imputation models in general lead to biased estimates.

760



Missing covariates in competing risks analysis

The SMC-FCS approach we have described relies on the analyst specifying appropriate models for the
cause-specific hazard functions and the covariate models f (X j | X− j , Z , φ j ). The assessment of model
fit in the context of MI approaches, or indeed when data are incomplete more generally, is challenging. In
the present setting, we would recommend that analysts assess the fit of the covariate f (X j | X− j , Z , φ j )

models fitted to those corresponding complete cases. While these fits may themselves be biased (when
missingness is not completely at random), if the model appears to fit well in the complete cases, it is
arguably plausible that the models are reasonable for the entire sample. For the cause-specific hazard
models, if missingness can be assumed to be at most covariate dependent, then again model assessment and
selection could be applied to corresponding complete case fits prior to imputation of missing covariates.
Alternatively, one could impute missing covariates using SMC-FCS, and then apply model diagnostics
for the cause-specific hazard models to the imputed datasets. The obvious limitation with such a strategy
is that the missing covariates will have been imputed assuming that the analyst’s specified cause-specific
models are correctly specified, which would be expected to weaken the potential to detect misspecification
in the cause-specific hazard models.

In the context of single failure time data, Qi and others (2010) found that using directly specified con-
ditional MI methods for missing covariates gave estimates with large bias when the partially observed
covariate was related to the censoring time. Our results explain their finding, and show that if X and C are
related, the censoring process must be modeled as an additional competing risk when imputing missing
covariates.

Often in competing risks settings, primary interest will be in modeling the hazard of failure due to just
one cause. In this case, in the absence of missing covariates, models need not be specified for the causes of
failure which are not of interest. An advantage of CCA is that similarly a model need only be specified for
the cause(s) of interest. In contrast, if missing covariates are imputed, models must be specified for these
causes, (unless the analyst is willing to assume that the cause-specific hazards for the causes not of interest
are unrelated to X conditional on Z ). In this situation, one must choose how to define the competing causes.
At one extreme, all of the causes of failure that are not of interest could be combined to form a second
cause of failure (in addition to the cause of interest). However, this may be statistically inefficient when
the partially observed covariate(s) have different effects on the causes that have been combined. Moreover,
if missingness in X is related to failure type, amalgamating the causes not of interest into a single cause
may render the MAR assumption invalid, leading to biased estimates.

A closely related approach to handling missing covariates is to fit a single Bayesian joint model, allow-
ing for missingness in the covariates, as described in the case of single failure type data by Chen and others
(2006). The strengths of such an approach are that one uses a coherent joint model for the data, and
uses well-defined priors for all model parameters. However, with multiple partially observed variables,
arguably specifying joint models becomes more challenging. Moreover, the Gibbs sampler developed by
Chen and others (2006) is more involved than the SMC-FCS algorithm, and unlike SMC-FCS, is not cur-
rently available in software.

A further alternative approach to handling missing data is based on inverse probability weighting (IPW).
IPW and doubly robust estimators assuming MAR have been developed for the Cox model with single
failure time data (Wang and Chen, 2001; Qi and others, 2010), and further work is warranted on extending
these to the competing risks setting. Lastly, we note that an alternative approach to competing risks analysis
is based on modeling covariate effects on the cumulative incidence function (Fine and Gray, 1999), and
further research is similarly warranted to explore missing covariates within this framework.

SUPPLEMENTARY MATERIALS

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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