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Abstract

Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of 

human primary cells for toxicity screens. Here, we report on the comparative cytotoxicity of 80 

compounds (neurotoxicants, developmental neurotoxicants, environmental compounds) in iPSC as 

well as isogenic iPSC-derived neural stem cells (NSC), neurons, and astrocytes. All compounds 

were tested over a 24-hour period at 10 and 100 μM, in duplicate, with cytotoxicity measured 

using the MTT assay. Of the 80 compounds tested, 50 induced significant cytotoxicity in at least 

one cell type; per cell type, 32, 38, 46, and 41 induced significant cytotoxicity in iPSC, NSC, 

neurons, and astrocytes, respectively. Four compounds (valinomycin, 3,3′,5,5′-
tetrabromobisphenol, deltamethrin, triphenyl phosphate) were cytotoxic in all four cell types. 

Retesting these compounds at 1, 10, and 100 μM using the same exposure protocol yielded 

consistent results as compared with the primary screen. Using rotenone, we extended the testing to 

seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity 

was detected among the cell lines. Finally, the cytotoxicity assay was simplified by measuring 

luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from 

the parental iPSC line.

Introduction

The human brain is enormously complex and undergoes dramatic changes in cell number, 

overall size, and morphology during development. The complex pattern of development is 

carefully orchestrated with timed morphogenetic movement, stage specific regionalization, 

and cell lineage segregation (Dobbing and Sands, 1973; Ourednik et al., 2001). While other 

developing organs exhibit a similar pattern, the sheer number of neurons, the complexity of 

the wiring, and the disproportionately large number of genes that are expressed in the brain 
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render its development potentially more susceptible to environmental influences. However, 

of the more than 80,000 compounds in commerce, only 11 have been identified as human 

developmental neurotoxicants while more might remain undiscovered (Grandjean and 

Landrigan, 2014).

Despite the fact that rodent-based developmental neurotoxicology models have relatively 

low sensitivity, low throughput, and high cost, they have been the primary approach for 

detecting potential human neurotoxicants. However, given the enormous difference in size 

and complexity of the human brain as compared to the brain of rodents, many of the 

developmental pathways are different or are regulated with additional factors (Clancy et al., 

2007; Deacon, 1997; Van Dam and De Deyn, 2006). For example, the sets of genes that 

control forebrain expansion and regulate human cell fate are largely absent in rodents. Also, 

fibroblast growth factor (FGF) has different effects on myelination in humans and rodents 

(Hu et al., 2009), and compounds that are toxic to rodent cells may have no effect on human 

cells or vice versa (Malik et al., 2014; Xia et al., 2008).

In response to increased concerns about neurotoxicity induced in humans by exposure to 

chemicals during development, the scientific community is developing alternatives that will 

reduce the use of traditional laboratory animals while addressing the demand for increased 

and more relevant testing. In addition, more than 30,000 chemicals without adequate 

toxicological information are estimated to be in use in the United States and Europe 

(Schmidt, 2009), and the task of testing thousands of chemicals systematically with classical 

animal tests exceeds our present capabilities. In 2008, in response to the US National 

Academy of Sciences’ report on “Toxicity Testing in the 21st Century” (NAS, 2007), a 

collaboration was established between the National Institute of Environmental Health 

Sciences (NIEHS)/National Toxicology Program (NTP), the U.S. Environmental Protection 

Agency’s (EPA) National Center for Computational Toxicology (NCCT), and the National 

Human Genome Research Institute (NHGRI)/National Institutes of Health (NIH) Chemical 

Genomics Center (NCGC) (Collins et al., 2008). In mid-2010, the U.S. Food and Drug 

Administration (FDA) joined the collaboration, known informally as Tox21. The objective 

of this partnership is to shift the assessment of chemical hazards from traditional 

experimental animal toxicology studies to one based on target-specific, mechanism-based, 

biological observations largely obtained using in vitro assays, with the ultimate aim of 

improving risk assessment for humans and the environment. Additionally, the new European 

legislation on chemicals – Registration, Evaluation, Authorisation and Restriction of 

Chemicals (ReACH) – explicitly mentions the possibility of using both experimental (in 
vitro) and non-testing (structure-activity relationships, read-across, categories) alternative 

methods (ReACH, 2015).

The recent advance in pluripotent stem cell (PSC)-based technology and the ability to 

generate truly large numbers of allelically diverse cells and use uniform methods to 

differentiate them into all of the major types of cells offer a potential new tool for improved 

understanding of chemically-induced adverse reactions. This is especially useful for 

developmental neurotoxicity, because neural cells differentiate early during development and 

this process is relatively easy to recapitulate in vitro via rosette formation and isolation of 

neural stem cells (NSC), which can subsequently be differentiated into neurons and glia. 
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Several groups including our own have developed protocols to differentiate NSC, neurons, 

astrocytes, and oligodendrocytes from PSCs (Liu et al., 2013; Shaltouki et al., 2013; 

Swistowski et al., 2009; Swistowski et al., 2010). In addition, we and others have developed 

lineage specific markers and reporter lines which facilitate high content screening 

(Efthymiou et al., 2014) to allow us to obtain much more information from a single assay. 

We have utilized these tools to perform high throughput screens at different stages of 

development using purified cell populations (Han, 2009; Peng et al., 2013).

Here, we present the results obtained from testing a 80-compound library comprised of 

drugs (e.g., valproic acid) and pesticides (e.g., aldicarb, rotenone) with known neurotoxic 

potential as well as environmental compounds with unknown neurotoxic potential (e.g., 

flame retardants, polycylic aromatic hydrocarbons [PAHs]) for their cytotoxic effect on 

isogenic cells at four stages of neural differentiation (iPSC, NSC, neuron, astrocyte) using 

the MTT assay. This assay measures the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) to formazan as a measure of cell viability (Berridge et 

al., 2005; Morgan, 1998). When tested at 10 and 100 μM, 32 (40%) to 46 (58%) of the 

compounds induced significant cytotoxicity in the four cell types, with cell-type specificity. 

The results were confirmed by the retesting of four selected compounds that were cytotoxic 

to all four cell types, and the testing was extended using rotenone to additional iPSC lines of 

both genders. Finally, we show that the cytotoxicity assay can be simplified by measuring 

luciferase activity using lineage-specific luciferase reporter iPSC lines that we generated 

from the parent iPSC line.

Materials and methods

80-compound library

We evaluated cytotoxicity in the four cell types using an 80-compound library (76 unique) 

provided by the NTP (Table 1). The library contains 39 (37 unique) environmental 

compounds and drugs with reported developmental neurotoxicity (DNT) and/or 

neurotoxicity (NT) activity (Table 1, (Crofton et al., 2011)) as well as representatives of 

chemical classes (12 [11 unique] flame retardants [FRs], 17 PAHs) of interest to the NTP but 

with limited or unknown neurotoxicity information. In addition, the library contains six 

unclassified compounds, and six (five unique) negative control compounds for DNT/NT; 

included also are four compounds in duplicate to assess within assay reproducibility. Stock 

solutions were prepared in dimethyl sulfoxide (DMSO, Sigma-Aldrich Co., St. Louis, MO, 

USA) and stored at −20°C. Generally, stock concentrations were at ~20 mM except for six 

compounds prepared at lower concentrations (0.075 – 10 mM) due to limited solubility in 

DMSO. The compounds were provided coded and their identity was not known until the 

results were analyzed. Detailed information about the compound list, including the stock 

concentrations, is provided in Table 1.

iPSC culture and propagation

A subclone of the NCRM1 integration-free iPSC line (NIH Center for Regenerative 

Medicine), named XCL1 (XCell Science Inc.; Novato, CA, USA) was used for this study. 

The cell line was cultured as previously described (Lie et al., 2012; Zou et al., 2011) and 
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maintained in feeder-free conditions on Matrigel™ (BD Biosciences; San Jose, CA, USA) 

coated dishes using mTeSR™1 media (STEMCELL Technologies Inc.; Vancouver, Canada) 

following the manufacturer’s protocols.

Generation of NSC, neurons and astrocytes

NSC, neurons, and astrocytes were developed using protocols that have been described 

previously (Shaltouki et al., 2013; Swistowski et al., 2009; Swistowski et al., 2010). In brief, 

NSC derived from XCL1 iPSC lines were cultured on Matrigel™ coated dishes in 

Neurobasal® medium supplemented with 1% nonessential amino acids, 1% GlutaMAX™, 1 

× B-27®, and 10 ng/mL bovine fibroblast growth factor (bFGF), and passaged using 

Accutase® (all obtained from Life Technologies; Carlsbad, CA, USA).

Neuronal differentiation was achieved by culturing NSC in Neuronal Induction Medium 

(XCell Science, Inc) at surface coated with 2 μg/mL poly-L-ornithine (Sigma-Aldrich) and 

laminin (10 μg/mL, Life Technologies) at a density of 40–50 k/cm2 for 5–6 days until the 

cells became confluent. Then, cells were split with Accutase® and were plated onto new 

polyornithine/laminin coated dishes at 40–50 k/cm2 in Neuronal Maturation Medium (XCell 

Science, Inc.) to continue differentiation to day 14.

Astrocyte differentiation from NSCs was also carried out on culture dishes or glass cover 

slips coated with poly-L-ornithine/laminin in Astrocyte Induction medium (XCell Science, 

Inc.). Medium was changed every other day and cells were passaged at least 3 times before 

day 15. On day 18, the media was changed to Astrocyte Maturation medium (XCell Science, 

Inc.) and maintained on that media up to day 35.

Quantification of differentiation efficiency was performed as described previously 

(Shaltouki et al., 2013). In brief, ten randomly chosen fields from two independent 

experiments were counted and averaged. Total number of cells was counted as the number of 

dapi-labeled nuclei while the Tuj/GFAP positive cells were counted by analyzing fluorescent 

images using Photoshop.

Immunocytochemistry

Immunocytochemistry and staining procedures were performed as described previously 

(Zeng et al., 2003). Briefly, cells were fixed with 4% paraformaldehyde for 20 minutes, 

blocked in blocking buffer (10% goat serum, 1% bovine serum albumin [BSA], 0.1% Triton 

X-100) for one hour followed by incubation with the primary antibody at 4°C overnight in 

8% goat serum, 1% BSA, 0.1% Triton X-100. Appropriately coupled secondary antibodies, 

Alexa350-, Alexa488-, Alexa546-, Alexa594-, or Alexa633 (Molecular Probes; Carlsbad, 

CA, USA, and Jackson ImmunoResearch Lab Inc.; West Grove, PA, USA) were used for 

single or double labeling. All secondary antibodies were tested for cross reactivity and non-

specific immunoreactivity. The following primary antibodies were used: Oct4 (ab19857, 

Abcam, 1:1250), TRA 1-81 (12-8883-80, eBioscience, 1:60), SOX1 (AB15766, Millipore, 

1:250), Nestin (611658, BD Transduction Laboratories, 1:500), β-III tubulin (clone SDL.

3D10, T8660, Sigma-Aldrich, 1:1000), Map2 (M9941, Sigma-Aldrich,1:500), glial fibrillary 

acidic protein (GFAP) (Z0334, DakoCytomation, 1:2000) and gamma-aminobutyric acid 

(GABA) (AB8891, Abcam, 1:2000)Quantification of immunoreactive cells in culture was 
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performed by analyzing fluorescent images using Adobe Photoshop (San Jose, CA, USA) on 

a minimum of 5000 cells of at least 10 randomly chosen fields derived from 3 or more 

independent experiments. The number of Hoechst labeled nuclei on each image was referred 

to as the total cell number (100%).

Gene expression by microarray

RNA isolated from dopaminergic populations were hybridized to Illumina Human HT-12 

BeadChip (Illumina Inc.; San Diego, CA, USA, performed by the Microarray core facility at 

the Burnham Institute for Medical Research, Novato, CA, USA). Array data processing and 

analysis was performed using Illumina BeadStudio software. The Illumina array data were 

normalized by the background method. The maximum expression value for each probe set of 

one gene was chosen as the expression value of this gene. A differentially expressed gene 

was defined if the gene showed a 2-fold expression change between any two samples. All 

cell line correlations were a measure of Pearson’s rho implemented in SAS (SAS Institute 

Inc.; Cary, NC, USA).

MTT assay

For each study, cells of the appropriate cell type (1 × 105 cells per well) were plated in 96-

well plates containing 100 μL of each cell type appropriate medium. After 24 hours at 37°C 

(5% CO2) to allow attachment, the cells were exposed to compounds for 24 hours, also at 

37°C (5% CO2). For screening the 80-compound library, cells were exposed to each 

compound at 10 and 100 μM, in duplicate. In a follow-up experiment, cells of each type 

were exposed to four compounds – valinomycin, 3,3′,5,5′-tetrabromobisphenol, 

deltamethrin, triphenyl phosphate – at 1, 10, and 100 μM in duplicate for 24 hours, with 

each test performed in triplicate. In a third study, the cytotoxicity of rotenone at 1 and 10 μM 

in duplicate was determined in NSC derived from seven additional iPSC lines established 

from both males and females, as well as in the XCL-1 line. For each study, at the end of the 

24-hour exposure period, cell viability was evaluated using the MTT assay, as described 

previously (Peng et al., 2002). Briefly, MTT tetrazolium salt (5 mg/mL) was added to each 

well, and incubation was continued for two hours at 37°C. The formazan crystals resulting 

from mitochondrial enzymatic activity on MTT substrate were solubilized with DMSO. 

Absorbance was measured at 570 nm using a microplate reader (Molecular Devices; 

Sunnyvale, CA, USA). Cell survival was expressed as absorbance relative to that of 

untreated controls.

Luciferase-based assay in neural reporter line

GFAP-nanoluc astrocytes and MAP2-nanoluc neurons were generated as previous described 

(Pei et al., 2015). Determination of Nanoluc luciferase activity was measured using the 

Nano-Glo Assay System following manufacturer’s protocol (Promega Corporation; 

Madison, WI, USA). In brief, after compound/DMSO treatment, culture media was 

completely removed and 100 μL of Nano-Glo Assay Reagent was added to each well in the 

96-well culture plate for an incubation period of 5 min at 37°C to lyse the cells. Then, the 

reagent from each well was transferred to a new 96-well plate to measure the luciferase 

activity using a PerkinElmer Fusion-alpha-FP-HT universal microplate analyzer 

(PerkinElmer Inc.; Waltham, MA, USA).
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Statistical Analysis

The 80 compound MTT data were analyzed using a standard ANOVA (Team, 2012). The 

data were subset by cell type (astrocyte, iPSC, neuron, NSC) and concentration (10 or 100 

μM) and then tested for differences between control and dose (i.e., control vs 10 μM or 

control vs 100 μM) for each compound. Because we were interested in cytotoxic effects 

only, situations where there was an increase in MTT were excluded from consideration. 

Furthermore, compounds that exhibited a significant decrease in MTT at 10 but not 100 μM 

were classified as negative in this study. In a separate analysis to determine if there were 

significant differences across cell types, the data were first normalized by dividing each dose 

value by the mean value of the control replicates located within the same plate. Next, the 

data were subset by concentration (10 or 100 μM) and tested for differences between cell 

types. In both cases, significance was set at p<0.01. To produce the heat map, chemical-cell 

type per dose percent differences were clustered using the heatmap.2 function within the 

program R 3.1.2 (Team, 2012). Unsupervised hierarchical clustering was performed using 

Euclidean distance as the similarity metric and Ward’s method for assembling clusters.

For the follow-up experiments, all data are expressed as mean ± standard error of the mean 

(S.E.M.) for the number (n) of independent experiments performed. Differences among the 

means for all experiments described were analyzed using one- or two-way analysis of 

variance. Newman-Keuls post-hoc analysis was employed when differences were observed 

by analysis of variance testing at p<0.01.

Results

Generation of purified populations of neural cells from iPSC

We have previously reported methods of generating a homogeneous population of NSC and 

subsequently differentiating them from multiple human ESC/iPSC into pure populations of 

neurons and astrocytes that are suitable for high throughput assays (Efthymiou et al., 2014; 

Han, 2009; Liu et al., 2013; Shaltouki et al., 2013). In this study, we generated NSC, 

neurons, and astrocytes from the well-characterized integration-free iPSC line XCL1 

(Shaltouki et al., 2013; Swistowski et al., 2009; Swistowski et al., 2010) and used these 

isogenic cells for all assays unless otherwise described.

The quality of our iPSC and their neural derivative was routinely assessed by expression of 

cell-specific markers. Figure 1 shows the schema/timeline of our neural differentiation 

system and representative images of the expression of various markers by 

immunocytochemistry. For example, pluripotency markers Oct4 and Tra-1-81 were 

expressed in undifferentiated cells (Fig. 1A) while the NSC population uniformly expressed 

the NSC markers Sox1 and nestin (Fig. 1B). Using a 14-day neuronal differentiation 

protocol, we generated a pure population of neurons (Swistowski et al., 2009) as more than 

95% of total cells expressed the neuron-specific markers β-III tubulin and Map2 by 

immunocytochemistry (Fig. 1C–D), while no or few astrocytes were identified in the 

neuronal culture (data not shown). The majority of the neurons expressed GABA receptor 

(Fig. 1E). For astrocyte differentiation, we used a 35-day differentiation protocol by which 
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>90% of the cells were expressing GFAP (Fig. 1F), with no or few neurons in the culture 

(Shaltouki et al., 2013).

Microarray analysis of individual cell types toward developing a cell type specific panel of 
markers

To further ensure the quality of our iPSC and their neural derivatives, we performed a whole 

genome expression profile of the four cell types. We have previously analyzed gene 

expression of many ESC/iPSC lines and their neural derivatives by microarray and have 

identified stage-specific markers for NSC, neurons, and astrocytes (Momcilovic et al., 2014). 

Based on our previous analysis and the literature, we have developed a panel of 10 to 20 

cell-type specific genes for each NSC, neuron, and astrocyte population which was 

examined in the cells used in this study. As seen in Fig. 2, each cell population expressed the 

genes that were specific for that particular cell type. For example, the NSC population 

expressed all NSC genes at a high level, but not the genes representative of neurons or 

astrocytes. Likewise, the neuronal population had high levels of expression of many neuron-

specific genes including DCX as well as Neurog1 and 2, whereas these markers were not 

expressed in NSC or astrocytes. Similarly, many astrocyte genes including GFAP and CD44 

were expressed in the astrocyte population but not in the NSC or neuron populations.

Overall, our gene expression profiling of each cell type was similar to previously reported 

iPSC and their neural derivatives (Momcilovic et al., 2014), indicating that our 

differentiation protocol using off-the-shelf cell products provided suitable cells applicable 

for in vitro toxicity testing.

Response of iPSC and their neural derivative to the 80 compounds

One goal of this study was to demonstrate the potential utility of using human iPSC-derived 

neural cells for neurotoxicity assays. To accomplish this, we screened 80 drugs and 

environmental compounds, 39 (37 unique) with known neurotoxic potential, for cytotoxicity 

on iPSC and their isogenic neural derivatives. To reduce well-to-well variability, we grew 

NSC, neurons, and astrocytes in bulk culture before transferring to 96-well plates for assays. 

The primary screen was performed in duplicate at two concentrations (10 and 100 μM), and 

cell viability was measured using the MTT assay after 24 hours of compound exposure.

We defined a compound to be cytotoxic when it significantly reduced the conversion of 

MTT to formazan at p<0.01. In addition, we required that compounds inducing a significant 

reduction at 10 μM also induced a significant reduction at 100 μM. Based on this approach, 

of the 80 (76 unique) compounds tested, 50 compounds (48 unique) were active in at least 

one cell type; by cell type, 32, 38, 46, and 41 compounds induced significant cytotoxicity in 

iPSC, NSC, neurons, and astrocytes, respectively. Thus, the fewest number of compounds 

was significantly cytotoxic in iPSC while the greatest number was significantly cytotoxic in 

neurons.

Fig. 3 indicates the distribution of active compounds across the four cell types at 10 and 100 

μM; six compounds (benzo[g,h,i]perylene; carbamic acid, butyl-,3-iodo-2-propynyl ester; 

deltamethrin; methyoxyethanol; fluorine; and rotenone) were cytotoxic in all four cell types 

at both 10 and 100 μM while 22 compounds were active in all four cell types at 100 μM 
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only; these included acetylsalicylic acid; acrylamide; L ascorbic acid; benzo[e]pyrene; 

captan, carbaryl; dichlorodiphenyltrichloroethane (DDT); deltamethrin; dieldrin; di(2-

ethylhexyl) phthalate; 1-ethyl-3-methylimidazolium diethylphosphate; D-glucitol; 2,2′,4,4′,
5,5′-hexabromodiphenyl ether; heptachlor; 1-methyl-4-phenylpyridinium iodide; 

naphthalene; phenobarbital sodium salt; phenol, isopropylated, phosphate (3.1); 6-propyl-2-

thiouracil; 3,3′,5,5′-tetrabromobisphenol A; triphenyl phosphate; and valinomycin. A heat 

map organized by cell type and compound concentration, with compounds ranked by total 

cytotoxic activity (i.e., extent of cytotoxicity aggregated across cell types and 

concentrations) is provided in Figure 3. The compound with highest efficacy was 

benzo(g,h,i)perylene, followed by deltamethrin, fluorine, and rotenone.

In terms of the four sets of duplicate compounds, both copies of deltamethrin affected all 

four cell types at 100 μM, and either affected all four cell types or NSC and astrocytes only 

at 10 μM. Both copies of triphenyl phosphate had no effect at 10 μM, but one copy affected 

all cell types while the other copy affected iPSC and astrocytes only at 100 μM. One copy of 

methyl mercuric chloride did not affect any cell type whereas the other copy was cytotoxic 

at 10 and 100 μM in astrocytes. Similarly, one copy of saccharin sodium salt hydrate had no 

effect on any cell type, where the other copy was cytotoxic in neurons at 10 and 100 μM.

The analysis of the 80-compound data across cell types indicated that among the six 

compounds cytotoxic at 10 μM in all four cell types (deltamethrin; benzo[g,h,i]perylene; 

carbamic acid, butyl-,3-iodo-2-propynyl ester; fluorine; methyoxyethanol; and rotenone), 

only benzo[g,h,i]perylene exhibited a level of cytoxicity that depended on cell type (p = 

0.0097), with astrocytes being less affected than the other three cell types. At 100 μM, of the 

29 compounds active in all four cell types (Figure 3), three only (dieldrin, 2,2′,4,4′,5,5′-
hexabromodiphenyl ether, and phenobarbital sodium salt) exhibited significant difference 

among cell types in the magnitude of cytotoxicity (p<0.01). In all cases, astrocytes exhibited 

significantly less cytotoxicity.

Dose response of a selected subset of toxic compounds

To extend the concentration response data and better evaluate assay reproducibility, we re-

tested four compounds that were cytotoxic to all four cell types. A 1 μM concentration was 

tested in addition to the 10 and 100 μM concentrations and the assays were performed in 

triplicate. The compounds selected were: 1) valinomycin, a K+ Selective ionophoric 

cyclodepsipeptide; 2) 3,3′,5,5′-tetrabromobisphenol, a flame retardant for plastics, paper, 

and textiles; 3) deltamethrin, an insecticide that is a potent inhibitor of calcineurin; and 4) 

triphenyl phosphate, a relatively new flame retardant proposed as a replacement for 

brominated flame retardant, which were phased out due to concerns about developmental 

neurotoxicity. The resulting data for each cell type are shown in Figure 4. None of the 

compounds were significantly cytotoxic in any cell type at 1 μM while all four compounds 

were significantly cytotoxic at 100 μM. Depending on the compound and the cell type, 

significant cytotoxicity occurred at 10 μM. These results are consistent with those obtained 

in the first study and demonstrate the reproducibility of cytotoxicity data for these 

compounds using iPSC-derived neural cells.
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The assay works in multiple iPSC lines with a different allelic background

We next examined how multiple iPSC lines, including lines derived from males and females, 

would respond to the same cytotoxicant. To do so, we tested seven additional iPSC lines that 

our laboratory has generated and characterized. These include four lines generated from 

females and three lines generated from males (XCL1 is a male line). To simplify the 

experiment, we ran the assay with only one widely used compound (rotenone, a 

mitochondrial toxicant) in one cell type (NSC) for all lines. Since we observed significant 

cytotoxicity for rotenone in NSC at 10 μM in the primary screen, we screened this 

compound at 1 and 10 μM in these cell lines as well as with the control line XCL1. No 

apparent cytotoxicity as measured by the MTT assay was observed in any of the NSC lines 

(including the control line XCL1) exposed to rotenone at 1 μM, whereas significant 

cytotoxicity (~60%) was induced (p<0.01) in all lines at 10 μM (Figure 5). Differential 

cytotoxicity was not observed between the NSC lines, indicating the lack of a genetic or 

gender difference in the sensitivity of these eight lines to rotenone.

Luciferase-based cytotoxicity assessment in neural reporter lines

To extend the utility of our screening system, we developed a panel of luciferase-based 

neural reporter iPSC lines. Specifically, we generated a neuron reporter by tagging the 

luciferase gene into the endogenous Map2 loci (Map2-nanoluc), and an astrocyte reporter by 

tagging the luciferase gene into the endogenous GFAP loci (GFAP-nanoluc). We have 

previously validated lineage-specific expression of these two reporter lines during lineage-

specific differentiation (i.e., the luciferase activity in the Map2-nanoluc line reflects the 

percentage of neurons in the neuronal differentiation culture while the luciferase activity in 

the GFAP-nanoluc line reflects the percentage of astrocytes in the astrocyte differentiation 

culture)(Pei et al., 2015).

To determine if luciferase activity can serve as cytotoxicity readout upon toxin challenge, we 

tested two compounds, 3,3′,5,5′-tetrabromobisphenol and triphenyl phosphate, which were 

significantly cytotoxic to neurons and astrocytes as measured by the MTT assay in our 

primary and secondary screens (Figure 4), in both GFAP-nanoluc and Map2-nanoluc 

reporter lines. To do this, we plated either mature GFAP-nanoluc astrocytes or Map2-

nanoluc neurons differentiated from our reporter iPSC lines into 96-well plate and treated 

them with the compounds at 100 μM or DMSO only as the negative control (n>4). As seen 

in Figure 6, 3,3′,5,5′-tetrabromobisphenol at 100 μM reduced the luciferase signal in 

astrocytes and neurons by ~80% and ~40%, respectively, while triphenyl phosphate at 100 

μM reduced the luciferase signal in astrocytes and neurons by ~90% and ~70%, respectively. 

These results are similar to the toxicity measured by the MTT assay (see Figure 4).

Discussion

An emerging field of investigation in stem cell research is the use of iPSC-derived cell 

populations for toxicological testing. Although proof-of-concept studies have been reported 

that evaluated the toxic effects of compounds to stem cells and their differentiated 

derivatives (Ebert and Svendsen, 2010; Gupta et al., 2009; van Dartel and Piersma, 2011), 

several issues need to be addressed before such assays can be used routinely to reduce or 
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replace the expensive and time-consuming in vivo laboratory animal tests. First, we need to 

establish reproducible and reliable differentiation procedures for the generation of 

differentiated cells in required purity and in sufficient numbers, as well as in an assay ready 

format. Second, we need to develop assays that are reliable and relevant for a wide range of 

chemicals. Third, we need to increase assay sensitivity and throughput; one possible 

approach is through the use lineage-specific reporters. Here, we characterized the feasibility 

of using iPSC-derived neural cells for neurotoxicity assays. Using an iPSC-based step-wise 

neural differentiation system (iPSC→NSC→neurons or astrocytes), we tested the responses 

of iPSC-derived neural populations (NSC, neurons, astrocytes) to 80 compounds including 

known NTs, known DNTs, and environmental compounds of potential concern (e.g., flame 

retardants, PAHs). Based on these initial data, 23 of the 37 unique compounds classified as 

“known” DNT/NT compounds (Table 1) were cytotoxic in at least one of the cell types 

tested (Figure 3). The lack of activity by the other 14 DNT/NT compounds is not surprising 

since the selected compounds cover multiple aspects of DNT and NT. For example, some of 

the compounds in this category were chosen specifically due to their effects on neuronal 

firing (e.g., permethrin), effects on neurobehavior in zebrafish (e.g., chlorpyrifos), or based 

on other in vivo findings (e.g., toluene, hexachlorphene). Among the 36 (35 unique) 

compounds not classified as DNT/NT positive or negative compounds (i.e., those classified 

as flame retardants, PAHs, or other), 22 were cytotoxic in at least one cell type.

Some variability in activity was noted among the four compounds tested in duplicate 

(deltamethrin, triphenyl phosphate, saccharin sodium, methyl mercuric chloride). We also 

noted cytotoxic activity induced by the presumed DNT/NT negative control compounds 

acetaminophen, acetylsalicylic acid, D-glucitol, L-ascorbic acid, and saccharin sodium salt 

hydrate at one or more of the concentrations tested in one or more cell types, which might 

reflect their intrinsic biological activity or false positive responses in this in vitro model 

system. The lack of consistency for some compounds suggests the need for more in-depth 

characterization of the assay in terms of exposure duration, numbers of replicate samples per 

concentrations, numbers of concentrations tested, and numbers of independent cell lines for 

each cell type.

Based on the initial screen, we selected four cytotoxic compounds (valinomycin, 3,3′,5,5′-
tetrabromobisphenol, deltamethrin, triphenyl phosphate) and retested them for further 

evaluation. This subset demonstrated good reproducibility in all four cell types and obtained 

similar results to those seen in the initial screen. We showed also that our assay system 

worked well in multiple iPSC lines including lines developed from humans of both genders. 

In addition, we demonstrated that we could simplify and make more efficient the assay by 

using luciferase lineage-specific reporters rather than using the MTT assay.

We have previously published methods of generating central nervous system (CNS) cells 

including NSC, neurons, and astrocytes from iPSC (Swistowska et al., 2010; Swistowski et 

al., 2009). To adapt our culture system for screening, we optimized the differentiation 

processes of generating pure populations of differentiated cells (e.g., neurons and astrocytes) 

for 96-well plates, a format which is suitable for low to medium throughput screening. To 

provide consistency and reduce well-to-well variability of each batch of cells, we used NSC 

as a stable intermediate to produce neurons and astrocytes, as NSC allow for storage and 
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good viability after cryopreservation. The cells can be readily plated into 96- or higher well 

formats for assays, and the same NSC can be used to make multiple subtypes of neurons or 

astrocytes or other CNS cells including oligodendrocyte precursors. An additional advantage 

of using NSC as gateway cells is the significant reduction of differentiation time period, 

which is critical for developing and validating assays for screening. Although it is out of the 

scope of this study, our stage specific differentiation process allows for automation and 

scale-up of cell numbers for high throughput screening.

One important finding of this study is that our iPSC-based screen can identify cell-type 

specific toxicity. Unlike experimental rodents, humans are outbred and have diverse genetic 

backgrounds. To minimize the effect of allelic variability, which might make it difficult to 

interpret different phenotypic effects seen using different cell types, we elected to screen 

compounds using isogenic cells (i.e., the various cell types (NSC, neurons and astrocytes) 

that were derived from the same iPSC line. Of the 80 compounds screened, 50 induced 

significant cytotoxicity in at least one cell type at 100 μM or at 10 and 100 μM. More 

chemicals were significantly cytotoxic in neurons, followed by astrocytes, NSC, and iPSC. 

However, for chemicals that were cytotoxic in all four cell types but exhibited cell-type 

significant differences, astrocytes exhibited the least induced cytotoxicity. These findings 

show that different groups of compounds have different activity profiles with some being 

active at both low and high concentration in all cell types (e.g., deltamethrin, fluorine), while 

others are selectively active in only certain cell types (e.g., diazepam, dibenz[a,h]anthracene, 

and tebuconazole appear to affect only neurons). This has important implications in 

identifying potential mechanisms of neurotoxicity associated with different compounds 

and/or classes of compounds. Furthermore, the clustering method provides clues about how 

some of these compounds with unknown neurotoxic potential may behave similarly to other 

drugs or known neurotoxicants. For example, might the PAH benzo[g,h,i]perylene have an 

underlying mechanism similar to diazepam?

Equally important is that our assay systems (differentiation procedures and toxicity assay) 

work well in multiple iPSC lines of both male and female lines. Although we did not test all 

80 compounds in all cell lines at all stages of differentiation, of the eight iPSC lines (4 male 

and 4 female lines) we tested, a representative compound (rotenone) had a similar toxic 

effect in all eight lines at the NSC stage. This result, based on this limited number of NSC 

lines, did not detect rotenone-induced difference in sensitivity and suggests that our assay is 

robust and reliable, and suitable for further development using panels of cell lines.

Another unique advantage of an iPSC-based screen is the ability to engineer iPSC lines. For 

example, iPSC can be engineered in multiple ways to investigate how genetic alterations 

modulate physiological and disease processes. These engineered tools can be further applied 

in disease pertinent cellular lineages as well as developing isogenic and reporter lines (Zeng 

et al., 2014; Zhu et al., 2011). Our neural lineage-specific luciferase reporters will simplify 

the cytotoxicity assay using neurons or astrocytes and will also allow for an evaluation of the 

ability of chemicals to adversely affect the differentiation process.

In summary, although laboratory animal models have been and will continue to be important 

for neurotoxicity assays, there are critical differences in nervous system development 
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between humans and rodents (Rice and Barone Jr, 2000). Because of this, the availability of 

human iPSC and their differentiated derivatives is critical for properly understanding the 

human nervous system biology including neurotoxicity and development neurotoxicology 

(Hoelting et al., 2014; Hou et al., 2013; Maldonado-Soto et al., 2014). Our results 

demonstrate that it is important to test toxicity on specific cells types as significant 

differences in responses were seen between different neural cells (e.g., neurons versus 

astrocytes). We chose a widely available iPSC line for our assays and provide whole genome 

expression data so others can repeat and compare with our results. Finally by using an 

isogenic line we can easily add other neural lineages including oligodendrocytes and the 

peripheral nervous system (PNS) cells to future studies that will focus on assessing a more 

comprehensive concentration-response and time-course for these compounds in order to 

better determine relative potency and kinetics of effect.
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Fig. 1. Generation of pure populations of NSC, neurons, and astrocytes from the human iPSC 
line XCL1
The human iPSC line XCL1 was analyzed by immunofluorescence before and during neural 

differentiation. At the iPSC stage, XCL1 showed normal expression of pluripotency markers 

Oct4 and Tra 1–80 before differentiation (A). Then, XCL1 iPSC was directed to NSC cells 

where the NSC markers Sox1 and Nestin were detected in more than 95% of the cells (B). 

Next, these progenitors were further differentiated into either a pure population of forebrain 

type neurons (C–E) or astrocytes (F). After neuronal differentiation, more than 95% of the 

population expressed the neuronal specific markers β-III tubulin (Tuj1) (C), Map2 (D) and 
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GABA receptor (D & E). Similar purity was detected after astrocyte differentiation using the 

marker GFAP (F). DAPI was used to label the nuclei and scale bar is 100 μm.
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Fig. 2. Gene expression analysis of individual cell types and developing a cell type specific panel 
of markers
The quality of our iPSC and their neural derivatives were analyzed by whole genome 

expression profile. A panel of genes was selected from the microarray as stage-specific 

markers for iPSC, NSC, neurons, and astrocytes. In comparison of each gene in all 4 stages, 

expression increased (red) and decreased (green) is indicated in the heat map.
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Fig. 3. Heat map - Response of iPSC and their neural derivatives to 80 compounds
80 compounds, some with known neuotoxicity or developmental neurotoxicity potential, 

were tested for cytotoxicity in XCL1 iPSC, NSC, neurons, and astrocytes. The assay was 

performed in a 96-well plate format and cells were treated with each compound at 10 and 

100 μM, in duplicate, for 24 hours. At the end of the exposure period, the MTT assay was 

used to measure cell viability. The compounds are organized by most active across the 

concentrations tested and the cell types based on summing the extent of cytotoxicity. Blue 

represents cytotoxicity in 25% increments relative to control.

Pei et al. Page 23

Brain Res. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Concentration response of four selected compounds on iPSC-derived neural cells
Four compounds – valinomycin, 3,3′,5,5′-tetrabromobisphenol, deltamethrin, triphenyl 

phosphate – were tested at 1, 10, and 100 μM for cytotoxicity in XCL-1 iPSC, NSC, 

neurons, and astrocytes. Each test was performed in triplicate and the MTT assay was used 

to determine viability after 24 hours of treatment. Bars represented the percentage of viable 

cells normalized by the control wells (DMSO only). Error bars represent standard deviation.
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Fig. 5. Effect of rotenone on multiple NSC lines
The cytotoxicity of rotenone was tested in NSC derived from seven additional iPSC lines of 

lines isolated from both males and females and the control XCL-1 line. Cells were exposed 

to the compounds at 1 and 10 μM. Cell viability was calculated via MTT assay after 24 hour 

of treatment. Data are expressed as relative percentage of cell viability using the DMSO 

solvent control wells to normalize the rotenone-treated samples. Error bars represent 

standard deviation.
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Fig. 6. Toxicity tests on selected compounds using a luciferase assay in neurons or astrocytes 
derived from the reporter iPSC lines
3,3′,5,5′-tetrabromobisphenol A and triphenyl phosphate, both at 100 μM were tested for 

cytotoxicity using the GFAP-nanoluc astrocytes (A) and Map2-nanoluc neurons (B) 

luciferase assays. The luciferase levels per well were measured from the nanoluc reporter 

signal from each reporter lines and were used to calculate the cytotoxicity of each compound 

on astrocytes or neurons (n>4).
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