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Abstract

The ultrastructural mechanism for strain rate sensitivity of collagenous tissue has not been well 

studied at the collagen fibril level. Our objective is to reveal the mechanistic contribution of 

tendon's key structural component to strain rate sensitivity. We have investigated the structure of 

the collagen fibril undergoing tension at different strain rates. Tendon fascicles were pulled and 

fixed within the linear region (12% local tissue strain) at multiple strain rates. Although samples 

were pulled to the same percent elongation, the fibrils were noticed to elongate differently, 

increasing with strain rate. For the 0.1, 10, and 70%/s strain rates, there were 1.84±3.6%, 

5.5±1.9%, and 7.03±2.2% elongations (mean±S.D.), respectively. We concluded that the collagen 

fibrils underwent significantly greater recruitment (fibril strain relative to global tissue strain) at 

higher strain rates. A better understanding of tendon mechanisms at lower hierarchical levels 

would help establish a basis for future development of constitutive models and assist in tissue 

replacement design.
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1. Introduction

Tendons are soft connective tissue exhibiting nonlinear viscoelastic properties, with a 

hierarchical structure ranging from the entire tendon to fascicle to collagen fiber to collagen 

fibril to the collagen molecule (Fig. 1)(Butler et al., 1978; Wang, 2006; Kastelic et al., 1978; 

Screen et al., 2004). This intricate structural hierarchy gives tendon the viscoelastic 

characteristics of most soft tissues, i.e., strain rate sensitivity, stress relaxation, and creep. 

Many mechanistic studies have been carried out to understand the underlying mechanisms of 

these viscoelastic tissue behaviors (Butler et al., 1978; Wang, 2006; Cohen et al., 1976; 

Woo, 1982; Yamamoto et al., 1992; Johnson et al., 1994; Duenwald et al., 2009).

In tendon mechanics, the central role is played by Collagen Type I, which is the major 

component of tendon and makes up approximately 70–80% of the tissue dry mass(Kannus, 

2000; Yamamoto, 1999). Collagen fibril diameter distribution changes with age and affects 

the stiffness of tendon (Derwin and Soslowsky, 1999). As the key structural protein 

component, the collagen molecule consists of a triple helix formed by three poly-peptide a-

chains with a length of ~300 nm and a diameter of ~ 1.5 nm(Petruska and Hodge, 1964). 

Quarter staggering of the collagen molecules gives rise to the collagen fibril with a banding 

appearance also known as the D-period(Petruska and Hodge, 1964).

There have been previous studies on kinematics of collagen fibrils under uniaxial loading 

(Sasaki and Odajima, 1996a,b; Graham et al., 2004; Shen et al., 2008; van der Rijt et al., 

2006; Yang et al., 2008, 2007 Hansen et al., 2009). Fibril mechanisms have been studied 

mainly using X-ray diffraction techniques and TEM. Increasing load has been shown to 

result in elongated collagen fibrils, demonstrated by an increased D-period (Sasaki and 

Odajima, 1996a,b; Folkard et al., 1987; Fratzl et al., 1998; Liao et al., 2005). When collagen 

fibrils undergo load, the D-period elongates due to intrinsic fibril mechanisms of molecular 

elongation and slippage (Sasaki and Odajima, 1996a). Recently, combining multi-scale 

measurements (inter-fiber sliding and intra-fiber elongation along with fibril elongation), 

Gupta et al. (2009) created a novel multiscale model to describe how tendon distributes load 

between its fiber and fibril hierarchies during stress-relaxation. Recently, fascicle 

viscoelastic models were proposed by Lucas et al. (2009); Elliott et al. (2003).

Noncollagenous components in tendon are proteoglycans, elastin, water, and fibroblasts. 

Tendon's proteoglycan (PG) network is composed of highly negatively charged 

glycosaminoglycans (GAGs), which are matrix components that regulate fluid flow and 

attribute to viscoelasticity within the tendon (Elliott et al., 2003; Puxkandl et al., 2002; 

Screen et al., 2005; Robinson et al., 2004; Yin and Elliott 2004; Weiss et al., 2002). There 

has been theoretical modeling and experimental observations supporting the interfibrillar 

mechanical role of PG bridges (Liao and Vesely 2007; Redaelli et al., 2003; Scott, 2003). 

Some question the noncollagenous matrix's mechanical role, stating collagen fibrils span the 
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whole tissue and load is not transferred to PGs (Provenzano and Vanderby, 2006). Note that 

mechanical role of PGs is still debatable and in need of research.

In the present study, our objective is to reveal the mechanistic contribution of tendon 

structural component to tissue strain rate sensitivity, specifically to examine the collagen 

fibril elongation in tendon tissues that were loaded at various strain rates. The interruption 

mechanical testing (IMT) and scanning electron microscopy (SEM) were applied to assess 

the collagen fibrils in the chemically fixed tendon fascicles that have been loaded to the 

same strain level at various ramping rates. A better understanding of tendon mechanisms at 

lower hierarchical levels can help us better to understand tissue structure–function relation 

and shed light on biomimic design of tissue replacements that are optimized in strength and 

robustness (Ackbarow and Buehler, 2009).

2. Methods

2.1. Sample preparation

Three mature Japanese white rabbits were used in this study. The procedures of sacrifice and 

experiment were approved by the MSU Institutional Animal Care and Use Committee 

(IACUC). Animals were humanely euthanatized by administration of Beuthanasia solution 

(100 mg/ml perntabarbitol, 1 ml/10 lbs) intravenously in the ear vein or by intracardiac 

injection. Prior to euthanasia, each rabbit was sedated with an intramuscular injection of 

ketamine (10 mg/kg) and medetomidine (0.5 mg/kg). Immediately after euthanasia, both 

hind limbs were harvested using sharp dissection. Each limb was wrapped in gauze soaked 

in a phosphate saline solution and sealed in an airtight plastic bag. These were then stored at 

–30 °C until testing procedures were executed. Prior to testing, the legs were thawed at room 

temperature for 2 h fully hydrated with PBS. Three tendons, all from different animals, were 

used in the study for interrupted mechanical testing and SEM analysis (D-period 

measurement). The remaining patellar tendon samples were used for mechanical testing only 

(Fig. 2).

Both the proximal and distal insertion portions of the patellar tendon and the fascia 

surrounding the tendon were removed. The middle portion of the tendon was carefully 

extracted and then trimmed into four fascicles with the patella end attached to a holder and 

the other end grasped tightly with forceps (cut with an approximate width of 1 mm 

(Yamamoto, 1999)). All fascicles used in the study were cut from the inner portions (the 

central 4 mm) of the tendon to prevent location variability within the tendon (Williams et al., 

2008). One tendon from each animal yielded 4 fascicles (extracted from the inner portion of 

tendon), among which 3 fascicles were used for tensile testing and 1 was used as a control 

sample. The specimens were kept moistened with PBS during the sample extraction 

procedure and testing.

2.2. Interruption tensile mechanical testing

Tendon fascicles were mounted onto the Biomomentum Mach-1 mechanical testing system 

(Biomomentum Inc., Canada). Special grips were designed to secure the specimen and 

minimize slippage (Fig. 3). The fascicles were then measured for their cross-sectional areas 
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in the midsubstance using NIH Image J digital imaging program. All tested fascicles had 

grips initially at 7 mm apart giving a ratio of the samples’ dimensions to be around 7:1 

(length vs. width), with each sample slightly varying in diameter. Fascicles were more 

elliptical in shape than assuming a completely round cross-sectional area. Area was defined 

as A=(π/4) × a × b, where a and b are the width and depth of the fascicle.

The fascicles were preconditioned in order to provide the specimens with similar loading 

histories and reduce variations in response to loading. Each sample was preloaded at 0.01 N 

at 0.01 mm/s; and zero strain (gauge length) was defined at this load. Each specimen was 

then preconditioned to a strain of 2%, for 10 cycles at 1 Hz (Yamamoto, 1999). The 

mechanical data were recorded in engineering stress and engineering strain. Control samples 

were subjected to the same preconditioning protocol and then fixed at a zero load in the 

fixative bath for the same amount of time (4 h). For the 4 fascicles yielded from each tendon, 

one was used as load free control and three were loaded to 20% clamp-to-clamp strain at 

0.1, 10, and 70%/s strain rates. This corresponded to a 12% local strain in the midsubstance. 

Immediately after the test, the tendon was fixed in 1.25% glutaraldehyde for 4 h. The 

tangent modulus was taken from the linear portion of the curve at approximately 5% strain. 

Because of the inhomogeneous nature of tissue strain field from clamp-to-clamp, we 

monitored the local strain of midsubstance by placing two markers using permanent ink 

vertically on the fascicle surface and imaging the marker movement before and after the 

elongation. The local strain was calculated by measuring the distances between the centroids 

of two markers.

Each rabbit used in the study yielded one leg for interruption tensile testing and D-period 

analysis and one leg devoted just for mechanical testing for modulus calculations. 

Mechanical data from the interruption testing fascicles were also used in calculating the 

modulus (n=6).

2.3. Scanning electron microscopy

Samples for SEM were fixed in 1.25% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2), 

rinsed with 0.1 M phosphate buffer, and post-fixed with 2% osmium tetraoxide in 0.1 M 

phosphate buffer. Samples were dehydrated in a graded ethanol series and then were critical 

point dried in a Polaron E 3000 CPD. They were then mounted on aluminum stubs and 

sputter coated with gold–palladium. Specimens were imaged using a JEOL JSM-6500 FE 

scanning electron microscope.

2.4. D-period analysis

After imaging, the samples were analyzed using Image J software (Image J 1.41, National 

Institutes of Health, USA). SEM photographs were taken from × 20,000 to × 30,000 

magnification. The average number of D-periods for each fibril (40±9) was averaged by 

Image J using the image's scale bar and a scale factor calculated by SF=(distance in pixels)/

(known distance (nm)). The elongation of collagen fibrils were compared among different 

strain rates to show the differences in fibril recruitment. Note that, in this study, fibril 

recruitment was defined as the amount of fibril strain relative to the global tissue strain.
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For each interruption tensile test, five images randomly located in the specimen's 

midsubstance were used to measure the fibril periodicity (Fig. 4). However, in order to avoid 

stereological bias, the imaging areas needed to have collagen fibrils predominately aligned 

along the image plane. Obviously, collagen fibrils with a large oblique orientation (out of 

plane) could potentially underestimate the D-period.

Six fibrils from each image were selected for D-period measurement. Again, collagen fibrils 

within plane orientation were picked for an accurate measurement. The sample size was 90 

fibrils for each strain rate (Fig. 5), while the total number of fibrils analyzed for the control 

group was 50. This was due to the crimping nature of load free tendon and the difficulty of 

locating in-plane undistorted fibrils (Fig. 6-a).

2.5. Statistical analysis

The data in this study were presented as mean±standard deviation (S.D.). One way Analysis 

of Variances (ANOVA) was used for statistical analysis. The differences in D-period 

elongations were considered to be statistically significant when p is less than 0.05. Holm–

Sidak test was used for post-hoc pair-wise comparisons and comparisons vs. the control 

group (SigmaStat 3.0, SPSS Inc., Chicago, IL). Tangent modulus values were found to be 

significantly different using post-hoc pair-wise comparisons vs. the quasistatic rate when p is 

less than 0.05.

3. Results

The stress–strain curves showed strain rate sensitivity of tendon fascicles (Fig. 7). Strain rate 

sensitivity was verified by an increase in tangent modulus with a strain rate increase. The 

tangent moduli in the linear region were found to have values of 102±42, 195±58, and 

251±116 MPa for 0.1, 10, and 70%/s, respectively (Fig. 8). Tangent modulus values were 

found to be significantly different using post-hoc pair-wise comparisons vs. the quasistatic 

rate (p < 0.05). There was no difference found between 10 and 70%/s strain rates (p = 0.32) 

although there was an increase in trend.

The fixed fascicles were found to maintain their elongation after the removal of the tendon 

from the grips. SEM images showed a straightening of fibrils in strained fascicles compared 

with the less orderly control samples (Fig. 6). Elongation of the D-period was found to 

increase with strain rate increase (Fig. 9). For the control, 0.1, 10, and 70%/s fascicles, the 

average D-period lengths were found to be 51.3±1.4, 52.2±1.9, 54.1±1.0, and 54.9±1.2 nm, 

respectively. Statistical analysis found that all strain rates to be statistically significant from 

the control (p < 0.005). Each rate was also compared with each other and also was found to 

be significant (p < 0.001).

As expected, the analysis of the local midsubstance strain revealed a non-homogeneous 

strain field from clamp-to-clamp. However, our analysis showed that midsubstance strains 

for all 3 tests were around 12% in each strain rate group (10–14% local strain). Differences 

in local midsubstance strains were found to be insignificant among different strain rate 

groups. Mechanical data revealed fascicles were not pulled past the linear region.
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4. Discussion

Our data proves Puxkandl et al. (2002) and his speculation of an increasing fibril strain to 

tissue strain ratio relative to strain rate (Liao et al., 2007). To our knowledge, this study is 

the first to reveal statistically significant data of increasing fibril elongation relative to the 

applied strain rate. PGs have been known to participate in load transferring/bearing among a 

collagen fibril network. Screen et al. (2005) suggests that extracellular matrix is stiffer at 

higher strain rates due to its affinity for water. Elliott et al. (2003) proved a larger and faster 

relaxation in matrix deficient fascicles. Based on the dissipative theory, at relatively slow 

rates, the water and proteoglycan matrix have time to disperse and distribute forces, 

respectively (Ciarletta and Ben Amar, 2008). We speculate that at higher strain rates, fluid 

has less time to dissipate through the extracellular matrix and there is less time to distribute 

forces from collagen fibril to noncollagenous components (Yin and Elliott, 2004; Atkinson 

et al., 1999).

Previous collagen fibril studies have used X-ray diffraction to monitor fibril recruitment 

during elongation of various tissue types. These studies are compared with the current 

patellar tendon study in Table 1. In this study, the quasistatic rate yielded a 1.84% strain in 

the fibril, correlating a 15% fibril strain to tissue strain ratio (єF/єT). The ratio of fibril strain 

to tissue strain is a definitive way of looking at mechanical function of the tissue. Heart 

valve showed low fibril strain to tissue strain, which possibly related to its mechanics and 

design to resist creep in lifelong cyclic loading (Liao et al., 2007). Although there are no 

direct comparisons with the patellar tendon model, our study falls in between heart valve and 

tissues less likely to undergo regular occurring tensile strain like the antler (Krauss et al., 

2009) and bone (Gupta et al., 2005). There are differences in sample preparation and testing 

methods between the present SEM study and the X-ray diffraction studies in Table 1. We 

believe the difference in єF/єT is mostly attributed to biological variability and the 

compositional variation within those collagenous tissues.

The fascicle mechanical properties we reported in this paper were indirectly similar with 

previous studies. Yamamoto et al. (2007) reported a tangent modulus for 0.3 mm2 rabbit 

patellar fascicles to be 180 MPa for a strain rate of 0.1%/s, higher than the 102 MPa for the 

1 mm2 fascicles found in the current study. Although not a direct comparison, smaller cross-

sectional area fascicles have been shown to have a higher modulus (Atkinson et al., 1999). 

Human patellar tendon allografts (~50 mm2) have shown a 239–306 MPa modulus at 

100%/s (Haut and Powlison, 1990; Noyes et al., 1984). The current study calculated a value 

of 251 MPa for a 70%/s strain rate.

It is notable that the unstressed D-period reported in this paper was 51 nm, which is smaller 

than the typical 64–67 nm quantified in research but comparable with D-periods measured 

by SEM and TEM technologies (53–54 nm) (Prostak and Lees, 1996; Kukreti and Belkoff, 

2000; Yamaguchi et al., 2003). A shrinking of fibrils takes place as a regular occurring effect 

due to the fixation and processing required for electron microscopy (Gusnard and Kirschner, 

1977; Charulatha and Rajaram, 1997). We assumed the degree of collagen shrinkage due to 

chemical fixation and SEM processing was consistent throughout the sample and the change 

in the D-period length was disregarded as variability in the experiment.
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Fascicle mechanics in this study were more linear, less stiff, and more extensible than bulk 

tendon while also having a reduced toe region as seen in Fig. 7 (Elliott et al., 2003; Atkinson 

et al., 1999). Previous studies report a wide fascicle failure strain range from 8% to 21% 

(Yamamoto, 1999; Derwin and Soslowsky, 1999; Lucas et al., 2009; Yamamoto et al., 2007; 

Butler et al., 1986; Haraldsson et al., 2005). This wide range is most likely due to species/

biological variability and experimental setup. Failure strains of fascicles in the present study 

were found to be approximately 15–20% local strain (data not shown). The local strain in the 

study (12%) was chosen to be close to peak stress and still within the linear region (to avoid 

aggressive subfailure damage). The current study did not investigate fibril failure. With the 

highest strain rate used in this study, the fibril underwent an average of 7% strain. Isolated 

collagen fibrils have shown to be linear from 4–7% strain (van der Rijt et al., 2006; 

Svensson et al., 2010; Eppell et al., 2006). We believe that fibril failure did not occur during 

our tensile testing. If fibril failure had occurred, substantial damage would have been evident 

with the presence of relaxed fibrils in the SEM images (Arnoczky et al., 2007).

Relaxation data were recorded after every test. Initial relaxation of tendon happens almost 

instantly after the ramping and to our knowledge is unpreventable. This may have led to an 

underestimation of fibril elongation. Although the samples underwent relaxation before fully 

cross-linked, the relaxation took place in a shorter period of time due to fast fixative 

infiltration and had more residual stress compared with fascicles submerged in hydrating 

buffer (data not shown.) Without fixative, our fascicles showed a ~40% relaxation that 

showed equilibrium at 1300 s. Our data showed that, in the glutaralde-hyde fixative, the 

stress in the fascicle relaxed approximately 15% and reached equilibrium at 200–300 s, 

showing the effect of glutaraldehyde and the speed of the cross-linking.

The number of animals in this study was small compared with our fibril sample number. We 

decided to follow the procedure of Kukreti and Belkoff, 2000 to exhaustively analyze D-

period measurements throughout the midsubstance of 3 separate animals rather than fewer 

image analysis and greater number of animals. Our SEM analysis averaged fibrils 

throughout the midsubstance and not in one localized area. This different method represents 

what is happening throughout the sample and accounts for errors likely caused by local 

variability (Williams et al., 2008; Haraldsson et al., 2005; Lake et al., 2009).

In conclusion, our finding unfolds the underlying mechanism of tendon strain rate 

sensitivity. We conclude that collagen fibrils undergo a significantly greater degree of 

elongation, relative to the tissue strain, at higher strain rates. This mechanistic finding 

provides insight into the behavior of the tendon at the micro-scale and establishes a basis for 

future development of constitutive models. Future studies will also be focused on tendonitis 

and chronic collagen disorders that effect fibril kinematics.
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Fig. 1. 
Tendon's hierarchical structure adopted in current study. (Adapted from Kastelic et al. 

(1978) and Screen et al. (2004).
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Fig. 2. 
Number of animals and fascicles for both mechanical testing (MT) for calculations of 

tangent modulus and interruption mechanical testing (IMT) for calculations of D-period with 

SEM. Stress–strain data of IMT samples were also used for the calculation of the tangent 

modulus. Fascicles are labeled either control (C) or their corresponding strain rate (%/s). * 

indicates extra fascicle not used in the study.

Clemmer et al. Page 12

J Biomech. Author manuscript; available in PMC 2016 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(A) Fascicles were subjected to mechanical testing with 7 mm clamp-to-clamp initial length 

with the region of interest (ROI) between markers of 2 mm apart. (B) Midsubstance was 

processed for SEM analysis for D-period measurement. Scale bar=100 nm.
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Fig. 4. 
Image analysis for 2 fibrils after a 70%/s test. SEM image shows 50 D-periods measuring 

2755 and 2760 nm (correlating to a 55.1 and 55.2 nm D-period, respectively). Scale bar=100 

nm.
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Fig. 5. 
Sample tree for fascicles undergoing D-period analysis. A sample size of n=90 was the total 

number of fibrils coming from all 3 animals (3 animals × 5 images × 6 fibrils). Each fibril 

measurement represented an average of 40 ± 9 D-periods.
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Fig. 6. 
SEM images of control sample (A), 0.1 (B), 10 (C), and 70%/s (D) tests.
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Fig. 7. 
Tensile testing to 20% clamp-to-clamp strain with 3 different rates showing rate sensitivity 

(engineering stress vs. engineering strain).
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Fig. 8. 
Average tangent modulus of tendon fascicles (n=6), taken from 5% strain. * indicates p<0.05 

vs. 0.1%/s.
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Fig. 9. 
D-period analysis of 3 strain rates (n=90) with measurements normalized to control (n=50). 

n indicates significant difference between all groups (p<0.005).
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Table 1

Comparison of the ratio of fibril strain to tissue strain (єF/єT). Collagenous tissues were from different animal 

models using X-ray differaction for the D-period measurement. Tissue samples were loaded with similar 

quasistatic rates.

Primary author, year Animal model Quasistatic rate, %/s Fibril strain, єF Tissue strain, єT Fibular ratio strain (єF/єT) 
(%)

Current study Rabbit patellar 0.1 1.8 12 15

Liao et al. (2007) Porcine mitral valve 0.6 0.5 12 4

Liao et al. (2005) Bovine pericardium 1 3.2 30 11

Puxkandl et al. (2002) Rat tail 0.08 3.3 9.5 34

Mosler et al. (1985) Rat tail 0.1 1.8 5 36

Gupta et al. (2005) Mineralized tendon 0.1 3.37 7.46 45

Krauss et al. (2009) Deer antler 0.005 1.23 2.46 50

Gupta et al. (2005) Bovine femur N/A 0.44 0.69 64

All data compared were analyzed from graphs in X-ray diffraction studies.
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