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Abstract

A susceptible-infectious-susceptible (SIS) epidemic model that describes the coinfection and 

cotransmission of two infectious diseases spreading through a single population is studied. The 

host population consists of two subclasses: susceptible and infectious, and the infectious 

individuals are further divided into three subgroups: those infected by the first agent/pathogen, the 

second agent/pathogen, and both. The basic reproduction numbers for all cases are derived which 

completely determine the global stability of the system if the presence of one agent/pathogen does 

not affect the transmission of the other. When the constraint on the transmissibility of the dually 

infected hosts is removed, we introduce the invasion reproduction number, compare it with two 

other types of reproduction number and show the uniform persistence of both diseases under 

certain conditions. Numerical simulations suggest that the system can display much richer 

dynamics such as backward bifurcation, bistability and Hopf bifurcation.
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1 Introduction

Different infectious agents may infect or colonize a host at the same time [21]. Many 

examples can be found, these involving HIV [30, 37] (for example, HIV and TB [19], HIV 

and Hepatitis B [12, 26], HIV and Hepatitis C [23], and HIV and malaria [2]), as well as 
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some not involving HIV (for example, Hepatitis B and C coinfection [11], gonorrhea and 

Chlamydia [13], and herpes simplex viruses 1 and 2 [41, 59]) Moreover, simultaneous 

infection may occur with multiple strains or serotypes of the same organism, as is the case 

for influenza [20, 49], human papilloma virus [9], and HIV [55, 63, 22], for just three of 

many examples. However, simultaneous colonization or infection may occur even when 

there appears to be little or no interaction between the two agents, as in the case of infection 

by ocular strains of chlamydia and nasopharyngeal colonization by pneumococcus [24]. The 

dynamics of coinfection is important in this case, because antimicrobials used to treat one 

infection may affect the other (e.g., [51, 24]).

A variety of mathematical models for coinfections with multiple specific diseases, such as 

HIV/TB [43, 48, 6, 47], HIV/gonorrhea [40], HIV/malaria [1, 39], malaria and meningitis 

[29], general diseases [5, 7, 35, 28], and microparasites (viruses, bacteria, protozoa, fungi) 

[54, 10, 3, 4, 61], have been developed and analyzed in the past few years. Ferguson et al. 

[16] and Kawaguchi et al. [27] presented models to describe the coinfection of two serotypes 

of dengue virus in a human community. With respect to the interaction between nonspecific 

agents or pathogens, Blyuss and Kyrychko [7] studied a two-disease SIS model with equal 

transmission efficiency for both susceptible and singly infected individuals; Allen et al. [5] 

studied an SI model for a single host population with two viral infections, in which one is 

vertically transmitted and the other is horizontally transmitted; Zhang et al. [60] proposed an 

ODEs coinfection model with two strains of parasites and two host types to study the 

influence of heterogeneities in parasite virulence and host life history on the persistence and 

spread of parasite strains; Martcheva and Pilyugin [35] considered an epidemic model of two 

diseases: a primary disease and a secondary disease, structured by time since infection 

structure (for the primary disease); in the monograph of Keeling and Rohani [28], the 

interaction of two pathogens spreading through a host population was discussed in four 

cases: complete cross-immunity, no cross-immunity, enhanced susceptibility and partial 

cross-immunity. Among these models either the uninfected hosts cannot become infected 

with both diseases/strains directly [38, 35, 28, 10], or there is no recovery and an infection is 

lifelong [54, 5, 4], or both [60, 3].

In this paper, we develop and analyze a simple model of multiple infections; this model 

includes the possibility that the two agents are simultaneously transmitted with aspects of 

Chlamydia trachomatis and pneumococcus, though we do not restrict the analysis to this 

setting (see [31, 46] for examples of cotransmission in vector-borne disease ecology and 

human case report, respectively), thereby inaugurating a dual infection. Our model will also 

include the possibility that an individual who is currently infected with one agent will 

become dually infected as a result of an exposure to the second agent. In this paper, the 

condition of being simultaneously infected by multiple agents will be referred to simply as 

coinfection. Our model is similar to the model of Blyuss and Kyrychko [7] where the disease 

induced mortality is included, the doubly infected hosts recover from both diseases 

simultaneously and strong restrictions on transmission parameters are required, and to the 

models for coinfection by different species in Tanaka and Feldman [54] and Alizon [4] 

where disease-induced mortality may occur, but no recovery is possible (and the forces of 

infection follow a different rule).
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We will assess a two-disease SIS model with no immunity or cross-immunity. For simplicity, 

we will refer to the first and second disease, recognizing that the model applies equally well 

to colonization or to subclinical infections. In Section 3, we carry out a complete global 

stability analysis of the model for the case where the force of infection of one disease is not 

affected by the presence of the other (i.e., no interaction between two infections). In Section 

4, when the two infections interact with each other, we calculate the invasion reproduction 

numbers and obtain their epidemiologically meaningful lower and upper bounds, and show 

that the interaction outcome could be extinction of one or both diseases or persistence of 

both diseases. In Section 5, four numerical examples are provided to support the existence of 

competitive exclusion, backward bifurcation, bistability and Hopf bifurcation, respectively.

2 The model

We propose a simple SIS epidemic model with two infectious agents (or strains of the same 

agent) spreading through one host species. Let S(t), I1(t), I2(t) and I12(t) be the fractions of 

the population infected with no infectious agent, the first agent, the second agent and both 

agents at time t, respectively. A susceptible individual who contacts coinfected persons can 

be infected with either one or both disease agents as a result of a single contact. Using ocular 

strains of Chlamydia trachomatis and nasopharyngeal pneumococcus as an example, 

transmission of either or both organisms could occur as a result of a single contact. This 

process is illustrated in Figure 1. The model is then described by a system of four ordinary 

differential equations as follows:

(2.1)

where the forces of infection are proportional to disease prevalence, i.e.,

Parameters ρ1 and ρ2 represent the recovery rate of the first and second diseases, 

respectively. The disease induced death rate is ignored. We assume that the natural birth and 

death rates are balanced and equal to μ, so that the total population size is constant. All 
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parameters are assumed to be positive, except that β12 ≥ 0. As stated earlier, the possibility 

of simultaneous transmission from a single contact with a dually infected individual, which 

we model according to the assumption β12 > 0. An underlying assumption in the model is 

that individuals in all disease states have the same contact rate; we do not assume that 

individuals have fewer contacts if they are infected. The rates/probabilities of transmission 

of the model in Blyuss and Kyrychko [7] satisfy β12 + β10 = β1, β12 + β02 = β2, β12 = β1β2, 

which is a special case of ours.

Following the method and notations of van den Driessche and Watmough [58] and 

Diekmann et al. [14, 15], we have

The basic reproduction number associated with the model (2.1) is defined as the spectral 

radius of the next generation matrix FV−1, i.e., ℛ0 = max{ℛ10, ℛ20, ℛ30}, where

Let . Clearly, the set Ω is positively invariant for 

system (2.1), so we will always set initial values within Ω. It is immediate that system (2.1) 

has up to three boundary equilibria as follows.

Proposition 2.1

For system (2.1), we have

i. the disease-free equilibrium E0 = (1, 0, 0, 0) always exists;

ii. the equilibrium with the presence of only the first disease E1 = (1/ℛ10, 1 

− 1/ℛ10, 0, 0) exists if and only if ℛ10 > 1;

iii. the equilibrium with the presence of only the second disease E2 = (1/ℛ20, 

0, 1 − 1/ℛ20, 0) exists if and only if ℛ20 > 1.

3 Noninteracting transmission

We begin with the simpler case where the presence of each disease does not affect the 

transmission of the other; throughout this section, we assume that a doubly infected 

individual has the same total infectivity as a singly infected person, which translates to

(H)

Under the assumption (H), the persistence and extinction of one disease, and the total 

fraction of people infected by that disease are not affected by the presence of the other 
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disease. The ability of a disease to invade an uninfected population is completely determined 

by its own basic reproduction number.

Theorem 3.1

Let Ω0 = {E0}, Ω1 = {(S, I1, 0, 0) ∈ Ω : I1 > 0} and Ω2 = {(S, 0, I2, 0) ∈ Ω : I2 > 0}. For 
system (2.1) under assumption (H), we have

1. if ℛ0 ≤ 1 then the disease-free equilibrium E0 is globally asymptotically 
stable in Ω;

2. if ℛ10 > 1 ≥ ℛ20 (or ℛ20 > 1 ≥ ℛ10), then E1 (or E2) is globally 
asymptotically stable in Ω\(Ω0 ∪ Ω2) (or Ω\(Ω0 ∪ Ω1)) where Ω0 ∪ Ω2 (or 
( Ω0 ∪ Ω1)) is the attractor of E0;

3. if ℛ10 > 1 and ℛ20 > 1, then there exists a unique coexistence 

equilibrium, denoted by , which is globally 
asymptotically stable in

Here Ω0, Ω1 and Ω2 are the attractor of E0, E1 and E2, respectively.

Proof—The summations of the second and fourth equations of (2.1) and the third and 

fourth equations of (2.1) give

and

respectively. It follows from S + I1 + I2 + I12 = 1 that the above two logistic equations satisfy

respectively, if both diseases present initially. If, for example, ℛ10 ≤ 1, then I1(t) + I12(t) → 

0 which implies . Thus, the first two arguments are established.

Now we assume that ℛ10 ≥ ℛ20 > 1 and the symmetric case ℛ20 ≥ ℛ10 > 1 can be proved 

similarly. If  exists, then it must satisfy
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(3.1)

and substituting them into the first equation of (2.1) yields

(3.2)

Meanwhile, solving  in terms of S* from the first equation of (2.1) gives

Claim 1

If β12 = 0, then  and there exists a unique endemic 

equilibrium

If β12 > 0, then (3.2) has two roots, labeled by  and , satisfying . Here 

ℜ(z) is the real part of a complex number z. Dividing both sides of (3.2) by β12 yields

where  and . Clearly, υ1 ≤ υ2 < 1, g > 2 and g > 2h.

Claim 2

. It follows from  and
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that both  and  are positive real numbers and . In addition,

When , the positivities of  and  follow from  and  is equivalent 

to , which is guaranteed by

Consequently, if ℛ10 > 1 and ℛ20 > 1, then (2.1) has a unique endemic equilibrium

where S* ∈ (0, 1) is the unique feasible solution to (3.2).

The spectrum of the Jacobian matrix of system (2.1) at E12 is

which means the endemic equilibrium is locally asymptotically stable. It follows from the 

result on asymptotically autonomous differential equations [56] that E12 is globally 

attractive. Hence the endemic equilibrium is globally asymptotically stable when it exists.

Remark 3.2

When coinfection is impossible, the competitive exclusion principle holds and the disease 

with a larger reproduction number must exclude the other [8]. Thus coinfection is a 

mechanism for the coexistence of multiple agents or pathogens [35].

Remark 3.3

It follows from S* + (υ1 − S*) + (υ2 − S*) + (υ1 − S*)(υ2 − S*)/S* ≤ 1 and (3.1) that 

min{υ1, υ2} > S* ≥ υ1υ2, , and . 

Both the uninfected population and the coinfected population are increasing in the 

cotransmission rate. Indeed, differentiating F(S*) = 0 with respect to β12 gives
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and  implies that .

In the setting of multiple diseases, we may treat the entire population (mass treatment, ρi → 
ρi + θ for any i), or only a fraction of people infected by a specific disease (targeted 

treatment, ρi → ρi + θi for some i). Under both treatment strategies, it is shown that for 

model (2.1) with the restriction (H) the uninfected population is always increased by 

choosing a higher treatment rate; this differs from the two-disease model we studied in [17].

Corollary 3.4

For system (2.1) under assumption (H), the fraction of susceptible, S*, is always increasing 
in the mass treatment rate θ (or targeted treatment rate θi).

Proof—If β12 = 0, then under the mass treatment and targeted treatment we have

respectively. Now assume that β12 > 0 and υ1 ≥ υ2, it follows from the differentiation of 

F(S*) = 0 with respect to targeted treatment rate θi or mass treatment rate θ that

and

The last inequality holds because of S* − gυ1 + h < 0 and 2S* − (υ1 + υ2 + g − 1 − h) < 0.

4 Interacting transmission

In the rest of the paper, we remove the requirement (H), namely, β12 + β10 ≠ β1 or β12 + β02 

≠ β2. Biologically, this means that a dually-infected individual may transmit each agent 

either more or less efficiently than a person infected with each agent singly. Three possible 

scenarios are listed as follows:

1. Mutual enhancement: β12 + β10 > β1 and β12 + β02 > β2;
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2. Enhancement and inhibition: β12 + β10 > β1 and β12 + β02 < β2, or β12 + 

β10 < β1 and β12 + β02 > β2;

3. Mutual inhibition: β12 + β10 < β1 and β12 + β02 < β2.

The dynamics are simple equilibrium if the double infection has mild impact on the 

transmission of one of the two infections. The following proof utilizes the theory of 

monotone dynamical systems [52], simplfying the proof of Theorem 3.1.

Proposition 4.1

Assume that dual infection has no impact on the transmission of the first disease, i.e., β12 + 

β10 = β1. For system (2.1), every orbit with initial value in Ω converges to an equilibrium.

Proof—The assumption β12 + β10 = β1 implies that I1(t) + I12(t) → max{0, 1 − 1/ℛ10} as t 
→ ∞ for I1(0) + I12(0) > 0. If ℛ10 ≤ 1, then either E0 or E2 is globally stable. If ℛ10 > 1, 

then I1(t) + I12(t) → 1 − 1/ℛ10 and S(t) + I2(t) → 1/ℛ10 as t → ∞. Thus, the 4-

dimensional system (2.1) can be reduced to a 2-dimensional system in I1 and I2. Denote the 

Jacobian matrix of this two-dimensional system by J2 = (aij)2×2, where

Thus, the reduced 2-dimensional system is competitive. By Theorem 3.2.2 in Smith [52], 

every orbit converges to an equilibrium.

The stability analysis for system (2.1) now becomes more complicated, and we need to 

introduce a new threshold parameter—the invasion reproduction number, which is used to 

measure the ability of one disease to invade an equilibrium of the other disease [42, 35, 60]. 

We now assume that the equilibrium E1 exists, or equivalently, ℛ10 > 1. Using the next 

generation matrix method [14, 15, 58], the vectors for the rate of the appearance of new 

infections by disease two and the rate of transfer of individuals are, respectively,

where (S̄, Ī1) = (1/ℛ10, 1 − 1/ℛ10). The derivatives of ℱ2 and 2 at (I2, I12) = (0, 0) are, 

respectively,
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The characteristic polynomial of the matrix  is A2λ2 + A1λ + A0 = 0, where

The invasion reproduction number of disease 2, denoted by , is given by the spectral 

radius of the non-negative matrix , i.e.,

It follows from A0 > 0 that the characteristic equation has two positive roots as β12 > 0. If 

β12 = 0 then A0 = 0 and .

Similarly, we can derive a formula for the invasion reproduction number of disease 1, 

denoted by . By Theorem 2 in van den Driessche and Watmough [58], disease 1 can 

invade disease 2 if  and disease 2 can invade disease 1 if  (see Appendix A for a 

direct proof).

Proposition 4.2

For system (2.1), when the equilibrium E1 exists (i.e., ℛ10 > 1), it is locally asymptotically 

stable if  and unstable if . Symmetrically, the equilibrium E2 is locally 

asymptotically stable if  and unstable if .

Define ℛ̃
20 = (β12 + β02)/(ρ2 + μ); this quantity, analogous to a basic reproduction number, 

is the number of cases of disease 2 resulting from the introduction of a dually infected 

person into a wholly susceptible population. We can establish the lower and upper bounds 

for the invasion reproduction number .

Proposition 4.3

Assume that E1 exists, or equivalently, ℛ10 > 1. Then the following statements are valid:

i.  if and only if β2 > β12 + β02;

ii.  if and only if β2 < β12 + β02;
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iii.  if and only if β2 = β12 + β02.

Proof—  has the same sign as β2 − β12 − β02. In fact, we can rewrite  as

If G ≡ 2β2A2 + (ρ2 + μ)A1 ≥ 0, then  is equivalent to

If G < 0, then G = (ρ2 + μ)(G0 + (β2 − β12 − β02)G1) where

Note that G0 > 0 and G1 > 0 when ℛ10 > 1. If β2 ≥ β12 + β02 then G > 0, a contradiction.

On the other hand,  is equivalent to

This completes the proof.

Therefore, it is possible that  as β2 < β12 + β02. Moreover, we will show that the 

second disease may be able to invade in the presence of the first disease even if it cannot 

persist alone. That is, the presence of the first disease promotes persistence of the second 

disease. Similar to the model in Martcheva and Pilyugin [35], we can obtain the following 

result about the consequence of competition.

Proposition 4.4

For system (2.1), if ℛ̃10 ≤ 1 or ℛ2̃0 ≤ 1 and ℛ10 ≤ 1, ℛ20 ≤ 1, then both diseases go extinct 
and the disease-free equilibrium is globally stable; if max{ℛ10, ℛ̃

10} ≤ 1 (or max{ℛ20, 

ℛ̃
20} ≤ 1) then disease 1 (or 2) goes extinct; if min{ℛ10, ℛ̃

10} > 1 (or min{ℛ20, ℛ̃
20} > 1) 

then disease 1 (or 2) persists.
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Proof—It follows from the second and fourth equations of system (2.1) that

and hence

By a simple comparison principle [53], we get

if I1(0) + I12(0) > 0.

Remark 4.5

A necessary condition for the existence of a coexistence equilibrium  is 

that max{ℛi0, ℛ̃
i0} > 1 for i = 1, 2. When E* exists, it satisfies

The above result indicates that the two diseases coexist whenever min{ℛi0, ℛ̃
i0} > 1, i = 1, 

2. By a similar argument to that of Theorem 2.5 in Gao and Ruan [18], we will show that it 

remains true under a weaker condition: , i ≠ j, i, j = 1, 2.

Theorem 4.6

For model (2.1), if
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(4.1)

then (2.1) admits at least one coexistence equilibrium and both diseases are uniformly 
persistent, i.e., there is a constant κ > 0 such that each solution φt(x0) ≡ (S(t), I1(t), I2(t), 
I12(t)) of system (2.1) with x0 ≡ (S(0), I1(0), I2(0), I12(0)) ∈ Ω0 ≡ {(S, I1, I2, I12) ∈ Ω : I1I2 > 

0 or I12 > 0} satisfies

Proof—Denote ∂Ω0 = Ω\Ω0 = {(S, I1, I2, I12) ∈ Ω : I1 = 0 or I2 = 0, I12 = 0}. It is sufficient 

to show that system (2.1) is uniformly persistent with respect to (Ω0, ∂Ω0). Obviously, ∂Ω0 is 

relatively closed in Ω. It is clear that Ω and Ω0 are positively invariant and system (2.1) is 

point dissipative.

Let M∂ = {x0 ∈ ∂Ω0 : φt(x0) ∈ ∂Ω0 for t ≥ 0}. Therefore, M∂ = ∂Ω0. The boundary equilibria 

E0, E1 and E2 are in M∂. Let Ws(Ei) be the stable manifold of Ei for i = 0, 1, 2. We will show 

that Ws(Ei) ∩ Ω0 = ∅ whenever (4.1) holds.

Define

It follows from ℛ10 > 1 that there is an ε0 > 0 such that  for ε ∈ [0, ε0]. Select η0 

small enough such that

We claim that  for x0 ∈ Ω0, where ‖ · ‖ is the Euclidean norm. 

Supposing not, then by translation, we have ‖φt(x0) − E0‖ ≤ η0 for all t ≥ 0 and hence

By a comparison theorem, I1(t) → ∞ as t → ∞; the contradiction establishes the result.

To show Ws(E1) ∩ Ω0 = ∅, we define
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Since s(F2 − V2) > 0 if and only if , there is an ε1 > 0 such that s(Mε) > 0 for ε ∈ [0, 

ε1]. Recall that (S̄, Ī1) = (1/ℛ10, 1 − 1/ℛ10). Choose η1 small enough such that

We claim that  for x0 ∈ Ω0. Supposing not, then again by 

translation, we have ‖φt(x0) − E1‖ ≤ η1 for all t ≥ 0 and hence

Notice that Mε1 has a positive eigenvalue s(Mε1) associated to a positive eigenvector. It 

follows from a comparison theorem that I2(t) → ∞ and I12(t) → ∞ as t → ∞, a 

contradiction.

Since Ws(E0) = {E0}, Ws(E1) = {(S, I1, I2, I12) ∈ Ω : I1 > 0, I2 = I12 = 0}, Ws(E2) = {(S, I1, 

I2, I12) ∈ Ω : I2 > 0, I1 = I12 = 0} and M∂ = Ws(E0)∪Ws(E1)∪Ws(E2), {E0}, {E1} and {E2} 

are isolated invariant sets and acyclic in M∂. By Theorem 4.6 in Thieme [57], system (2.1) is 

uniformly persistent with respect to (Ω0, ∂Ω0). Moreover, by Theorem 2.4 in Zhao [62], we 

know that system (2.1) has an equilibrium . It is easy to check that E* is 

a positive equilibrium of system (2.1).

Remark 4.7

Similarly, we can show the uniform persistence of both diseases and the existence of a 

coexistence equilibrium under the assumption ℛ10 > 1 and , or ℛ20 > 1 and 

. In this case, one disease goes extinct in the absence of the other and the 

presence of the other disease mediates the coexistence. Control strategies toward a reduction 

of both infections are favored.

A more detailed classification for the transmission dynamics of the coinfection model (2.1) 

based on its basic reproduction numbers and invasion reproduction numbers [35] is beyond 

the scope of current paper. For example, we are particularly interested in the local/global 

stability of the coexistence equilibrium under conditions in Theorem 4.6, but numerical 

examples in the next section show that an unstable coexistence equilibrium could present in 

case of backward bifurcation, bistability or a Hopf bifurcation. This suggests that it is hard 

to use the well-known Routh-Hurwitz criterion to determine the local stability of the 

coexistence equilibrium.
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5 Numerical Simulations

In this section, we illustrate, by numerical examples, possible phenomena the model of 

coinfection may exhibit.

Example 5.1. Competitive exclusion

Two diseases cannot coexist even if each one can persist independently. Parameter values: β1 

= 1.05, β2 = 2.5, ρ1 = 1, ρ2 = 0.8, μ = 0.02, β12 = 0.05, β10 = 0.2, β02 = 2. The respective 

basic reproduction numbers are ℛ10 = 1.0294 > 1 and ℛ20 = 3.0488 > 1. Figure 2 shows 

that the first disease goes extinct while the second persists. It provides a theoretically 

plausible treatment strategy for some pathogens: suppose that 1 < ℛ10 < ℛ20, β12 + β10 < 

β1 and β12 + β02 < β2; there is an effective way to treat pathogen 2, but not for pathogen 1. 

Here, one could in principle introduce pathogen 2 to eradicate pathogen 1.

Moreover, consider a scenario in which β1 = 2.9, β2 = 3, ρ1 = ρ2 = μ = 1, β12 = 0.5, β10 = 2, 

β02 = 0.1; we have ℛ10 = 1.45, ℛ20 = 1.5,  and . Thus, E1 is locally 

stable but E2 is unstable and there is no coexistence equilibrium. Interestingly, in this case 

the competitive exclusion principle still holds, but the disease with a higher reproduction 

number dies out while the other one persists (in contrast with [8]).

Example 5.2. Backward bifurcation

Assume that ℛ10 < 1 and ℛ20 < 1. If β12 + β10 > β1 and β12 + β02 > β2, then it is possible 

that both diseases become persistent. Parameter values: β1 = 0.9, β2 = 0.7, ρ1 = 1, ρ2 = 0.8, μ 

= 0.02, β10 = β02 = 0.6. A bifurcation diagram for model (2.1) shows that the endemic 

equilibrium value of I12 with respect to β12 is presented in Figure 3. In this setting, there is 

one stable coexistence equilibrium and one unstable coexistence equilibrium for β12 ∈ 
(1.256, 1.82). Biologically, this means that a small perturbation in model parameters or 

initial conditions may lead to a large difference in the dynamic behavior of the disease. The 

occurrence of backward bifurcation precludes, in general, the global stability of the disease-

free equilibrium as ℛ0 < 1. Note that backward bifurcation still exists even if there is no 

cotransmission (β12 = 0).

Example 5.3. Bistability (ℛ10 > 1, ℛ20 > 1,  and )

The two boundary equilibria E1 and E2 are locally stable, while the coexistence equilibrium 

E* is unstable. Parameter setting: β1 = 2.9, β2 = 3, ρ1 = ρ2 = μ = 1, β12 = 0.5, β10 = 0.3, β02 

= 0.05. Direct calculations yield the basic reproduction numbers ℛ10 = 1.45, ℛ20 = 1.5 and 

the invasion reproduction numbers . A bistability phenomenon is 

observed in Figure 4. The disease outcome depends on initial conditions and there exists a 

smooth surface separating the feasible region into two domains.

The occurrence of bistability also implies that the infection with a higher reproduction 

number is not necessarily the winner, so to speak, of the competition. In addition, there is no 

bistability phenomenon when the mortality rate μ is small enough (see Appendix B for a 

proof). Namely, if ℛ20 > max{ℛ10, 1}, then the second disease always persists as μ → 0.
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Example 5.4. Hopf bifurcation

The model can exhibit non-equilibrium dynamical behavior—periodic oscillations under 

certain conditions. Set β1 = 5, β2 = 0.2, ρ1 = ρ2 = 0, μ = 1, β12 = 0.805, β10 = 0 and β02 ∈ 

[70, 100]. It follows from ℛ10 = 5 > 1 > ℛ20 = 0.2 and  that both diseases are 

uniformly persistent and there is a coexistence equilibrium (see Remark 4.7). The Jacobian 

matrix at the coexistence equilibrium has a pair of complex eigenvalues with negative real 

parts as β02 ∈ [70, 84.74), a pair of purely imaginary eigenvalues as β02 ≈ 84.74, and a pair 

of complex eigenvalues with positive real parts as β02 ∈ (84.74, 100]. Therefore, the 

coexistence equilibrium loses its stability and a Hopf bifurcation appears (see Figure 5). For 

sufficiently small but nonzero ρ1, ρ2 and β10, the system still has a Hopf bifurcation.

6 Discussion

In this paper, we proposed a simple two-disease SIS coinfection model featuring 

simultaneous transmission of infection due to contacts with dually infected individuals, as 

well as superinfection leading to dual infection. In our model, there are four epidemiological 

classes: susceptible to both diseases, susceptible to disease 2 but infectious for disease 1, 

susceptible to disease 1 but infectious for disease 2, and infectious for both diseases. It is a 

simplified version of the two-disease three-strain model in Gao et al. [17] in which the first 

disease exhibits both drug sensitive and resistant strains. The cotransmission dynamics of 

two diseases modeled as a SIS process is of interest as a simplified model of, for instance, 

ocular chlamydia [33, 32, 34] and respiratory pneumococcal colonization [36]. In 

hyperendemic trachoma regions, both organisms are common and both are affected by 

trachoma control programs [24].

We considered the case for which the transmission of the first disease is completely 

unaffected by the presence of the second; that is, when coinfected people transmit infection 

to the same degree as singly infected people, disease dynamics are completely determined 

by the basic reproduction numbers of each. The two diseases coexist at an endemic level as 

long as they can persist independently. However, if the assumption does not hold, then we 

calculated the invasion reproduction number to measure the ability of one disease to invade 

the other at its steady state. The relation between the basic reproduction number and the 

invasion reproduction number was investigated, and sufficient conditions for the persistence 

of both diseases were obtained. Using numerical methods, more complicated dynamics 

including backward bifurcation, bistability and Hopf bifurcation were found. The disease 

with smaller reproduction number may be able to invade and competitively exclude the other 

disease even if there is no coexistence steady state. It is noteworthy that some of these 

dynamical behaviors have been observed in previous studies based on different models [7, 

35, 60, 61]. Our study provides some more advanced theoretical results on the stability and 

persistence of a reasonable coinfected model. The results throughout this paper for one 

disease also holds for the other due to the symmetry of the model. Note that some of our 

analytical results are applicable to models of coinfection by different parasites (e.g. [54, 4, 

3]) where there is no recovery (ρ1 = ρ2 = 0).
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It is well known that, for a simple SIS epidemic model, the disease goes extinct if the basic 

reproduction number is less than unity and persists at a unique endemic equilibrium 

otherwise. Our analysis shows that the disease dynamics become more complicated in the 

presence of a second disease. For instance, the presence of coinfection could mediate 

coexistence despite that fact that one or both diseases could not survive independently. 

Different types of interaction in dually infected hosts can yield different outcomes. These 

findings emphasize the importance of understanding the interactions among pathogens and 

developing a multi-disease approach in the treatment of coinfected patients.

A complete classification of the model studied here is not yet available. For example, we 

would like to know how to rigorously prove the existence of Hopf bifurcations and whether 

a Hopf bifurcation is impossible for small death rate. It will be interesting to analyze our 

model from the perspective of evolutionary epidemiology [45, 10, 3, 4]. The current model 

may be extended to other natural history models, such as the SEIR assumption, or include 

three or more agents/strains [61]. There may be partial cross-immunity or enhanced 

susceptibility to either of the two infections [28]. Coinfected patients may have more serious 

illness and take a longer time to recover. In general, treatment of one infection in a doubly 

infected person may affect the other infection directly or indirectly (e.g. [50, 25, 44, 51]). 

We will leave these for future consideration.
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Appendix

A. The equivalence between s(F2 − V2) < 0 and ℛ21<1

As we know, the boundary equilibrium E1 is locally asymptotically stable if and only if all 

eigenvalues of the Jacobian matrix F2 − V2 have negative real parts. This is also equivalent 

to  by Theorem 2 in van den Driessche and Watmough [58]. Here we provide a direct 

proof. For simplicity, we consider two matrices

satisfying a, b, c, d, h, i, j, k ≥ 0 and hk − ij > 0. The characteristic polynomial of the matrix 

F2 − V2 is

By the Routh-Hurwitz criterion, the spectral bound s(F2 − V2) < 0 if and only if
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(6.1a)

(6.1b)

Meanwhile, the characteristic polynomial of the matrix  is A2λ2 + A1λ + A0 = 0, 

where

Then  if and only if

(6.2a)

(6.2b)

Note that (6.1b) is the same as (6.2b). It suffices to show that (6.1) implies (6.2a) and (6.2) 

implies (6.1a), respectively.

It follows from (6.1) that h > a and k > d. Thus

On the other hand, suppose that h − a + k − d ≤ 0, then (6.1b) or (6.2b) implies that h < a and 

k < d. We obtain

a contradiction. The proof is complete.

B. The nonexistence of bistability for small μ

If ℛ20 > max{ℛ10, 1}, then the second disease always persists for sufficiently small μ. We 

only need to show the instability of the equilibrium E1 when it exists. In fact, E1 is locally 

asymptotically stable if and only if s(F2 −V2) < 0. The characteristic equation of F2 − V2 is 

β1λ2 + C1(β1)λ + C0(β1) = 0, where
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Here a2 = ρ2 + μ − β12 − β02, , and a0 = −(ρ1 + 

μ)(β2(ρ2 + μ − β12) − β02(ρ2 + μ)).

Thus, by the Routh-Hurwitz stability criterion, E1 is locally stable if C1 > 0 and C0 > 0. In 

particular, if β12 = 0 then E1 is locally stable if C0 > 0 (by Appendix A). For the instability 

of the equilibrium E1, It suffices to show that C0 < 0 in case of ℛ10 > 1 and β12 + β02 < ρ2 + 

μ by Remark 4.5. This follows from a2 > 0, a0 < 0, β1 < (ρ1 + μ)ℛ20 and

for small enough μ > 0.
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Figure 1. 
Flowchart of a two-disease coinfection model. S, I1, I2 and I12 represent the fractions of 

population infected with no infectious agent, the first agent, the second agent and both 

agents, respectively.
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Figure 2. 
Numerical solution of system (2.1) with initial condition (S(0), I1(0), I2(0), I12(0)) = (0.3, 

0.4, 0.2, 0.1). Red dotted line-I1, black dashed line-I2 and solid blue line-I12. Two infections 

cannot coexist even if each one can survive independently.
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Figure 3. 
Backward bifurcation arising from the change of β12. Blue solid line-stable, red dashed line-

unstable. Two diseases can coexist even if each one dies out independently.
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Figure 4. 
Numerical solutions of system (2.1) with initial conditions: (0.62, 0.25, 0.1, 0.03) and (0.62, 

0.1, 0.25, 0.03) (black dots). Bistability: the two boundary equilibria E1 = (20/29, 9/29, 0, 0) 

and E2 = (2/3, 0, 1/3, 0) (blue dots) are locally stable, and the coexistence equilibrium E* ≈ 
(0.701, 0.165, 0.096, 0.038) (red dot) is unstable.
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Figure 5. 
Hopf bifurcation-two diseases coexist in an oscillatory mode.
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