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Abstract

High-throughput sequencing of messenger RNA (RNA-seq) has become the standard method for 

measuring and comparing the levels of gene expression in a wide variety of species and 

conditions. RNA-seq experiments generate very large, complex data sets that demand fast, 

accurate, and flexible software to reduce the raw read data to comprehensible results. HISAT, 

StringTie, and Ballgown are free, open-source software tools for comprehensive analysis of RNA-

seq experiments. Together, they allow scientists to align reads to a genome, assemble transcripts 

including novel splice variants, compute the abundance of these transcripts in each sample, and 

compare experiments to identify differentially expressed genes and transcripts. This protocol 

describes all the steps necessary to process a large set of raw sequencing reads and create lists of 

gene transcripts, expression levels, and differentially expressed genes and transcripts. The 

protocol’s execution time depends on the computing resources, but typically takes under 45 

minutes of computer time.

Editor Summary

Pertea et al. describe a protocol to analyze RNA-seq data using HISAT, StringTie, and Ballgown 

(the “new Tuxedo” package). The protocol can be used for assembly of transcripts, quantification 

of gene expression levels and differential expression analysis.

*Corresponding author: salzberg@jhu.edu. 

Author contributions
M.P. led the development of the protocol, with help from all the authors. D.K. is the main developer of HISAT, M.P. led the 
development of StringTie, and J.T.L. is the senior author of Ballgown. G.P. developed gffcompare and contributed to StringTie. All 
authors contributed to the writing of the manuscript. S.L.S. supervised the entire project.

Competing financial interests
The authors declare that they have no competing financial interests.

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2017 March 01.

Published in final edited form as:
Nat Protoc. 2016 September ; 11(9): 1650–1667. doi:10.1038/nprot.2016.095.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

RNA-seq; transcriptome; gene expression; transcript assembly; splicing; sequence alignment

Introduction

RNA sequencing (RNA-seq) experiments capture the total messenger RNA from a collection 

of cells and then sequence that RNA in order to determine which genes were active, or 

expressed, in those cells. Using high-throughput sequencing machines, a single experiment 

can capture the expression levels of thousands of genes at once with high accuracy1–3. These 

experiments generate enormous numbers of raw sequencing reads, typically numbering in 

the tens of millions even for a modest-sized assay. The number of reads produced from each 

gene can be used as a measure of gene abundance, and with proper design RNA-seq can 

detect which genes are expressed at significantly different levels in two or more conditions. 

RNA-seq data can easily detect genes and gene variants that are not included in standard 

annotation, including noncoding RNA genes. With the appropriate software, RNA-seq can 

also be used to discover conditions in which distinct isoforms of a single gene are 

differentially regulated and expressed.

RNA-seq experiments must be analyzed with accurate, efficient software that is carefully 

designed to handle the very large sequencing volumes generated by most experiments. The 

analysis pipeline can be conceptually divided into four main tasks: (i) alignment of the reads 

to the genome; (ii) assembly of the alignments into full-length transcripts, (iii) quantification 

of the expression levels of each gene and transcript, and (iv) calculation of the differences in 

expression for all genes among the different experimental conditions. Some of us previously 

developed two software tools, TopHat25 and Cufflinks4, that together could accomplish all 

four of these tasks, as described in an earlier protocol6. Recently we have developed three 

new software tools that accomplish the same tasks while running much faster, using 

substantially less memory, and providing more accurate overall results. HISAT7 aligns RNA-

seq reads to a genome and discovers transcript splice sites, running far faster than TopHat2 

and requiring much less computer memory than other methods. StringTie8 assembles the 

alignments into full and partial transcripts, creating multiple isoforms as necessary, and 

estimates the expression levels of all genes and transcripts. Ballgown9 takes the transcripts 

and expression levels from StringTie and applies rigorous statistical methods to determine 

which transcripts are differentially expressed between two or more experiments. We describe 

here a protocol to use these tools for RNA-seq data analysis; Figure 1 shows the software 

used in this protocol and highlights the main steps performed by each tool. All the tools are 

fully documented on the web and actively maintained by the developers.

Overview of the protocol

RNA-seq experiments can be used to measure many phenomena. For simplicity, the protocol 

described here is intended to resemble experiments that will correspond closely to many 

users’ designs. We consider an experiment that compares two biological conditions, such as 

case versus control, wild type vs. mutant, or disease vs. normal comparisons. For each 
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condition we include 6 replicates, noting that 3 is the minimum number of replicates for 

valid statistical results. The software will support many other designs, including time-course 

experiments and comparisons among more than two conditions.

The data used in this protocol comprises human RNA-seq samples, although the protocol 

will work for any species with a sequenced genome, including mouse, rat, Drosophila, 

Arabidopsis, yeast, and many others. (Some program parameters may require adjustment to 

optimize the results for genomes with smaller intron sizes.) The data files are very large, as 

is often the case for high-throughput RNA-seq experiments; thus to make the protocol faster 

and simpler for novice users, we have extracted a subset of the reads mapping to human 

chromosome X, a relatively gene-rich chromosome that spans 151 megabases (Mb), about 

5% of the genome. The protocol describes the end-to-end analysis of these reads, but it will 

work equally well with the full data set, for which it will require significantly more 

computing time.

This protocol begins with raw RNA-seq reads collected from all samples, and produces 

several useful outputs, including lists of genes, transcripts, and expression levels for each 

sample, tables showing differentially expressed genes between the two conditions, and 

accompanying statistical measures of significance. First, reads from each sample are mapped 

to the reference genome with HISAT (Figure 1). The user can provide a file of annotated 

gene positions as an option, and HISAT will use that file but will also detect splice sites 

missing from the annotation. Next, the alignments are passed to StringTie for transcript 

assembly. StringTie assembles the genes for each data set separately, estimating the 

expression levels of each gene and each isoform as it assembles them. After assembling each 

sample, the full set of assemblies is passed to StringTie’s merge function, which merges 

together all the gene structures found in any of the samples. This step is required because 

transcripts in some of the samples might only be partially covered by reads, and as a 

consequence only partial versions of them will be assembled in the initial StringTie run. The 

merge step creates a set of transcripts that is consistent across all samples, so that the 

transcripts can be compared in subsequent steps. The merged transcripts are then fed back to 

StringTie one more time so that it can re-estimate the transcript abundances using the 

merged structures. The re-estimation uses the same algorithm as the original assembly, but 

reads may need to be re-allocated for transcripts whose structures were altered by the 

merging step. StringTie also provides additional read-count data for each transcript that are 

required by Ballgown. Finally, Ballgown takes all the transcripts and abundances from 

StringTie, groups them by experimental condition, and determines which genes and 

transcripts are differentially expressed between conditions. Ballgown includes plotting tools 

as part of the R/Bioconductor package that help to visualize the results.

This protocol does not require programming expertise, but it does assume familiarity with 

the Unix command line interface and the ability to run basic R scripts. Users should be 

comfortable running programs from the command line and editing text files in the Unix 

environment.
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Alternative analysis packages

HISAT, StringTie, and Ballgown provide a complete analysis package (the "new Tuxedo" 

package) that begins with raw read data and produces gene lists and expression levels for 

each RNA-seq sample as well as lists of differentially expressed genes for an overall 

experiment. Other RNA-seq analysis packages have been developed that can be used instead 

of or in combination with these tools, most notably the TopHat2 and Cufflinks systems (the 

original "Tuxedo" package). The alignment step requires a spliced alignment algorithm that 

allows reads to span introns and that does not require annotation, for which several 

alternative tools are available5, 11, 12. Alignments from these other tools could be used as 

input to StringTie. Alternative methods have been developed for the transcriptome assembly 

and quantification steps as well4, 13, 14. Several methods can reconstruct transcripts de novo, 

without the use of a reference genome15–17, a different problem from the one considered in 

this protocol. Other RNA-seq analysis programs can quantitate transcripts by using 

annotated, known genes10, 18, 19; by skipping the transcript assembly step these programs 

offer substantial speed advantages. We note that even for very well-studied organisms such 

as human, mouse, and fruit fly, the annotation of protein-coding genes, splice variants, and 

noncoding RNA genes is far from complete, and these alternative programs cannot report 

any novel transcripts or splice variants.

After all samples have been assembled, our protocol uses StringTie to merge the transcripts, 

but the cuffmerge program, part of the Cufflinks package, could be used instead. Finally, 

multiple tools for computing differential expression have been developed20–22, and these 

could be used as alternatives to Ballgown. The input requirements for some of these 

alternative programs vary, and may require data format conversion steps before they can be 

used with the programs included here. Such customization is beyond the scope of this 

protocol, and we recommend that users follow the protocol described below.

We also note that although the protocol presented here detects differentially expressed 

transcripts and genes, it is not designed to detect differential exon usage alone, a task that 

several other programs (DEXseq23, rMATS24, and MISO25) have been developed 

specifically to address.

Limitations of the protocol and software

HISAT, StringTie, and Ballgown are not the only methods for gene and transcript expression 

analysis from RNA-seq data, and they will not handle all RNA-seq experiments. For 

example, some RNA-seq experiments may require pre-processing of the raw RNA-seq data 

to remove contaminants, adapters, low-quality sequences, and other artifacts. This protocol 

does not include such pre-processing, but tools such as the FASTX toolkit (http://

hannonlab.cshl.edu/fastx_toolkit) and FastQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc) can help ensure that high-quality data is provided to the initial spliced 

alignment step. We also assume that RNA-seq data has been generated on an Illumina 

sequencing machine, but the much longer, high-error-rate reads from third-generation 

sequences such as those from Pacific Biosciences or Oxford Nanopore may require different 

software, especially for the alignment step.
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Ballgown can be used to load data from several assemblers including StringTie, Cufflinks4 

and RSEM10; however, other transcriptome assembly methods produce output that is not yet 

compatible with Ballgown. The methods are also primarily designed for use at the transcript 

level, although the Bioconductor object allows for the application of any Biconductor 

package for gene- or exon-level analysis. Note that the default parameters for Ballgown were 

created with the assumption that sample sizes would be modest, ranging from as few as 3 up 

to a few hundred. However, the parameters can be tuned to a wide range of specific cases 

should users seek to apply the software in ways other than that described in this protocol.

Experimental Design

Read alignment with HISAT

RNA-seq analysis begins by mapping reads against a reference genome to identify their 

genomic positions. This mapping information allows us to collect subsets of the reads 

corresponding to each gene, and then to assemble and quantify transcripts represented by 

those reads. Several very fast algorithms for aligning reads to a genome have been 

developed, of which Bowtie26, 27 and BWA28 are among the most widely used. Both of these 

methods use a data structure called the Burrows-Wheeler transform (BWT), which stores the 

reference genome in a highly compressed form. Through the use of a special indexing 

scheme called the Ferragina-Manzini (FM) index29, these programs can search a genome 

extremely rapidly, yielding alignment speeds measured in millions of reads per hour.

RNA-seq mappers need to solve an additional problem not encountered in DNA-only 

alignment: many RNA-seq reads will span introns. The RNA sequencing processing 

captures and sequences mature messenger RNA molecules, from which introns have been 

removed by splicing. Thus a single short read might align to two locations that are separated 

by 10,000 bp or more (the average human intron length is >6000 bp, and some introns are > 

1 Mbp in length). For a typical human RNA-seq data set using 100-bp reads, more than 35% 

of the reads will span multiple exons. Aligning these multi-exon spanning reads is a much 

more difficult task than aligning reads contained within one exon.

HISAT7 (Hierarchical Indexing for Spliced Alignment of Transcripts) employs two types of 

indexes for alignment: a global, whole-genome index and tens of thousands of small local 

indexes. Both indexes are constructed using the same BWT/FM index as Bowtie2, and the 

HISAT system even uses some of the Bowtie2 code. Thanks to its use of these efficient data 

structures and algorithms, HISAT generates spliced alignments several times faster than 

Bowtie and BWA while using only about twice as much memory. HISAT was designed as a 

successor to TopHat and TopHat2 (which were developed by some of the authors of this 

protocol) and has compatible outputs, but runs approximately 50 times faster. For alignment 

to the human genome, the index requires less than 8 gigabytes (GB) of memory, allowing it 

to run on a conventional desktop, and 20 human RNA-seq samples, with 100M reads per 

sample, should take in less than a day to process on one computer. For species with smaller 

genomes, memory and processing requirements will be correspondingly reduced. In this 

protocol, we use HISAT2, which incorporates algorithmic improvements that yield slightly 

higher accuracy than the original HISAT system.
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Alignments of RNA-seq data can be used to detect novel splice sites, transcription initiation 

sites, and transcription termination sites. Like TopHat, HISAT will detect all of these events 

if they are present in the data. Users can also provide gene annotations, which specify the 

location of known genes including all of their exon and intron boundaries. The use of high-

quality annotation may improve HISAT’s alignments in the vicinity of known genes, but this 

input is optional.

Transcript assembly and quantification with StringTie

Analysis of RNA-seq experiments requires accurate reconstructions of all the isoforms 

expressed from each gene as well as estimates of the relative abundance of those isoforms. 

Because annotation remains incomplete, even for the most intensively studied species such 

as humans, we cannot provide our programs with a complete list of all genes and all 

isoforms. Nonetheless, accurate quantification benefits from knowledge of precisely which 

reads originated from each isoform, which cannot be computed perfectly because reads are 

much shorter than transcripts. StringTie8 assembles transcripts from RNA-seq reads that 

have been aligned to the genome, first grouping the reads into distinct gene loci and then 

assembling each locus into as many isoforms as are needed to explain the data. StringTie 

uses a network flow algorithm that begins with the most highly-expressed transcript, which 

it assembles and quantitates simultaneously. It then removes the reads associated with that 

transcript and repeats the process, assembling more isoforms until all the reads are used, or 

else until the number of reads remaining is below the (user-adjustable) level of 

transcriptional noise.

StringTie’s network flow algorithm can re-construct transcripts more accurately than some 

previous methods because it computes abundance and exon-intron structure at the same 

time. The algorithm also has computational run-time efficiencies that allow it to run many 

times faster and to use much less memory than its predecessor, Cufflinks. Most RNA-seq 

runs can be processed by StringTie on a conventional desktop computer with as little as 8 

GB of RAM, and even large data sets run in under an hour.

Users have the option of providing StringTie with a file containing reference gene models; 

this annotation file contains a specification of the exon-intron structure for "known" genes 

along with names for those genes. If the user provides this annotation file, StringTie will use 

it as a guide to assembly, and it will also tag the genes it assembles with names from that 

file. Annotation can be helpful in the reconstruction of low-abundance genes, where the 

number of reads is too low to allow accurate assembly. Note that the annotation file is 

optional, and StringTie will assemble additional, unannotated genes as necessary to explain 

the data. After assembling transcripts with StringTie, a user can use the gffcompare utility 

(see Box 1 and Table 1) to determine how many assembled transcripts match annotated 

genes either fully or partially, and to compute how many are entirely novel. Alternatively, 

the users can skip the assembly of novel genes and transcripts, and use StringTie simply to 

quantify all the transcripts provided in an annotation file (see Figure 1).

In most experimental designs, including the protocol here, the experiment includes multiple 

RNA-seq samples. The genes and isoforms present in one sample are rarely identical to 

those present in all other samples, but they need to be assembled in a consistent manner so 
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that they can be compared. We address this problem by merging all assemblies together 

using StringTie’s merge function, which merges all the genes found in any of the samples. 

Thus a transcript that was missing an exon in one sample due to lack of coverage might be 

restored to its full length; see Figure 2 for an illustration of how merging can improve 

assemblies.

After the merging step, StringTie is then run one more time to re-estimate the abundances of 

the merged transcripts. The re-estimation step uses the same abundance estimation algorithm 

as in the initial steps.

Many if not all users of RNA-seq are interested in discovering differentially expressed 

genes, and many are focused on well-studied genes. Thus it might be tempting to use a 

method that relies entirely on annotation and cannot discover new genes and new isoforms, 

especially for well-studied species such as humans, mice, and fruit flies. However, the 

standard annotation files available for these species are likely missing thousands of isoforms 

as well as many genes. For example, a recent study30 used ribosome footprint profiling to 

validate 7,273 previously unannotated human genes, most of which were discovered when 

they ran StringTie on a very large set (2.8 billion reads) of RNA-seq data. StringTie 

automatically detects new genes and new isoforms if they are present in your experimental 

data, regardless of whether or not they appear in standard annotation files, and the protocol 

described here can discover differential expression affecting these genes.

Differential expression analysis with Ballgown

Exploratory analysis, visualization, and statistical modeling are the next steps after 

assembling and quantifying transcripts. The R programming language and the Bioconductor 

software suite host a comprehensive set of tools ranging from plotting raw data, to 

normalization, to downstream statistical modeling. Our pipeline uses the Ballgown package, 

which is designed to be a bridge between upstream command line software like HISAT and 

StringTie and the downstream functionality of the Bioconductor community.

StringTie is designed to produce a linked set of tables that can be directly read into R using 

functions in the Ballgown package. The resulting data in R includes information in three 

tables: (1) phenotype data – information about the samples being collected; (2) expression 
data – normalized and un-normalized measures of the amount each exon, junction, 

transcript, and gene expressed in each sample; and (3) genomic information – coordinates 

giving the location of the exons, introns, transcripts, and genes as well as annotation 

including information such as gene names.

Once the information has been read into the R session, analysis proceeds interactively. In 

other words, any package or function available in R and Bioconductor is available for use. 

Most differential expression analyses proceed along this path: (1) data visualization and 

inspection, (2) statistical tests for differential expression, (3) multiple test correction, and (4) 

downstream inspection and summarization of results. Ballgown provides functions for each 

of these steps that can be combined with other R commands when there are specific issues 

with data sets, as typically arise in RNA-seq analysis.
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The Ballgown portion of the protocol begins with loading the data into R. This requires 

loading the abundance data produced by StringTie and the phenotype information describing 

the samples. A critical step in the process is to ensure that the identifiers (IDs) from the 

genomic samples match the IDs from the phenotype data. Ballgown will produce an error if 

the samples do not appear to match. After loading the data, the next step is to inspect the 

distribution of abundance estimates for the transcripts. The abundance estimates (expressed 

as FPKM values, Fragments Per Kilobase of transcript per Million mapped reads) have 

already been library-size normalized, so any extreme differences in the overall distribution 

between samples should lead to concern that there has been a problem with that sample, the 

alignment, or the abundance estimation.

Differential expression analysis proceeds using a linear model. The FPKM values attached 

to transcripts are typically highly skewed; thus to stabilize the variance, Ballgown’s built-in 

functions apply a log transformation and then fit standard linear models that can be used to 

test for differential expression. Ballgown permits the analysis of both timecourse and fixed 

condition differential expression analyses. One common problem that arises in RNA-seq 

analysis is failure to account for confounders – variables such as batch effects – that are not 

of interest for the analysis but may affect the expression levels of genes. Using the Ballgown 

stattest function you can directly specify any known confounders. Ballgown allows you 

to perform your analysis at the gene, transcript, exon, or junction level. The result is a table 

with information on the feature tested for differential expression, the fold change between 

conditions if appropriate, the p-value, and the q-value for differential expression.

These results can then be used for further exploration with downstream gene set analysis 

software, visual inspection of significant results, or exporting of results to tables that can be 

shared and manually inspected using programs such as Excel.

MATERIALS

EQUIPMENT

• Data (example RNA-seq reads, indexes, and gene annotations for use in 

this protocol are available at ftp://ftp.ccb.jhu.edu/pub/RNAseq_protocol, 

see EQUIPMENT SETUP for details)

• HISAT2 software (http://ccb.jhu.edu/software/hisat2) or http://github.com/

infphilo/hisat2 (version 2.0.1 or later)

• StringTie software (http://ccb.jhu.edu/software/stringtie) or https://

github.com/gpertea/stringtie (version 1.2.2 or later)

• SAM tools (http://samtools.sourceforge.net) (version 0.1.19 or later)

• R (https://www.r-project.org) (version 3.2.2 or later)

• Hardware (64-bit computer running either Linux or Mac OS X (10.7 Lion 

or later); 4 GB of RAM (8 GB preferred); see EQUIPMENT SETUP)
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EQUIPMENT SETUP

CRITICAL The commands used in the protocol should all be run from the Unix shell 

prompt within a terminal window up to the differential expression analysis, which is 

performed in the R environment. We encourage users to create a single directory (e.g., 

"my_rnaseq_exp") in which to store all example data and files created by the analysis. All 

commands are described under the assumption that the user is working in this directory. The 

protocol also includes small sections of code to be run in the R statistical computing 

environment. Commands meant to be executed from the Unix shell (e.g., bash or csh) are 

prefixed with a ‘$’ character. Commands meant to be run from either an R script or at the R 

interactive shell are prefixed with a ‘>’ character.

Required data—The protocol is illustrated with an example experiment from chromosome 

X of Homo sapiens that you can analyze to familiarize yourself with the full suite of 

software. All of the data you will need is available in the file chrX_data.tar.gz, described 

below. To use HISAT2 and StringTie for gene expression analysis, you must be working 

with an organism whose genome has been sequenced. Both tools can also use an annotation 

file of genes and transcripts, although this is optional. HISAT2 requires an index for the 

genome, which is provided in the data download file. Pre-built indexes for multiple other 

species are available at the HISAT2 website. Box 2 provides instructions on how to create a 

HISAT2 index if one is not already available.

Downloading and organizing required data—Unpack the data (ftp://

ftp.ccb.jhu.edu/pub/RNAseq_protocol/chrX_data.tar.gz) and inspect the contents.

$ tar xvzf chrX_data.tar.gz

Assuming we stored the data at my_rnaseq_exp/, the package expands to contain a folder 

chrX_data/, which has the following structure: samples/ indexes/ genome/ genes/ (i.e., four 

directories).

The samples directory contains paired-end RNA-seq reads for 12 samples, with 6 samples 

from each of two populations, GBR (British from England) and YRI (Yoruba from Ibadan, 

Nigeria). For each population there are 3 samples each from male and female subjects (see 

Table 2 for the population and sex associated with each sample). All sequence is in 

compressed "fastq" format, which stores each read on 4 lines. Each sample in turn is 

contained in two files, one for read 1 and another for read 2 of each pair. Thus for example, 

sample ERR188245 is contained in files ERR188245_chrX_1.fastq.gz and 

ERR188245_chrX_2.fastq.gz, where each file contains 855,983 reads. Note that the original 

data files contain reads mapping to the entire genome rather than just chromosome X, and 

these files are approximately 25 times larger. The README file at ftp://ftp.ccb.jhu.edu/pub/

RNAseq_protocol contains instructions on how to download the full data sets for those who 

are interested. Note that HISAT2 also provides an option, called --sra-acc, to directly 

work with SRA data31 over the internet. This eliminates the need to manually download 

SRA reads and convert them into fasta/fastq format, without significantly affecting the run 
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time. For example, the following HISAT2 command will download and align one of the 12 

samples used in this protocol (ERR188245):

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran --sra-acc

ERR188245 –S ERR188245_chrX.sam

The indexes directory contains the HISAT2 indexes for chromosome X, including 

chrX_tran.1.ht2, chrX_tran.2.ht2, chrX_tran.3.ht2, chrX_tran.4.ht2, chrX_tran.5.ht2, 
chrX_tran.6.ht2, chrX_tran.7.ht2, and chrX_tran.8.ht2.

The genome directory contains one file, chrX.fa, the sequence of human chromosome X 

(GRCh38 build 81). Note that if you were using the full genome, this directory would 

contain a single file containing all the chromosomes. The genes directory contains one file, 

chrX.gtf, containing human gene annotations for GRCh38 from the RefSeq database.

The chrX_data directory also contains two more files: mergelist.txt and 

geuvadis_phenodata.csv. These files are text files that you need to run the protocol, as 

explained below. Normally you would create these yourself in a text editor, but we provide 

them here for use as examples.

Downloading and installing software—Create a directory to store all of the executable 

programs used in this protocol (if none already exists):

$ mkdir $HOME/bin

Add the above directory to your PATH environment variable:

$ export PATH=$HOME/bin:$PATH

To install the SAM tools, download them from http://samtools.sourceforge.net, unpack the 

SAMtools tarfile, and cd to the SAM tools source directory (the protocol will work with all 

versions of SAMtools starting with 0.1.19):

$ tar jxvf samtools-0.1.19.tar.bz2

$ cd samtools-0.1.19

$ make

$ cd ..

Copy the samtools binary to a directory in your PATH:

$ cp samtools-0.1.19/samtools $HOME/bin
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To install HISAT2, download the latest binary package from http://ccb.jhu.edu/software/

hisat2 or http://github.com/infphilo/hisat2, unpack the HISAT2 zip archive, and cd to the 

unpacked directory:

$ unzip hisat2-2.0.1-beta-OSX_x86_64.zip

Next, copy the HISAT2 executables to a directory in your PATH:

$ cp hisat2-2.0.1-beta/hisat2* hisat2-2.0.1-beta/*.py $HOME/bin

To install StringTie, download the latest binary package from http://ccb.jhu.edu/software/

stringtie, unpack the StringTie tarfile, and cd to the unpacked directory:

$ tar xvzf stringtie-1.2.2.OSX_x86_64.tar.gz

(Note that this instruction uses the Mac OS X executable. If you are using Linux, get this 

executable instead: stringtie-1.2.2.Linux_x86_64.tar.gz.) Next, copy the 

StringTie package’s executable files to some directory in your PATH:

$ cp stringtie-1.2.2.OSX_x86_64/stringtie $HOME/bin

StringTie can also be obtained from https://github.com/gpertea/stringtie.

To install gffcompare download the latest binary package from http://github.com/gpertea/

gffcompare, and follow the instructions provided in the README.md file.

To Install Ballgown, start an R session:

$ R

R version 3.2.2 (2015-08–14) -- "Fire Safety"

Copyright (C) 2015 The R Foundation for Statistical Computing

Platform: x86_64-apple-darwin13.4.0 (64-bit)

The R introductory message will end with a ">" prompt. Install the Ballgown packages and 

other dependencies in R as follows:

> install.packages("devtools",repos="http://cran.us.r-project.org")

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("alyssafrazee/RSkittleBrewer","ballgown",

"genefilter","dplyr","devtools"))
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Bioconductor Version 3.0 or greater and R version 3.1 are required to run this protocol.

PROCEDURE

Align the RNA-seq reads to the genome (TIMING: <20 m)—CRITICAL 
Supplementary Software includes a shell script and other dependent files that can be used to 

run all the steps this protocol. Also included is a README file that explains how to run the 

script. These files are also available from ftp://ftp.ccb.jhu.edu/pub/RNAseq_protocol.

1. Map the reads for each sample to the reference genome:

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188044_chrX_1.fastq.gz -2

chrX_data/samples/ERR188044_chrX_2.fastq.gz -S

ERR188044_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188104_chrX_1.fastq.gz -2

chrX_data/samples/ERR188104_chrX_2.fastq.gz -S

ERR188104_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188234_chrX_1.fastq.gz -2

chrX_data/samples/ERR188234_chrX_2.fastq.gz -S

ERR188234_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188245_chrX_1.fastq.gz -2

chrX_data/samples/ERR188245_chrX_2.fastq.gz -S

ERR188245_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188257_chrX_1.fastq.gz -2

chrX_data/samples/ERR188257_chrX_2.fastq.gz -S

ERR188257_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188273_chrX_1.fastq.gz -2

chrX_data/samples/ERR188273_chrX_2.fastq.gz -S

ERR188273_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188337_chrX_1.fastq.gz -2

chrX_data/samples/ERR188337_chrX_2.fastq.gz -S

ERR188337_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188383_chrX_1.fastq.gz -2

Supplementary Software: The supplement contains four files: (1) a Unix shell script that will run the entire protocol automatically; 
(2) a configuration file required by the shell script; (3) an R file containing the R commands that the script will run; and (4) a 
README file that describes how to download the required software packages, the chromosome X data, and how to configure and run 
the shell script.

Pertea et al. Page 12

Nat Protoc. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ftp://ftp.ccb.jhu.edu/pub/RNAseq_protocol


chrX_data/samples/ERR188383_chrX_2.fastq.gz -S

ERR188383_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188401_chrX_1.fastq.gz -2

chrX_data/samples/ERR188401_chrX_2.fastq.gz -S

ERR188401_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188428_chrX_1.fastq.gz -2

chrX_data/samples/ERR188428_chrX_2.fastq.gz -S

ERR188428_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR188454_chrX_1.fastq.gz -2

chrX_data/samples/ERR188454_chrX_2.fastq.gz -S

ERR188454_chrX.sam

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1

chrX_data/samples/ERR204916_chrX_1.fastq.gz -2

chrX_data/samples/ERR204916_chrX_2.fastq.gz -S

ERR204916_chrX.sam

2. Sort and convert the SAM files to BAM:

$ samtools sort -@ 8 -o ERR188044_chrX.bam ERR188044_chrX.sam

$ samtools sort -@ 8 -o ERR188104_chrX.bam ERR188104_chrX.sam

$ samtools sort -@ 8 -o ERR188234_chrX.bam ERR188234_chrX.sam

$ samtools sort -@ 8 -o ERR188245_chrX.bam ERR188245_chrX.sam

$ samtools sort -@ 8 -o ERR188257_chrX.bam ERR188257_chrX.sam

$ samtools sort -@ 8 -o ERR188273_chrX.bam ERR188273_chrX.sam

$ samtools sort -@ 8 -o ERR188337_chrX.bam ERR188337_chrX.sam

$ samtools sort -@ 8 -o ERR188383_chrX.bam ERR188383_chrX.sam

$ samtools sort -@ 8 -o ERR188401_chrX.bam ERR188401_chrX.sam

$ samtools sort -@ 8 -o ERR188428_chrX.bam ERR188428_chrX.sam

$ samtools sort -@ 8 -o ERR188454_chrX.bam ERR188454_chrX.sam

$ samtools sort -@ 8 -o ERR204916_chrX.bam ERR204916_chrX.sam

The above commands work with samtools version 1.3 or newer. For older versions of 

samtools the user should consult Box 3.

Assemble and quantify expressed genes and transcripts (TIMING: ~15 m)

3. Assemble transcripts for each sample:

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188044_chrX.gtf –l ERR188044 ERR188044_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188104_chrX.gtf –l ERR188104 ERR188104_chrX.bam
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$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188234_chrX.gtf –l ERR188234 ERR188234_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188245_chrX.gtf –l ERR188245 ERR188245_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188257_chrX.gtf –l ERR188257 ERR188257_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188273_chrX.gtf –l ERR188273 ERR188273_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188337_chrX.gtf –l ERR188337 ERR188337_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188383_chrX.gtf –l ERR188383 ERR188383_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188401_chrX.gtf –l ERR188401 ERR188401_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188428_chrX.gtf –l ERR188428 ERR188428_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR188454_chrX.gtf –l ERR188454 ERR188454_chrX.bam

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o

ERR204916_chrX.gtf –l ERR204916 ERR204916_chrX.bam

4. Merge transcripts from all samples:

$ stringtie --merge -p 8 -G chrX_data/genes/chrX.gtf -o

stringtie_merged.gtf chrX_data/mergelist.txt

?TROUBLESHOOTING

Here mergelist.txt is a text file that has the names of the GTF files created in the previous 

step, with each file name on a single line (see ChrX_data for an example file). If you do not 

run StringTie in the same directory where all the GTF files are, then you also need to include 

the full path in each GTF file name in mergelist.txt. Use any text editor to create or edit the 

(plaintext) mergelist.txt file.

5. Examine how the transcripts compare to the reference annotation (optional):

$ gffcompare –r chrX_data/genes/chrX.gtf –G –o merged

stringtie_merged.gtf

the –o option specifies the prefix to use for output files that gffcompare will 

create.

The command above will generate multiple files explained in the gffcompare 

documentation; see Box 1 for more details.

6. Estimate transcript abundances and create table counts for Ballgown:
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$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188044/ERR188044_chrX.gtf ERR188044_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188104/ERR188104_chrX.gtf ERR188104_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188234/ERR188234_chrX.gtf ERR188234_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188245/ERR188245_chrX.gtf ERR188245_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188257/ERR188257_chrX.gtf ERR188257_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188273/ERR188273_chrX.gtf ERR188273_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188337/ERR188337_chrX.gtf ERR188337_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188383/ERR188383_chrX.gtf ERR188383_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188401/ERR188401_chrX.gtf ERR188401_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188428/ERR188428_chrX.gtf ERR188428_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR188454/ERR188454_chrX.gtf ERR188454_chrX.bam

$ stringtie –e –B -p 8 -G stringtie_merged.gtf -o

ballgown/ERR204916/ERR204916_chrX.gtf ERR204916_chrX.bam

Run the differential expression analysis protocol (TIMING: ~5 m)

7. Load relevant R packages. These include the Ballgown package that you will 

use for performing most of the analyses but a few other packages that help with 

these analyses, specifically: RSkittleBrewer (for setting up colors), genefilter 

(for fast calculation of means and variances), dplyr (for sorting and arranging 

results), and devtools (for reproducibility and installing packages):

$ R

R version 3.2.2 (2015-08–14) -- "Fire Safety"

Copyright (C) 2015 The R Foundation for Statistical Computing

Platform: x86_64-apple-darwin13.4.0 (64-bit)

> library(ballgown)

> library(RSkittleBrewer)

> library(genefilter)

> library(dplyr)

> library(devtools)
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8. Load the phenotype data for the samples. An example file called 

geuvadis_phenodata.csv is included with the data files for this protocol 

(ChrX_data). In general, you will have to create this file yourself. It contains 

information about your RNA sequencing samples, formatted as illustrated in 

this csv (comma-separated values) file. Each sample should be described on 

one row of the file and each column should contain one variable. To read this 

file into R we use the command read.csv. In this file the values are 

separated by commas, but if the file were tabdelimited you could use the 

function read.table.

> pheno_data = read.csv("geuvadis_phenodata.csv")

?TROUBLESHOOTING

9. Read in the expression data that was calculated by StringTie. Ballgown also 

currently supports reading of data from Cufflinks6 and RSEM10. To do this we 

use the ballgown command with the following three parameters: the directory 

where the data are stored (dataDir, which here is named simply “ballgown”), 

a pattern that appears in the sample names (samplePattern), and the 

phenotypic information we loaded in the previous step (pData). Note that once 

a Ballgown object is created any other Bioconductor32 package can be applied 

for data analysis or data visualization. Here we present a standardized pipeline 

that can be used to perform standard differential expression analysis.

> bg_chrX = ballgown(dataDir = "ballgown", samplePattern = "ERR",

pData=pheno_data)

?TROUBLESHOOTING

10. Filter to remove low abundance genes. One common issue with RNA-seq data 

is that genes often have very few or zero counts. A common step is to filter out 

some of these. Another approach that has been used for gene expression 

analysis is to apply a variance filter. Here we remove all transcripts with a 

variance across samples less than one:

> bg_chrX_filt = subset(bg_chrX,"rowVars(texpr(bg_chrX)) >

1",genomesubset=TRUE)

11. Identify transcripts that show statistically significant differences between 

groups. One thing we might want to do is make sure we account for variation 

in expression due to other variables. As an example, we will look for 

transcripts differentially expressed between sexes, while correcting for any 

differences in expression due to the population variable. We can do this using 
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the stattest function from Ballgown. We set the getFC=TRUE parameter so 

we can look at the confounder-adjusted fold change between the two groups.

Note that Ballgown’s statistical test is a standard linear model based 

comparison. For small sample sizes (n < 4 per group) it is often better to 

perform regularization. This can be done using the limma33 package in 

Bioconductor. Other regularized methods such as DESeq23 and edgeR20 can be 

applied to gene or exon counts, but are not appropriate for direct application to 

FPKM abundance estimates. The statistical test uses a cumulative upper 

quartile normalization34.

> results_transcripts = stattest(bg_chrX_filt,

feature="transcript", covariate="sex", adjustvars =

c("population"), getFC=TRUE, meas="FPKM")

12. Identify genes that show statistically significant differences between groups. 

For this we can run the same function we used to identify differentially 

expressed transcripts, but here we set feature=“gene” in the stattest 

command:

> results_genes = stattest(bg_chrX_filt, feature="gene",

covariate="sex", adjustvars = c("population"), getFC=TRUE,

meas="FPKM")

13. Add gene names and gene IDs to the results_transcripts data frame:

> results_transcripts =

data.frame(geneNames=ballgown::geneNames(bg_chrX_filt),

geneIDs=ballgown::geneIDs(bg_chrX_filt), results_transcripts)

14. Sort the results from smallest p-value to largest:

> results_transcripts = arrange(results_transcripts,pval)

> results_genes = arrange(results_genes,pval)

15. Write the results to a CSV (comma-separated values) file that can be shared 

and distributed:

> write.csv(results_transcripts, "chrX_transcript_results.csv",

row.names=FALSE)

> write.csv(results_genes, "chrX_gene_results.csv",

row.names=FALSE)

16. Identify transcripts and genes with a q-value of less than 0.05:
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> subset(results_transcripts,results_transcripts$qval<0.05)

> subset(results_genes,results_genes$qval<0.05)

The Ballgown output will appear on the screen for each of these commands; 

we have shown the results below in Table 3 (transcripts) and Table 4 (genes). 

As shown in the tables, chromosome X has 9 transcripts that are differentially 

expressed between the sexes (using a q-value threshold of 0.05), three of which 

corresponding to isoforms of known genes (XIST, TSIX, and PNPLA4). At the 

gene level (Table 4), chromosome X has 10 differentially expressed genes at 

the same q-value cutoff.

?TROUBLESHOOTING

Data visualization (TIMING: variable)—CRITICAL You can use Ballgown to 

visualize RNA-seq results in a variety of ways. The plots produced by Ballgown make it 

easier to view and compare expression data, and some commands can generate publication-

ready figures.

17. Make the plots pretty. This step is optional, but if you do run it you will get the 

plots in the nice colors we used to generate our figures:

> tropical= c(‘darkorange’, ‘dodgerblue’, ‘hotpink’,

‘limegreen’, ‘yellow’)

> palette(tropical)

18. Show the distribution of gene abundances (measured as FPKM values) across 

samples, colored by sex (Figure 3). Ballgown stores a variety of measurements 

that can be compared and visualized. For this protocol we will compare the 

FPKM measurements for the transcripts, but you can also obtain measurements 

for each splice junction, exon, and gene in the data set. The first command 

below accesses the FPKM data. The plots will be easier to visualize if you first 

transform the FPKM data; here we use a log2 transformation that adds one to 

all FPKM values because log2(0) is undefined (second command below). The 

third command actually creates the plot:

> fpkm = texpr(bg_chrX,meas="FPKM")

> fpkm = log2(fpkm+1)

>

boxplot(fpkm,col=as.numeric(pheno_data$sex),las=2,ylab=‘log2(FPK

M+1)’)

19. Make plots of individual transcripts across samples. For example, here we 

show how to create a plot for the 12th transcript in the data set (Figure 4). The 

first two commands below show the name of the transcript (NM_012227), and 

the name of the gene that contains it (GTPBP6):
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> ballgown::transcriptNames(bg_chrX)[12]

##       12

## "NM_012227"

> ballgown::geneNames(bg_chrX)[12]

##       12

## "GTPBP6"

> plot(fpkm[12,] ~ pheno_data$sex, border=c(1,2),

main=paste(ballgown::geneNames(bg_chrX)[12],’ : ‘,

ballgown::transcriptNames(bg_chrX)[12]), pch=19, xlab="Sex",

ylab=‘log2(FPKM+1)’)

> points(fpkm[12,] ~ jitter(as.numeric(pheno_data$sex)),

col=as.numeric(pheno_data$sex))

20. Plot the structure and expression levels in a sample of all transcripts that share 

the same gene locus. For example, in Figure 5 we show all the transcripts from 

the gene that contains the first transcript, NR_001564, in Table 3. This is the 

1729th transcript in the ballgown object according to the id column in the table, 

and we can easily find the gene identifier of the transcript by using 

ballgown::geneIDs(bg_chrX)[1729]. This reveals that NR_001564 is an 

isoform of the gene XIST, which is known to be much more highly expressed 

in females than in males. We can see in Table 3 that other isoforms of this gene 

appear to be differentially expressed as well. We can plot their structure and 

expression levels by passing the gene name and the ballgown object to the 

plotTranscripts function. The plot shows one transcript on each row, 

colored by its FPKM level. By default the transcripts at that locus are colored 

by their expression levels in the first sample, but we can tell the 

plotTranscripts function what sample we are interested in – here we 

choose sample ERR188234:

> plotTranscripts(ballgown::geneIDs(bg_chrX)[1729], bg_chrX,

main=c(‘Gene XIST in sample ERR188234’), sample=c(‘ERR188234’))

21. We can also plot the average expression levels for all transcripts of a gene 

within different groups using the plotMeans function. We need to specify 

which gene to plot, which Ballgown object to use, and which variable to group 

by. As an example, the following command plots the second gene in Table 4, 

MSTRG.56.

> plotMeans(‘MSTRG.56’,

bg_chrX_filt,groupvar="sex",legend=FALSE)

TROUBLESHOOTING

Troubleshooting advice can be found in Table 5.
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TIMING

Running this protocol on the chrX data provided will take less than 1 h on a computer with 

eight processing cores and 4 GB of RAM. The most time-consuming steps are aligning the 

reads and assembling and quantifying the genes and transcripts. On the data provided, it 

takes Ballgown less than a minute to load the required files and generate the differentially 

expressed genes and transcripts. In contrast, it takes HISAT2 and StringTie about 13 minutes 

on an Intel i7–2600 desktop CPU at 3.4 GHz with 4 processing cores, and about 23 minutes 

on an AMD Opteron 6172 server at 2.1 GHz with 8 processing cores. Larger data sets will 

of course require more time and more memory. For instance, running this protocol on all 12 

samples in the full human data set (see ftp://ftp.ccb.jhu.edu/pub/RNAseq_protocol/

README for instructions on downloading the full set) on a machine with eight processor 

cores and at least 8 GB of RAM will require about 12.5 hours to align the reads, and less 

than 8 hours for transcript assembly and expression analyses.

ANTICIPATED RESULTS

RNA-seq alignments

Accurate transcript assembly and quantification is strongly correlated with the quality of the 

spliced read alignments. If a large percentage of the reads are not aligned, the transcriptome 

assembler will have a hard time reconstructing genes, especially those expressed at low 

levels. Thus the spliced aligner should have high sensitivity and precision. Mis-aligned reads 

also negatively influence the downstream assembly, especially those that incorrectly link 

together separate bundles of reads. These false positive alignments will disrupt the flow 

algorithm in StringTie, and skew the expression estimates of the assembled transcripts. To 

ensure a low rate of false positives, the alignment mode recommended in the HISAT2 step of 

this protocol requires longer "anchors" for the de novo discovery of splice sites. This leads to 

fewer alignments with short anchors, which helps StringTie (and other transcript assemblers) 

significantly improve its computational time and memory usage requirements.

Because we prepared the data for this protocol by aligning all reads in the initial data sets to 

the whole genome and then extracting only those reads that aligned to chromosome X and 

their mates, we expect a mapping rate close to 100% for the reads in our reduced data set. 

Table 6 shows the alignment rates for the full data set, which are comparable to what you 

might expect for typical RNA-seq experiments. Although in general more than 95% of the 

reads are aligned, a high percentage of them (>20%) are mapped in more than one place. 

Multi-mapped reads can severely affect the expression levels of genes, and the user should 

be very cautious when drawing conclusions about differentially expressed genes that contain 

a high percentage of multi-mapped reads35.

Transcriptome assembly

The annotation reference file we provide in this protocol contains 2098 transcripts from 

1086 genes on chromosome X. By running gffcompare (as shown in Step 6) on the GTF 

files produced by StringTie in Steps 3–4, we can collect summary statistics describing how 

the assembled transcripts compare to the annotation (Table 7). The number of annotated 

genes that are expressed varies across the samples, illustrating the tissue-specific nature of 
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gene expression. After assembling all the samples, we merge the gene and transcript models 

using the StringTie merge operation (Step 4 of our protocol).

When the annotation file is used during the merge step, the output will include all transcripts 

present in the annotation file, even those with expression levels of zero, as well as all novel 

transcripts. We recommend using the annotation file whenever it is available, because it 

helps StringTie assemble transcripts more accurately, especially those expressed at low 

levels. As shown in Table 7 (bottom rows), the number of transcripts matching the 

annotation increases substantially when annotation is provided. Table 7 also shows that in 

these data, there are nearly as many novel transcripts (isoforms) as known transcripts in each 

sample. Most of the transcriptome diversity is due to alternative splicing, and it is not 

unusual to observe that a large fraction of isoforms in an RNA-seq experiment are novel. 

Despite recent technological advances, the transcriptome landscape of many species, 

including human, is far from being completely known36, and it is quite plausible that most of 

these novel transcripts are genuine. In the absence of an experimental test for their validity, it 

is hard to determine which transcripts are real and which are assembly artifacts or 

transcriptional "noise."

Quantification and differential expression analysis

The assembly of RNA-seq reads reconstructs the exon-intron structure of genes and their 

isoforms, but we also need to estimate how much of each transcript was present in the 

original sample. Step 18 in the protocol shows how we can quickly inspect the distribution 

of the FPKM measurements of transcripts across samples, shown in Figure 3. For the 

samples used here, most of the log2(FPKM) values are less than 5, which suggest that only a 

small fraction of genes are expressed at very high levels. Genes expressed at lower levels are 

harder to assemble, which can lead to spurious genes and transcripts that show statistically 

significant differences between groups. Figure 6 shows the overall distribution of p-values 

that measure differential expression between males and females at both transcript and gene 

levels. We can see there is not a large difference between the sexes, but if there were, we 

would many p-values near zero. The figure also shows a spike near 0 in the distribution of 

gene-level p-values, suggesting (as expected) that we have better statistical power to detect 

differential expression between genes rather than transcripts. As shown in Table 3 and Table 

4, for this data you should find in 9 transcripts and 10 genes whose differential expression 

has a q-value less than 0.05 (which is admittedly an arbitrary cutoff).

Looking at the transcripts in Table 3 that correspond to known genes, all of them are known 

to be differentially expressed between males and females. In females the XIST gene is 

expressed exclusively from the inactive X chromosome, and is essential for the initiation and 

spread of X inactivation, an early developmental process that transcriptionally silences one 

of the pair of X chromosomes 37. TSIX is a non-coding RNA gene that binds XIST during X 

chromosome inactivation 38. PNPLA4 has been previously shown to have higher expression 

in females versus males 39.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1: Comparing a set of transcripts to a known gene list

Comparing lists of genes and transcripts requires first that the lists are in the same format. 

Many bioinformatics programs utilize GFF (gene finding format) to represent genes and 

transcripts. GFF is a simple tab-delimited text format that describes the locations and the 

attributes of genes, transcripts, exons, and introns on a genome. StringTie uses Gene 

Transfer Format (GTF), a special version of GFF that contains some additional data types 

(see http://www.ensembl.org/info/website/upload/gff.html for details).

We have developed the gffcompare utility (available from http://ccb.jhu.edu/software/

stringtie/gff.shtml or http://github.com/gpertea/gffcompare) to compare one or more GTF 

files produced by StringTie to a reference annotation file in either GFF or GTF. 

Assuming that StringTie’s output is in transcripts.gtf and the reference annotation 

file is chrX.gtf, the gffcompare program can be run using the following command:

$ gffcompare –G –r chrX.gtf transcripts.gtf

The –r option is followed by the annotation file to use as reference, and the –G option 

tells gffcompare to compare all transcripts in the input transcripts.gtf file, even 

those that might be redundant.

The gffcompare program is based on the CuffCompare utility, which is part of the 

Cufflinks/Tuxedo suite4, and many of the usage options and outputs documented in the 

CuffCompare manual (http://cole-trapnell-lab.github.io/cufflinks/cuffcompare) apply to 

the gffcompare program as well. All files generated by gffcompare will have the 

prefix gffcmp unless the user chooses a different prefix with the –o option. When used 

as shown above gffcompare produces an output file, called gffcmp.annotated.gtf, 

which adds to each transcript a "class code" (described in Table 1) and the name of the 

transcript from the reference annotation file. This allows the user to quickly check how 

the predicted transcripts relate to an annotation file. The gffcompare command shown 

here will also compute sensitivity and precision statistics for different gene features (e.g., 

exons, introns, transcripts, and genes) in the gffcmp.stats output file. Sensitivity is 

defined as the proportion of genes from the annotation that are correctly reconstructed, 

while precision (also known as positive predictive value) captures the proportion of the 

output that overlaps the annotation. Thus both these measures are relative to the input 

annotation and might not fully capture the true accuracy of the assembled genes and 

transcripts. The gffcmp.stats file also contains several other measures such as the total 

number of novel exons, introns, or genes contained in the StringTie output.
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Box 2: Creating a HISAT2 index

Pre-built HISAT2 indices for the human genome and many model organisms can be 

downloaded from the HISAT website. If the required index is not available there, a user 

may have to build a custom index. Here we describe how to build this index for human 

chromosome X; to build it for another genome, replace the genome file chrX.fa and the 

annotation file chrX.gtf with files corresponding to that genome and its annotation.

First, using the python scripts included in the HISAT2 package, extract splice site and 

exon information from the gene annotation file:

$ extract_splice_sites.py chrX_data/genes/chrX.gtf > chrX.ss

$ extract_exons.py chrX_data/genes/chrX.gtf > chrX.exon

Second, build a HISAT2 index:

$ hisat2-build --ss chrX.ss --exon chrX.exon

chrX_data/genome/chrX.fachrX_tran

The --ss and --exon options can be omitted in the command above if annotation is not 

available.

Note that the index-building step requires a larger amount of memory than the alignment 

step, and might not be possible on a desktop computer. For example, indexing requires 9 

GB of RAM for chromosome X, and 160 GB for the whole human genome. The amount 

of memory is much smaller if one omits annotation information. Indexing chromosome X 

using 1 CPU core takes less than 10 minutes. It should take ~2 hours to build an index for 

the whole human genome using 8 CPU cores.
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Box 3: Sorting and converting SAM files using samtools version 1.2.1 and 
older

Recent versions of samtools can convert SAM to BAM in a single step. For those using 

older versions, two steps are required, as shown here.

Convert SAM files to binary BAM files:

$ samtools view -bS ERR188044_chrX.sam > ERR188044_chrX_unsorted.bam

$ samtools view -bS ERR188104_chrX.sam > ERR188104_chrX_unsorted.bam

$ samtools view -bS ERR188234_chrX.sam > ERR188234_chrX_unsorted.bam

$ samtools view -bS ERR188245_chrX.sam > ERR188245_chrX_unsorted.bam

$ samtools view -bS ERR188257_chrX.sam > ERR188257_chrX_unsorted.bam

$ samtools view -bS ERR188273_chrX.sam > ERR188273_chrX_unsorted.bam

$ samtools view -bS ERR188337_chrX.sam > ERR188337_chrX_unsorted.bam

$ samtools view -bS ERR188383_chrX.sam > ERR188383_chrX_unsorted.bam

$ samtools view -bS ERR188401_chrX.sam > ERR188401_chrX_unsorted.bam

$ samtools view -bS ERR188428_chrX.sam > ERR188428_chrX_unsorted.bam

$ samtools view -bS ERR188454_chrX.sam > ERR188454_chrX_unsorted.bam

$ samtools view -bS ERR204916_chrX.sam > ERR204916_chrX_unsorted.bam

Sort the BAM files:

$ samtools sort -@ 8 ERR188044_chrX_unsorted.bam ERR188044_chrX

$ samtools sort -@ 8 ERR188104_chrX_unsorted.bam ERR188104_chrX

$ samtools sort -@ 8 ERR188234_chrX_unsorted.bam ERR188234_chrX

$ samtools sort -@ 8 ERR188245_chrX_unsorted.bam ERR188245_chrX

$ samtools sort -@ 8 ERR188257_chrX_unsorted.bam ERR188257_chrX

$ samtools sort -@ 8 ERR188273_chrX_unsorted.bam ERR188273_chrX

$ samtools sort -@ 8 ERR188337_chrX_unsorted.bam ERR188337_chrX

$ samtools sort -@ 8 ERR188383_chrX_unsorted.bam ERR188383_chrX

$ samtools sort -@ 8 ERR188401_chrX_unsorted.bam ERR188401_chrX

$ samtools sort -@ 8 ERR188428_chrX_unsorted.bam ERR188428_chrX

$ samtools sort -@ 8 ERR188454_chrX_unsorted.bam ERR188454_chrX

$ samtools sort -@ 8 ERR204916_chrX_unsorted.bam ERR204916_chrX

Optionally, the user might want to delete temporary files:

$ rm *.sam *unsorted.bam

Pertea et al. Page 26

Nat Protoc. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
An overview of the "new Tuxedo" protocol. In an experiment involving multiple RNA-seq 

data sets, reads are first mapped to the genome using HISAT (Steps 1–2). Annotation of 

reference genes and transcripts can be provided as input, but this is optional, as indicated by 

the dotted line. The alignments are then passed to StringTie (Step 3), which assembles and 

quantifies the transcripts in each sample. (In the alternative protocol, the alignments from 

Step 2 are passed directly to Step 6, skipping all assembly steps. Step 6 will then estimate 

abundance only for known, annotated transcripts.) After initial assembly, the assembled 
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transcripts are merged together (Step 4) by a special StringTie module, which creates a 

uniform set of transcripts for all samples. StringTie can use annotation in both of these steps, 

as shown by the dotted lines. The gffcompare program then compares the genes and 

transcripts to the annotation and reports statistics on this comparison (Step 5). In Step 6, 

StringTie processes the read alignments and either the merged transcripts or the reference 

annotation (through the diamond labeled "OR"). Using this input, StringTie re-estimates 

abundances where necessary and creates new transcript tables for input to Ballgown. 

Ballgown then compares all transcripts across conditions and produces tables and plots of 

differentially expressed genes and transcripts (Steps 7–21). Black and curved blue lines in 

the figure represent input to and output from the programs, respectively. Optional inputs are 

represented by dotted lines.
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Figure 2. 
Merging transcript assemblies using StringTie’s merge function. In this example, four partial 

assemblies from four different samples are merged into two transcripts A and B. Samples 1 

and 2 are both consistent with the reference annotation, which is used here to merge and 

extend them to create transcript A. Samples 3 and 4 are consistent with each other but not 

with the annotation, and these are merged to create transcript B.
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Figure 3. 
Distribution of FPKM values across the 12 samples. Samples from the same sex are shown 

in the same color: males in blue, and females in orange.
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Figure 4. 
FPKM distributions in males and females for transcript NM_012227 from gene GTPBP6 

(GTP Binding Protein 6), a gene that is known to be more highly expressed in males.

Pertea et al. Page 31

Nat Protoc. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Structure and expression levels of five distinct isoforms of the XIST gene in sample 

ERR188234. Expression levels are shown in varying shades of yellow. The third isoform is 

expressed at a much higher level than the others, as indicated by the darker color.
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Figure 6. 
Overall distribution of differential expression p-values in females and males. Frequencies of 

p-values are shown for (a) transcripts and (b) genes.
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Table 1

Class codes used to describe how assembled transcripts compare to reference annotation.

Class code Description

= Predicted transcript has exactly the same introns as the reference transcript.

c Predicted transcript is contained within the reference transcript.

j Predicted transcript is a potential novel isoform that shares at least one splice junction with a reference transcript.

e Single exon predicted transcript overlaps a reference exon plus at least 10 bp of a reference intron, indicating a possible pre-
mRNA fragment.

i Predicted transcript falls entirely within a reference intron.

o Exon of predicted transcript overlaps a reference transcript.

p Predicted transcript lies within 2 Kb of a reference transcript (possible polymerase run-on fragment).

r Predicted transcript has more than 50% of its bases overlapping a soft-masked (repetitive) reference sequence.

u Predicted transcript is intergenic in comparison to known reference transcripts.

x Exon of predicted transcript overlaps reference but lies on the opposite strand.

s Intron of predicted transcript overlaps a reference intron on the opposite strand.
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Table 2

Population and sex associated with each sample used in the protocol.

Sample ID Sex Population

ERR188245 female GBR

ERR188428 female GBR

ERR188337 female GBR

ERR188401 male GBR

ERR188257 male GBR

ERR188383 male GBR

ERR204916 female YRI

ERR188234 female YRI

ERR188273 female YRI

ERR188454 male YRI

ERR188104 male YRI

ERR188044 male YRI
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Table 4

Differentially expressed genes between sexes (q-val<5%). Fold change is defined as in Table 3.

gene id fold change p-val q-val

MSTRG.506 0.00267 6.8069e-11 6.7593e-08

MSTRG.56 0.54688 3.6604e-06 1.8174e-03

MSTRG.585 7.28272 6.9974e-06 2.3161e-03

MSTRG.505 0.08930 1.1660e-05 2.8948e-03

MSTRG.356 0.56441 1.7126e-05 3.4013e-03

MSTRG.592 9.14996 3.2120e-05 5.3159e-03

MSTRG.518 12.23489 4.3775e-05 6.2098e-03

MSTRG.492 0.65092 1.9811e-04 2.4590e-02

MSTRG.594 7.71803 2.2935e-04 2.5305e-02

MSTRG.788 1.74428 3.5797e-04 3.5547e-02
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Table 5

Troubleshooting advice.

Step Problem Possible reason Solution

4 StringTie reports
that it cannot open
the files in the input
mergelist.txt file

The GTF files specified
in mergelist.txt do not
exist, or you did not run
the merge step in the
same directory where
the GTF files were
created.

Either run StringTie in the same
directory as the input GTF files or edit
the mergelist.txt file to include the full
path to each GTF file name
description.

8 You get an error
message that the file
geuvadis_phenodata.csv
cannot be opened.

The directory where you
started your R session
does not contain the
phenotype data.

Before proceeding, you need to tell R
where all the files are. You can do this
with the setwd command. For
example if the directory containing the
chrX_data is your home directory,
then you would use the following R
command:
> setwd(“~/chrX_data”)
You can then run the getwd()
command to make sure that the
directory has been properly set.

9 The Ballgown
function results in an
error that the first
column of pData
does not match the
names of the folders
containing the
ballgown data.

The sample names you
have stored in your
phenotype file do not
match the file names of
the samples you ran
with StringTie.

To make sure that the file names
match the IDs in the phenotype file,
run the following R command:
> all(pheno_data$ids == 
list.files("ballgown"))
This command should return TRUE.

16 The transcripts and
genes you assembled
(shown in Table 3
and Table 4
respectively) have
different values for
the ‘gene id’ and
‘transcript name’
than what you see in
the protocol here.

The transcript and gene
identifiers assigned by
StringTie (by default
preceded by the string
‘MSTRG’) are
generated in the order
that the bundles of reads
are processed. This
order can differ from
one run of StringTie to
another when multiple
threads are used (with
the –p option).

This is not actually an error. If a
transcript matches a known, annotated
transcript, then the ‘transcript name’
will be consistent from run to run.
Otherwise this field can change when
you re-run the protocol.
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Table 6

Read mapping statistics on the full human data set.

Sample ID Uniquely aligned
reads (%)

Multi-mapped reads
(%)

Overall alignment
rate (%)

ERR188044 73.1 21.9 95.0

ERR188104 75.8 21.2 96.9

ERR188234 68.5 26.4 94.9

ERR188245 63.8 33.2 97.0

ERR188257 67.7 27.6 95.3

ERR188273 71.4 20.9 92.3

ERR188337 65.2 31.5 96.7

ERR188383 67.9 29.3 97.2

ERR188401 72.1 24.8 96.9

ERR188428 39.7 57.7 97.4

ERR188454 66.3 31.0 97.3

ERR204916 69.5 26.8 96.3
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Table 7
Transcriptome assembly statistics

Shown are the number of genes assembled from the RNA-seq reads for each of the 12 files, and the total 

number in the merged assembly with and without using the reference annotation. The total number of 

transcripts after merging with annotation (bottom row) includes only those transcripts that had non-zero 

expression levels. Also shown are the number of assembled genes and transcripts that are novel; i.e., that do 

not match any annotated genes.

Sample ID Number of
assembled genes

Novel genes Transcripts
matching
annotation

Novel
transcripts

ERR188044 808 288 675 615

ERR188104 793 294 651 630

ERR188234 838 322 656 659

ERR188245 677 196 579 470

ERR188257 706 228 614 504

ERR188273 631 177 536 406

ERR188337 852 343 668 660

ERR188383 707 225 608 497

ERR188401 794 287 653 624

ERR188428 631 173 588 414

ERR188454 745 241 622 547

ERR204916 761 265 643 564

Merged without annotation 908 382 661 1225

Merged with annotation 1258 414 1408 1257

Nat Protoc. Author manuscript; available in PMC 2017 March 01.


	Abstract
	Editor Summary
	Introduction
	Overview of the protocol
	Alternative analysis packages
	Limitations of the protocol and software
	Experimental Design
	Read alignment with HISAT
	Transcript assembly and quantification with StringTie
	Differential expression analysis with Ballgown

	MATERIALS
	EQUIPMENT
	EQUIPMENT SETUP
	Required data
	Downloading and organizing required data
	Downloading and installing software

	PROCEDURE
	Align the RNA-seq reads to the genome (TIMING: <20 m)
	Assemble and quantify expressed genes and transcripts (TIMING: ~15 m)
	Run the differential expression analysis protocol (TIMING: ~5 m)
	Data visualization (TIMING: variable)

	TIMING

	ANTICIPATED RESULTS
	RNA-seq alignments
	Transcriptome assembly
	Quantification and differential expression analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

