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Adaptive Deep Brain
Stimulation in a Freely
Moving Parkinsonian

Patient

The future of deep brain stimulation (DBS) for Parkinson’s
disease (PD) lies in new closed-loop systems that continuously
supply the implanted stimulator with new settings obtained
by analyzing a feedback signal related to the patient’s current
clinical condition.1 The most suitable feedback for PD is sub-
thalamic local field potential (LFP) activity recorded from the
stimulating electrode itself.2-4 This closed-loop technology
known as adaptive DBS (aDBS) recently proved superior to
conventional open-loop DBS (cDBS) in patients with PD.2

No studies have yet tested aDBS in freely moving humans
for a prolonged time. This information is an essential prereq-

uisite for developing new implantable aDBS devices for
chronic PD treatment.

In this single-case study, we tested whether a portable
DBS device we developed is suitable to compare the clinical
benefit in a freely moving PD patient induced by either
aDBS or cDBS. To do so, after a first experimental session
for extracting patient settings to personalize the aDBS algo-
rithm, we treated a blinded patient (51 y old, male, 8 y PD
history) with cDBS and aDBS in two separate experimental
sessions each lasting 120 min, 5 and 6 d, respectively, after
DBS electrode implant. To ensure reliable results, the patient
underwent repeated clinical assessments every 20 min (T1-
T5) by two independent blinded neurologists through Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) III subsec-
tions and Rush Dyskinesia Rating Scale (see Supplemental
Data for details).

The aDBS portable device we used was equipped with an ad
hoc algorithm that analyzed patient’s LFP beta band power
(13-17 Hz) and adapted voltage stimulation linearly each sec-
ond (Fig. 1A).

The patient during aDBS experienced a more stable con-
dition than during cDBS, with better control of symptoms
and dyskinesias over time (Fig. 1; video 1). In particular,
aDBS and cDBS improved patient’s axial symptoms to a
similar extent (Fig. 1B), but compared with cDBS, aDBS sig-
nificantly improved his main symptom, bradykinesia
(Fig. 1C). aDBS did not elicit side effects and was well
tolerated.

Because we evaluated the patient a few days after surgery
when he probably manifested a stunning effect,5 the aDBS-
and cDBS-induced improvements were lower than those
reported by others in follow-up DBS studies.6 A major clini-
cal achievement was that compared with cDBS, aDBS
greatly reduced the patient’s dyskinesias during gait and at
rest (Fig. 1B; Fig. 1D). Presumably it did so because we
designed the adaptive algorithm to avoid dyskinesias related
to hyperstimulation: when L-dopa reduced beta-band LFP
activity, the voltage linearly diminished, avoiding
hyperstimulation.
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Our results, besides corroborating findings reported by Lit-
tle and colleagues2 showing that aDBS promises to be more

efficient and effective than cDBS, expand them for two impor-

tant reasons. First, we tested aDBS for a longer observation

time than Little et al., and in a more ecological condition

(freely moving patient). Second, the personalized algorithm
continuously adapts stimulation settings according to LFP

beta changes, instead of providing an on–off strategy.
The aDBS device we used here can assess large patient

series in real clinical settings, testing different LFP-based

adaptive strategies other than those controlled by the beta

activity to find the frequency that is more suitable to reflect

patient clinical state.7

In conclusion, the approach and device we used proved
eligible for prolonged use in a freely moving parkinsonian
patient and disclosed new opportunities to study aDBS
during patients’ daily activities, providing new insights
into how this novel DBS strategy should improve patients’
quality of life. Although we await future studies to con-
firm our findings and to test other aDBS LFP-based algo-
rithms, our observation is a step toward developing a new

generation of implantable aDBS devices for chronic treat-
ment of PD.

Video legend

Video: The video shows a section of patient clinical assess-
ments performed 120 min after the experiment began (T5)

during standard DBS (cDBS) on the left and during adaptive
DBS (aDBS) on the right. Standard DBS was delivered at 2

V, 130 Hz, 60 ms; aDBS was delivered at a stimulation volt-
age that automatically changes according to the online LFP
beta recording analysis (voltage range, 0-2 V), 130 Hz, 60

ms. The video shows the patient during the execution of
items 29, 23, 24, and 31 of unified parkinson’s disease rat-

ing scale (UPDRS) III scale.
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FIG. 1. (A) Sample of aDBS functioning lasting 10 min. Upper panel, the local field potential (LFP) beta band (13-17 Hz) power and below the stimu-
lation voltage. The dotted line represents the time levodopa (L-dopa) took to achieve its clinical effect. The voltage delivered by aDBS followed the
beta-band changes: When L-dopa reduced beta-band LFP activity, the voltage linearly diminished. (B) Clinical results for axial symptoms and dyski-
nesias during gait. Mean Unified Parkinson’s Disease Rating Scale (UPDRS) III subsection (items 28, 29, 30) and mean Rush Dyskinesias Rating
Scale (DRS) (during gait) percentage score changes from baseline evaluated at T5 (120 min after the experiment began) for cDBS and aDBS.
Assessment at T5 showed that the patient’s axial symptoms improved to a similar extent after aDBS and cDBS, but dyskinesias during gait reduced
more during aDBS than during cDBS. (C) Clinical results for bradykinesia. Mean changes from baseline in the UPDRS III subsection (items 23, 24,
31) percentage score changes from baseline for the upper limb contralateral to the stimulation side for cDBS and aDBS from T1 to T5. The UPDRS
III subscore improved significantly more during aDBS than during cDBS (Wilcoxon matched pairs test; *P < 0.05). (D) Clinical results for dyskinesias
at rest. Mean Rush DRS (at rest) percentage score changes from baseline for cDBS and aDBS from T1 to T5. Except at T3, aDBS induced a lower
mean Rush DRS increase than cDBS (Wilcoxon matched pairs test; P > 0.05) (see Supplemental Data for data analysis details).
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Temporal Processing of
Perceived Body Movement

in Cervical Dystonia

Patients with idiopathic dystonia exhibit changes in the
cognitive processing of movement.1-3 We showed that
patients with writer’s cramp are less accurate than normal
subjects in temporally predicting perceived handwriting.4

Whether this is selectively linked to the body area affected
by dystonia or is a generalized cognitive feature of dystonia
remains unclear. We addressed this issue by applying the
same experimental paradigm to patients with focal cervical
dystonia (CD).

Fifteen patients with focal CD, aged 56.2 6 13.9 y and
treatment-free for at least 6 mo, and 15 age-matched healthy
subjects were recruited in the Department of Neuroscience,
University of Genoa. Patients’ disease duration was 9 6 6.5
y, and mean 6 standard deviation score on the Toronto
Western Spasmodic Torticollis Rating Scale was 14.3 6 4.8.
The experimental paradigm, previously published in Avan-
zino et al.,4 consisted of the perception on a screen of two

videos, one showing a right hand writing a sentence (target
task), and another showing a ball reaching a target (control
task). After a variable interval from its onset (6, 9, and 12
seconds), videos were darkened. Subjects were asked to indi-
cate when the perceived movement reached its end by click-
ing on the keyboard space-bar (Supplemental Data). The
timing error (Reproduced Interval – Dark Interval), the nor-
malized absolute timing error ([Timing Error/Dark Interval]
3 100), and the coefficient of variability (standard devia-
tion/mean of Reproduced Intervals) were measured and ana-
lyzed with a repeated-measures analysis of variance with the
factors GROUP, TASK, and DARK INTERVAL.

Repeated-measures analysis of variance showed a signifi-
cant GROUP*TASK interaction only for the normalized
absolute timing error (F[1,28] 5 5.85; P 5 0.022; Fig. 1). On
post hoc, this parameter was greater at all dark intervals
only in CD patients (P 5 0.006) and exclusively for the tar-
get task (P 5 0.024).

In both groups of subjects, consistently with what was
observed in our previous work,4 the ability to temporally
predict the end of the perceived movement was influenced
by the duration of the target interval and the type of motion.
Shorter dark intervals were associated with a tendency to
overestimate the duration of movement (F[2,56] 5 136.61;
P< 0.001), greater variability (F[2,56] 5 50.60, P< 0.001),
and greater absolute timing error (F[2,56] 5 26.06;
P< 0.001). Finally, a tendency to overestimate the duration
of movement was observed for the target task compared
with the control task (F[1,28] 5 6.38, P 5 0.017). Absolute
timing error did not correlate with disease severity (Spear-
man’s rho 5 –0.161; P 5 0.58) or duration (Spearman’s
rho 5 0.040; P 5 0.89).

Our findings suggest that the abnormal timing of visually
perceived human body motion is not exclusive to movements
topographically related to dystonia. Brain regions relevant to
the pathophysiology of dystonia, for example, sensorimotor
regions of premotor and parietal cortices and cerebellum,
modulate the spatiotemporal prediction of dynamic visual
stimuli, and could be involved in the detected abnormal-
ity.5,6 Despite the relatively small sample size, the lack of
correlation between timing performance and severity/dura-
tion of CD suggests that the observed abnormality may not
be a direct expression of the dystonia.

The selectivity of the timing abnormality might depend in
part on the difference in complexity between handwriting
and the inanimate object motion. However, if motion com-
plexity is the main determinant of implicit timing perform-
ance, timing error should decrease at the increase of task
complexity also in control subjects, but this was not
observed. This notwithstanding, future studies should
explore temporal processing of motion in dystonia, using
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