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Abstract

Semivarying models extend varying coefficient models by allowing some regression coefficients to 

be constant with respect to the underlying covariate(s). In this paper we develop a semivarying 

joint modelling framework for estimating the time-varying association between two intensively 

measured longitudinal response: a continuous one and a binary one. To overcome the major 

challenge of jointly modelling these responses, namely, the lack of a natural multivariate 

distribution, we introduce a Gaussian latent variable underlying the binary response. Then we 

decompose the model into two components: a marginal model for the continuous response, and a 

conditional model for the binary response given the continuous response. We develop a two-stage 

estimation procedure and discuss the asymptotic normality of the resulting estimators. We assess 

the finite-sample performance of our procedure using a simulation study, and we illustrate our 

method by analyzing binary and continuous responses from the Women’s Interagency HIV Study.
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1. INTRODUCTION

Analysis of longitudinal data can be challenging due to intra-subject dependence. When 

there are multiple responses and the association between those responses is of interest, it is 

common to model the responses jointly. In applications of joint modelling of longitudinal 

responses, two challenges may be encountered: (1) the responses may be of different types 

(such as binary and continuous), in which case no natural multivariate distribution exists, 

and (2) the data may exhibit a dynamic pattern that cannot be revealed by ordinary models. 

These issues imply the need for a general statistical procedure for analyzing longitudinal 

binary and continuous outcomes, a procedure that permits the association between the 
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responses to be time varying while accommodating two types of response–predictor 

relationships: time varying and time invariant. In this paper we propose such a procedure.

Various methods have been developed for modelling longitudinal binary and continuous 

responses jointly (Catalano and Ryan, 1992; Cox and Wermuth, 1992; Dunson, 2000; 

Fitzmaurice and Laird, 1995; Gueorguieva and Agresti, 2001; Kürüm et al., 2014; Liu et al., 

2009; Regan and Catalano, 1999; Sammel et al., 1997). The chief difficulty in developing 

these methods is that there is no natural multivariate distribution for such outcomes. One 

solution to this problem is to introduce a latent variable underlying the binary response, and 

assume that the continuous response and the latent variable are jointly normally distributed. 

This joint distribution is then decomposed in one of two ways: (1) a marginal distribution for 

the continuous response and a conditional distribution for the binary response given the 

continuous response, or (2) a marginal distribution for the binary response and a conditional 

distribution for the continuous response given the binary response.

Another solution to the aforementioned problem is the joint mixed-effects model 

(Gueorguieva, 2001; Gueorguieva and Agresti, 2001). In this model a random effect is 

assumed for each response, and the responses are associated through a joint distribution for 

the random effects. One disadvantage of this approach is that maximum likelihood 

estimation is possible only when strong assumptions are made (Verbeke et al., 2010). For 

instance, Roy and Lin (2000) assumed that the random effects are perfectly correlated. 

Moreover, a mixed-effects model may be confounded (Hodges and Reich, 2010), which may 

inflate the variance of fixed-effects estimators and thereby prevent the discovery of 

important response–predictor relationships.

In a longitudinal study the relationship between a response and predictors, or the association 

between the continuous and binary responses, may vary over time, and ordinary models 

cannot capture these dynamic patterns. For this reason, unlike the aforementioned joint 

modelling techniques, Kürüm et al. (2014) proposed time-varying coefficient models 

(Brumback and Rice, 1998; Hoover et al., 1998) for modelling longitudinal binary and 

continuous responses jointly. Their method allows all parameters, including association 

parameters, to be time varying. These nonparametric models relax the restrictive 

assumptions of parametric models and are very useful in exploring the hidden structure in a 

data set. A nonparametric approach may, however, lack power when the sample is small, in 

which case a semivarying model may be more appropriate, especially if the practitioner has 

reason to believe that some response–predictor relationships are time invariant.

In this paper we introduce a new joint modelling approach for intensively measured 

longitudinal binary and continuous outcomes. The goals of our approach are to (1) 

efficiently estimate the time-varying partial association between the responses conditional 

on predictors of interest, and to (2) reveal both time-varying and time-invariant response–

predictor relationships.

To achieve our goals, we employ semivarying coefficient models, which were studied by Fan 

and Huang (2005) for independent and identically distributed (iid) observations, and were 

extended to longitudinal data analysis by Fan et al. (2007). These models are extensions of 
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both partially linear models (Härdle et al., 2000) and time-varying coefficient models 

(Hastie and Tibshirani, 1993; Hoover et al., 1998). The major contribution of this work is 

that our proposed approach can explore the time-varying partial association between binary 

and continuous responses while allowing some of the response–predictor relationships to be 

time invariant, unlike the approach of Kürüm et al. (2014), which posits that all of these 

relationships are time-varying. To the best of our knowledge, semivarying coefficient models 

have not been applied for jointly modelling these types of responses in a longitudinal setting. 

This work will fill this gap in the literature.

We propose an estimation procedure for semivarying coefficient models for joint binary and 

continuous outcomes. We adopt the above mentioned latent variable approach and then 

factor the joint distribution into two components. This results in a two-stage estimation 

procedure. In the first stage we fit the marginal model of the continuous response by using 

estimation techniques for semivarying coefficient models. In the second stage we use 

generalized time-varying coefficient models (Cai et al., 2000) (for iid data) to fit the 

conditional model of the binary response given the continuous response. We use a 

simulation study to investigate the efficacy of our procedure.

The remainder of this paper is organized as follows. Section 2 introduces our joint model for 

longitudinal binary and continuous responses, and describes our two-stage estimation 

procedure. In this section, we also discuss the asymptotic behavior of our estimators. Section 

3 presents our simulation study. Section 4 illustrates our proposed methodology by 

analyzing data from the Women’s Interagency HIV Study. In Section 5 we make concluding 

remarks.

2. JOINT MODEL FOR BINARY AND CONTINUOUS RESPONSES

2.1. Model Specification

When the joint distribution of two continuous responses is of interest, it may be reasonable 

to assume that the responses are bivariate normal. There is no analogous joint distribution 

for the binary–continuous case, however. In order to overcome this challenge, we follow the 

well-known joint modelling approach described in Catalano and Ryan (1992). That is, we 

introduce a latent variable underlying the binary response, and assume that the continuous 

response and the latent variable are jointly normal. We then obtain the desired joint 

distribution using a two-component factorization: a marginal model for the continuous 

variable, and a conditional model for the binary variable given the continuous variable. The 

first component is readily available, and the second component is obtained using the 

normality of the latent variable along with the relationship defined between the latent 

variable and the binary response.

Before we describe our modelling scheme, let us introduce some notation. Suppose we have 

n independent subjects. For subject i, let Qi(t) and Wi(t) denote the binary and continuous 

responses, respectively, measured at time points t = tij, where j = 1, …, ni and ni is the 

number of observations for subject i. We denote the latent variable as Yi(t). Let xi(t) = 

(xi1(t), …, xip(t))T and zi(t) = (zi1(t), …, ziq(t))T be the vectors of predictors for subject i. To 

simplify our presentation, we use the same set of predictors for both the continuous response 
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and the latent variable, but our method can handle different predictors for the two responses, 

which we demonstrate in the data application.

Now, consider the bivariate semivarying coefficient model

(1)

where β• = (β•1, …, β•q)T and α•(t) = (α•1(t), …, α•p(t))T are the unknown regression 

coefficient vector and the nonparametric smooth baseline functions, respectively, and both 

εwi(t) and εyi(t) follow normal distributions with mean zero and time-varying variances 

 and , respectively. Let ρw(·, ·) and ρy(·, ·) be the correlations between two errors 

measured at different time points for εwi(·) and εyi(·), respectively. τ(t) = corr {εwi(t), εyi(t)} 

is the partial correlation between Wi(t) and Yi(t) given xi and zi. Thus, we refer to τ(t) as the 

partial association between the binary and continuous responses. The primary goal of this 

paper is to develop an accurate estimator of this association.

In our modelling scheme, the relation between the binary variable and the latent variable is 

defined as: Qi(t) = 1 if Yi(t) > 0, and Qi(t) = 0 if Yi(t) ≤ 0. Since Yi(t) follows a normal 

distribution, the binary response Qi(t) follows the probit model

(2)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

To obtain the joint distribution, we use the two-component decomposition with a marginal 

model for the continuous variable Wi(t), and a conditional model for Qi(t) given Wi(t):

The first component (the marginal model for the continuous response) was defined in (1). 

The second component (the conditional model for Qi(t) given Wi(t)) is derived using the 

conditional model for Yi(t) given Wi(t). Normal theory shows that the conditional 

distribution Yi(t) | Wi(t) follows a Gaussian distribution, and the mean of this conditional 

distribution depends on the error from the marginal model of the continuous response. 

Specifically,

(3)

where
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and

is the error from the marginal model of the continuous response. Combining (3) with the 

relation defined between the latent variable and the binary response leads to the model

(4)

Note that not all of the parameters in model (4) are estimable. For instance, it is not possible 

to estimate αy(t) and σy(t) separately, but the ratio  is identifiable. 

Moreover, we might expect practitioners be more interested in the relationship between the 

predictors and the binary response. Thus we reparameterize the probit model in (4) to arrive 

at a more parsimonious and fully estimable form:

(5)

where  and γ(t) = (γ1(t), …, γp+q(t))T. The conditional form above 

shows that the continuous response is linked with the binary response in a probit regression 

model that includes the error from the marginal model as a covariate.

Model (5) and the definition of μi(t) lead to

and, hence,

(6)

where b(t) = γp+q+1(t)σw(t). According to (6), the partial association τ(t) depends on the 

regression coefficient of the error term from the marginal model and on the variance of the 
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continuous response. The regression coefficient γp+q+1(t) and τ(t) share the same sign and 

are positively correlated.

2.2. Estimation Procedure

We propose a two-stage estimation procedure. Before presenting the details of our 

procedure, we give a brief sketch of both stages. In the first stage we fit a semivarying 

coefficient model (Fan and Huang, 2005; Fan et al., 2007) to the continuous response. At 

this stage we employ the profile least squares approach proposed by Fan et al. (2007) to 

obtain efficient estimators of the regression coefficients αw(t) and βw. In the second stage 

we use the residuals from the first stage and the predictors for the binary response, and fit a 

generalized varying coefficient model for the binary response given the continuous response. 

At this stage we obtain the components necessary to compute the estimate of τ(t).

Now we turn to the details for the first stage. Fan et al. (2007) suggest using the following 

formula to estimate the nonparametric smooth baseline functions in (1):

(7)

where Ip is the p × p identity matrix, 0p is the p × p matrix of zeros, Λ = (Λ1, …, Λn)T, Λi = 

((1, ti1 − t) ⊗ xi1, …, (1, tini − t) ⊗ xini), and κ is an N × N diagonal matrix with the kernel 

weights along its diagonal.

Substituting α̂w(t) in (1) and using weighted least squares yields

where  with Wi = (Wi(ti1), …, Wi(tini))
T, R is the 

working covariance matrix, and S is the smoothing matrix of the local linear smoother. Mis-

specification of the working covariance matrix affects only the efficiency, not the 

consistency, of this estimator, whereas the local linear estimator (7) is not significantly 

affected by the covariance structure since the data are localized in time (Fan et al., 2007). We 

demonstrate this result by using various covariance structures in our simulation study.

After we fit a semivarying coefficient model to the continuous response and obtain the 

residuals from this fit, we move to the second stage. In the second stage we fit a generalized 

time-varying coefficient model for the conditional model (5). Cai et al. (2000) introduced 

generalized varying coefficient models for independent and identically distributed data. We 

adapt these models to a longitudinal setting.

We start by locally approximating the functions in a neighbourhood of a fixed point t0 via 

the Taylor expansion:
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(8)

for r = 1, …, p + q + 1. Let  and . For subject i, 

let . We maximize the local likelihood

(9)

where g(·) is a link function, which is probit for our procedure, and h2 is the bandwidth for 

the second stage. We use an iterative regression algorithm to find the solution that satisfies ℓ′
(a*, b*) = 0, and the estimators are given by â* = γ̂(t0) = (γ̂1(t0), …, γp̂+q+1(t0))T. Details of 

this algorithm are presented in the supplementary material.

It is necessary to derive pointwise confidence intervals for the nonparametric components in 

both stages of the estimation procedure, and to do so we need estimates of the asymptotic 

covariance matrices. We encourage the reader to refer to the supplementary material for 

details on these estimators. The sampling properties of the estimators obtained in both stages 

are also discussed in the supplementary material.

Recall that our chief goal is to estimate the partial association τ(t0) between the continuous 

and binary responses. According to (6), to obtain τ̂(t0) we need to estimate γp+q+1(t0) and 

. The estimator of  gives us γ̂p+q+1(t0). To estimate  we propose using the 

kernel estimator

(10)

Plugging σ̂w(t0) and γ̂p+q+1(t0) into (6) gives the estimator for τ(t0). Based on the 

relationship between γp+q+1(t0) and τ(t0) defined in (6), the pointwise asymptotic 

confidence band for γp+q+1(t0) gives us information regarding the significance of the partial 

association τ(t0). Another way of determining the significance of the partial association is to 

use a nonparametric bootstrapping procedure. As we demonstrate in the data application, the 

bootstrap and asymptotic confidence bands agree closely.

For methods based on kernel smoothing, selecting a suitable bandwidth and kernel function 

are important. These issues are addressed in detail in the supplementary material.
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3. SIMULATED APPLICATION

In this section we demonstrate the performance of our proposed procedure via a Monte 

Carlo simulation study that mimics the data application presented in Section 4. For the 

simulation study we used the K0.1 bimodal kernel and a set of equidistant grid points {tk, k = 

1, …, ngrid} between 0 and 1 with ngrid = 200. We simulated 500 intensive longitudinal data 

sets. For the ith subject, the number of observations ni was randomly selected according to 

the discrete uniform distribution on [1, 8], and the measurement times Ti = (ti1, …, tini) were 

drawn from the standard uniform distribution. We used a sample size of n = 300.

Let xwi(t) = (1, xw1i(t))T, xyi(t) = (1, xy1i(t))T, zwi(t) = (zw1i(t), zw2i(t), zw3i(t))T, and zyi(t) = 

zy1i(t). We then generated the continuous and latent variables from the following models:

(11)

where αw(t) = (αw0(t), αw1(t))T = (sin(2πt), cos(2πt))T, βw = (βw1, βw2, βw3)T = (0.3, 0.15, 

−0.10)T, αy(t) = (αy0(t), αy1(t))T = (−0.2 sin(2π t), 1 + cos(2π t))T, βy = −0.05, and i = 1, 

…, 300. We simulated the predictors from the standard Gaussian distribution. Both εwi(t) 
and εyi(t) follow Gaussian distributions with mean zero and time-varying variance 0.4 + 0.4 

sin2(2πt). The correlations between two error terms measured at different time points are 

ρw(t1, t2) = 2−7|t1−t2| and ρy(t1, t2) = 5−7|t1−t2| for εwi(·) and εyi(·), respectively. The 

association between the binary and continuous responses measured at time t is τ(t) = 0.2 

+ 0.15 sin(2πt). The primary aim of our study was to demonstrate that we can accurately 

estimate this association.

In Section 2.1 the binary variable was defined as Qi(tij) = 1 if Yi(tij) > 0, and Qi(tij) = 0 if 

Yi(tij) ≤ 0. However, it is of interest to show that decreasing the percentage of successes in 

the binary response does not decrease the efficacy of our procedure. Hence, the relation 

between the latent variable and the binary variable was defined as Qi(tij) = 1 if Yi(tij) > 0.25, 

and Qi(tij) = 0 if Yi(tij) ≤ 0.25. Therefore, each of our 500 simulated data sets had 

approximately 40% failure.

In the first stage we fit a semivarying coefficient model to the marginal model of the 

continuous response. The estimation procedure requires that we choose a covariance 

structure. According to Fan et al. (2007), the performance of estimators for the parametric 

and nonparametric components should be similar no matter the chosen structure. To show 

that this result holds for our approach, we compared results for three covariance structures: 

the identity matrix, an ARMA(1, 1) structure, and the true within-subject covariance 

structure of the continuous response. The results were comparable, and so we present the 

results for the true covariance structure only.

We generated several pilot data sets and used the leave-one-out cross-validation bandwidth 

selector to obtain the optimal bandwidth. Figure 1 shows the results for h1 = 0.075: the 

bandwidth that minimized the cross-validation score. Our estimation procedure for the first 

stage performed well with respect to bias, as the biases are typically near zero. We used a 
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smaller bandwidth for variance estimation in order to obtain more accurate estimates. 

Specifically, we used h0 in O(n−1/4) since the asymptotically optimal bandwidth is in 

O(n−1/5). We see from the plots in Figure 1 that this bandwidth yielded accurate confidence 

intervals. We estimated parametric components βŵj (j = 1, 2, 3) with small biases and mean 

squared errors of (0.003, 0.001, 0.001) and (0.002, 0.003, 0.002), respectively.

In the second stage we fit a generalized time-varying coefficient model to the conditional 

model

where γ(t) = (γ1(t), γ2(t), γ3(t))T is the vector of varying coefficient functions, and 

 and  are the predictors 

and the residual, respectively, from the first stage, for subject i.

We once again used a pilot study to choose the optimal bandwidth. At this stage we obtain 

 at the optimal bandwidth (h2 = 0.15), and the kernel estimate of  at 

the optimal bandwidth for the first stage (h1 = 0.075). We then estimate τ(t) using (6). Figure 

2 shows the median estimated time-varying partial association based on 500 Monte Carlo 

simulation runs, along with the 2.5 and 97.5 percentiles based on 500 bootstrap samples. 

Judging from this plot, the median estimated time-varying association is close to the true 

association.

4. APPLICATION TO DATA FROM THE WOMEN’S INTERAGENCY HIV STUDY

We now illustrate our proposed joint modelling methodology via an analysis of data from 

the Women’s Interagency HIV Study (WIHS). The data are for 372 women recruited from 

HIV testing sites in Chicago, San Francisco, Los Angeles, New York City (Bronx and 

Brooklyn), and Washington, DC between 1994 and 1995. Participants were scheduled to 

have a semiannual interview at a WIHS site. During this interview, participants received 

physical and oral examinations, gave blood, urine, and gynecological specimens, and also 

answered a series of questions about their daily activities such as sexual behaviors, tobacco 

and alcohol use. We restricted our analysis to 292 HIV positive participants aged 25–55. 

26%, 45%, and 12% of these subjects self-identified as Latina or Hispanic, African-

American non-Hispanic origin, and white non-Hispanic origin, respectively. Among the 

participants, 66% were smokers, and by the end of the study 8.3% of the smokers quit 

smoking whereas 8.1% of the non-smokers started smoking. Our data set contains follow-up 

information on the participants until 2006. Since many participants missed some of their 

scheduled visits, the number of measurements and measurement times varies from subject to 

subject. The number of observations for each participant varies from one to eight.

Ferson et al. (1979), Galai et al. (1997), Halonen et al. (1982) and Hughes et al. (1985) 

demonstrated that cigarette smoking has effects on the immune system, but it is not yet clear 

whether any of these effects influence the progression of HIV to AIDS. Galai et al. (1997) 
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analyzed data from the Multicenter AIDS Cohort Study of homosexual men in order to 

investigate the effect of cigarette smoking on development of AIDS. They applied Kaplan–

Meier analysis and multivariate Cox regression models, and concluded that smoking was not 

significantly associated with progression to AIDS. Likewise, Burns et al. (1996) studied the 

association between cigarette smoking and HIV progression on a cohort of 3,221 HIV-

seropositive men and women enrolled in the Terry Beirn Community Programs for Clinical 

Research on AIDS. Using proportional hazards regression analysis, they found no 

association between smoking and the overall risk of HIV progression or death. On the other 

hand, Nieman et al. (1993) showed that in a case series of 84 individuals, smokers 

progressed to AIDS more rapidly than nonsmokers. They employed life tables and compared 

median time to develop AIDS for smokers and nonsmokers. Our main interest is to study the 

relationship between HIV progression (measured by CD4 cell percentage) and smoking 

status for the women who participated in the WIHS.

There are two important differences between our approach and the above mentioned 

methods. First, some of the previous analyses excluded subjects who changed their smoking 

behavior during the study. The drawback of this exclusion is that in a longitudinal study we 

expect behaviors to change over time, and the inability to take these changes into account 

may result in biased results. Second, we do not apply survival methods, since our data are 

not censored. In addition, we are interested in investigating the relationship between CD4 

cell percentage and smoking status throughout the study instead of defining a lifetime for a 

subject that ends when the subject progresses to AIDS.

Based on some preliminary analysis and findings in the HIV literature (Zeger and Diggle, 

1994; Obirikorang and Yeboah, 2009), we chose a set of predictors for each response. The 

predictors for CD4 cell percentage (the continuous response) were: baseline CD4 cell 

percentage (measured at the first visit), number of sexual partners, hematocrit value (the 

volume percentage of red cells in the blood), mean corpuscular volume (a measure of 

average red blood cell size), platelet count, and Center for Epidemiologic Studies 

Depression (CESD) scale score. For smoking status (the binary response), CESD scale score 

and race were used as predictors. All predictors except race are continuous variables, and 

they were centered. Note that the race variable initially had five levels: African American, 

white, Asian/Pacific Islander, native American/Alaskan native, and other. Since our data set 

had only two participants in each of the Asian/Pacific Islander and native American/Alaskan 

native categories, we recategorized race into three levels: African American, white, and 

other.

We began by determining whether a fully time-varying or a semivarying approach is 

appropriate for these data. To do so we fit the appropriate time-varying coefficient model to 

each of the continuous and binary responses. Since some of the effects appeared to be 

constant over time, we decided to proceed with a semivarying analysis. For the continuous 

response, we observed that the intercept and baseline CD4 cell percentage have time-varying 

effects, while the remaining effects are time invariant. For the binary response, CESD and 

the first dummy variable for race (RACE1), which is equal to 1 if a subject is African 

American, were time varying, while the second dummy variable for race (RACE2), which is 

equal to 1 if a subject is white, was time invariant.
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In our analysis the K0.1 bimodal kernel function was used in both stages. We applied the 

leave-one-out cross-validation method, and chose h1 = 29.5 and h2 = 36 as the bandwidths 

for the first and second stages, respectively.

In the first stage of our estimation procedure, we fit the following semivarying coefficient 

model to CD4 cell percentage:

where αw(t) = (αw0(t), αw1(t))T, βw = (βw1, βw2, βw3, βw4, βw5)T, xi(t) = (1, xi1(t))T with 

xi1(t) as the baseline CD4 cell percentage of subject i at the first visit, and zi(t) = (zi1(t), 
zi2(t), zi3(t), zi4(t), zi5(t))T with

zi1(t) : the number of sexual partners of subject i at time t,

zi2(t) : the hematocrit value of subject i at time t,

zi3(t) : the mean corpuscular volume of subject i at time t,

zi4(t) : the platelet count of subject i at time t,

zi5(t) : the CESD scale score of subject i at time t,

and t = tij the age of subject i at visit j.

The estimated time-varying functions in the first stage are depicted in Figure 3. The plot in 

panel (a) shows that the intercept function increases as age increases, and the confidence 

band suggests that the intercept function is time varying. From the plot in panel (b), we 

observe that the effect for baseline CD4 is time varying and decreases with age. 

Furthermore, the confidence intervals suggest that the effect is always significant and 

positive for ages between 25 and 55.

We next estimate the parametric component βw. Here we decided to use an ARMA(1, 1) 

correlation structure. Note that, as we would expect, using a working independence 

covariance matrix yielded similar results. The resulting estimates along with their 

corresponding 95% confidence intervals are displayed in Table 1. We see that all of the 

predictors except number of sexual partners are significantly associated with CD4 cell 

percentage for the WIHS data. The continuous response (CD4 cell percentage) has a positive 

relationship with the volume percentage of red cells in the blood (HCT), average red blood 

cell size (MCV), and the platelet count, and a negative relationship with CESD scale score.

After fitting the marginal model for the continuous response and obtaining the residuals for 

this fit, in the second stage of the estimation procedure we fit the conditional model for the 

binary response given the continuous response:
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where Qi(t) is the smoking status of subject i at time t, ewi(t) is the residual from the 

marginal fit of the continuous response, γ(t) = (γ1(t), …, γ4(t))T is the vector of regression 

coefficients, and  with

xi2(t) : the CESD scale score of subject i at time t,

xi3(t) : the first dummy variable for race (xi2(t) = 1 if subject i is African 

American),

zi6(t) : the second dummy variable for race (zi6(t) = 1 if subject i is white).

As mentioned in Section 2.1,  with b(t) = γp+q+1(t)σw(t), where 

is the variance of CD4 cell percentage at time t, and τ(t) is the partial association between 

CD4 cell percentage and smoking status at time t conditional on a set of predictors. We 

estimate σw(t) using kernel estimator (10) with bandwidth h = 29.5. To obtain a pointwise 

confidence band for τ(t), we generated 500 bootstrap samples by resampling from 

independent subjects.

Figure 4 (a) presents the estimated partial association τ̂(t) along with 2.5 and 97.5 

percentiles of the bootstrap samples. According to Figure 4 (a) we cannot conclude that the 

partial association between CD4 cell percentage and smoking status is time varying. 

However, we can conclude that the partial association is significant and negative for women 

between the ages of 29 and 46, i.e., for women enrolled in the WIHS, decreased CD4 cell 

percentage is partially associated with smoking. Based on the relationship between τ(t) and 

γ5(t), we can also investigate the significance of the partial association using the estimated 

confidence intervals for γ5(t). Figure 4 (b) depicts the estimated regression coefficient γ̂5(t) 
along with its confidence band. This plot shows a slightly wider significance region for the 

association: the association is significant for women aged between 26 and 52, 

approximately.

Smoking is associated with pulmonary complications, decreased adherence to highly active 

antiretroviral therapy (Feldman et al., 2006), and increased incidence of opportunistic 

infections (Arcavi and Benowitz, 2004; Crothers et al., 2005; Kohli et al., 2006) for HIV-

positive patients. Therefore, the results of our study and others suggest that successful 

smoking cessation programs are necessary for HIV patients in order to enhance the quality 

of life and make disease progression more manageable. A detailed review of existing 

smoking cessation techniques for HIV patients can be found in Niaura et al. (2012) along 

with ways to improve current research studies so that more effective cessation programs can 

be designed.

5. DISCUSSION

In this article we developed a new joint modelling approach for longitudinal binary and a 

continuous responses. In this approach the continuous response and the latent variable 

underlying the binary response are assumed to follow a semivarying coefficient model. We 

also proposed a two-stage estimation procedure based on local linear regression, and 

discussed the asymptotic normality of the resulting estimators in both stages. We 
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demonstrated that our procedure performs well for estimating the time-varying partial 

association between longitudinal binary and continuous responses. We also applied our 

methodology to a bivariate response (CD4 cell percentage and smoking status) from the 

Women’s Interagency HIV Study. We concluded that there is a significant negative partial 

association between CD4 cell percentage and smoking status for women aged 29–46.

It might seem restrictive that our modelling scheme only considers a semivarying coefficient 

model for the continuous response but not for the binary response. However, in order to have 

a semivarying model for the binary response in (2), one has to assume that the coefficient of 

zi(t) is proportional to the standard deviation function σy(t). Such an assumption seems to be 

unnatural. Thus, it is more natural to consider a varying-coefficient probit model for the 

binary variable. Note that, in practice, an association may exist between the binary and 

continuous outcomes measured at different time points. Ignoring this dependence does not 

affect the asymptotic behavior of the estimators (Lin and Carroll, 2001; Kürüm et al., 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results from the first stage of our simulation study. Each row shows three plots for a given 

time-varying parameter. The first plot shows the true function (solid) and the empirical bias 

of our estimator (dotted). The second plot shows the empirical pointwise 95% confidence 

band (solid) and the mean theoretical pointwise 95% confidence band (dotted). The third 

plot shows the desired coverage rate (solid) and the empirical pointwise coverage rates 

(dotted).
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Figure 2. 
Median estimated time-varying partial association (dashed) overlaying the true function 

(solid) along with 2.5 and 97.5 percentiles based on 500 bootstrap samples (dotted).
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Figure 3. 
The results of our data analysis for the continuous response, CD4 cell percentage. For each 

panel, the solid curve shows the estimate, the dashed curves show the estimated 95% 

pointwise confidence band, and the dotted line marks zero.
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Figure 4. 
(a) Estimated time-varying partial association and (b) estimated coefficient function for 

residuals. For each panel, the solid curve shows the estimate, the dotted line marks zero, and 

the dashed curves show the 2.5 and 97.5 percentiles of 500 bootstrap samples in (a) and the 

estimated 95% pointwise confidence band in (b).
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Table 1

Results for the first stage fit

Variable β̂ 95% CI

PART 0.044 (−0.056, 0.144)

HCT 0.120 (0.008, 0.232)

MCV 0.124 (0.075, 0.173)

PLAT 0.013 (0.007, 0.019)

CESD scale −0.126 (−0.163, −0.089)
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