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Abstract

Gene-environment (GXE) interactions play key roles in many complex diseases. An increasing
number of epidemiological studies have shown the combined effect of multiple environmental
exposures on disease risk. However, no appropriate statistical models have been developed to
conduct a rigorous assessment of such combined effects when GxE interactions are considered. In
this paper, we propose a partial linear varying multi-index coefficient model (PLVMICM) to
assess how multiple environmental factors act jointly to modify individual genetic risk on complex
disease. Our model includes the varying-index coefficient model as a special case, where discrete
variables are admitted as the linear part. Thus PLVMICM allows one to study nonlinear interaction
effects between genes and continuous environments as well as linear interactions between genes
and discrete environments, simultaneously. We derive a profile method to estimate parametric
parameters and a B-spline backfitted kernel method to estimate nonlinear interaction functions.
Consistency and asymptotic normality of the parametric and nonparametric estimates are
established under some regularity conditions. Hypothesis testing for the parametric coefficients
and nonparametric functions are conducted. Results show that the statistics for testing the
parametric coefficients and the non-parametric functions asymptotically follow a Xz-distribution
with different degrees of freedom. The utility of the method is demonstrated through extensive
simulations and a case study.
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1. Introduction

There has been great interest in identifying gene-environment (GXE) interaction in the
scientific literature. GXE interaction is defined as how genotypes influence phenotypes
differently under different environmental conditions (Falconer (1952)), a phenomenon also
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termed as genetic sensitivity to environmental stimulus. A growing number of reports have
confirmed the role of GXE interaction in many diseases, such as Parkinson disease (Ross and
Smith (2007)) and type 2 diabetes (Zimmet et al. (2001)). GXE interaction has traditionally
been pursued based on a single environment exposure model. Evidence from
epidemiological studies has clearly indicated that disease risk can be modified by
simultaneous exposure to multiple environmental factors, higher than what would be
expected from simple addition of the effects of factors acting alone (Carpenter et al. (2002);
Sexton and Hattis (2007)). Thus, assessing the combined effect of environmental mixtures
and the mechanism in which they, as a whole, interact with genes to affect disease risk could
shed novel insight into disease etiology. Suppose that Y'is the trait response of primary
interest. In many genetic studies, one collects a p-dimensional continuous covariate vector
X, and a g-dimensional discrete covariate vector Z. Motivated by an empirical analysis to
study GxE interaction, see Section 5, we propose a partial linear varying multi-index
coefficient model (PLVMICM):

L
Y=mo(6] X)+af Z+>_{m(B] X)Gi+eaf ZG }+e,
1=1 (1.1)

where Gy, /=1, ---,L are genetic variables (e.g., single nucleotide polymorphisms (SNPs)) of
interest, e is an error term with mean 0 and finite variance; m(:), /=0, 1, ---,L are unknown
index functions; ag, -, a; and By, -+, B, are parameters of interest, where the index
coefficients B, are the index loadings or the loading parameters. The SNP variable G,can be
coded as 2, 1, and O for genotype AA, Aa, and aa, assuming an additive model. Note that the

main genetic effect for each G;is captured by the function m,; (87 X) (1=1,-- - , L). Thus we
do not need to have a separate term to model the main genetic effect for each SNP. Model
(1.1) provides a unified model framework for many existing models used for studying G x £
interaction. Specifically, the model proposed in Ma et al. (2011) can be viewed as a special
case with p=1 (the dimension of 8), g= 0 (the dimension of a)), and L = 1. Model (1.1)
also include the semiparametric varying-index coefficient model proposed by Ma and Xu
(2015), studying GxE interaction, as a special case with Bo=8/=8,/=1,-,L, i.e,,
assuming the same index loading parameter. Our empirical analysis in the data example in
Section 5 clearly shows that this assumption is not realistic, making it necessary to allow
different loading parameters in the model.

Model (1.1) also includes many other existing models as special cases. It reduces to the
partial linear single-index model (Carroll et al. (1997); Xia and Li (1999); Xia and Hardle
(2006); Liang et al. (2010); Cui et al. (2011)), in which the discrete variable in the linear part
is admitted if all G;= 0; it reduces to VICM proposed by Ma and Song (2015) if Z = 0.

This paper aims to develop a set of statistical estimation and hypothesis procedures for
model (1.1). We employ a B-spline backfitted kernel smoothing (BSBK) procedure to
estimate the parametric parameters and the nonparametric functions (Wang and Yang
(2007)). We first develop a profile least squares method to estimate the index coefficients B,
and the linear coefficients a,; by approximating unknown function m(-) with B-spline basis
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functions. The parametric estimates can be shown to be /7/2-consistent and asymptotically
normal. We also obtain uniformly consistent estimators of the nonparametric functions.
Given the 7H2-consistent parametric estimators and the consistent estimators of the
nonparametric functions, the kernel estimators of nonparametric functions can be obtained
from which we establish the asymptotic normality.

Under model (1.1), it is natural to ask whether there is an interaction between discrete/
continuous environments and genes, and whether the interaction with the combined
environmental exposures is linear or nonlinear. Cai et al. (2000) studied the nonparametric
testing problem for varying coefficient models based on the generalized likelihood ratio test.
Nonparametric inferences for additive models were previously discussed by employing the
generalized likelihood ratio (GLR) statistic (Fan and Jiang (2005)). We propose a parametric
likelihood ratio test to test for the linear interaction term and a nonparametric GLR test to
test for the nonparametric interaction functions (Fan et al. (2001)). We further show that the
proposed nonparametric GLR statistic is asymptotically ;(2. We conduct rigorous theoretical
evaluation of the proposed estimators and test statistics and show the utility of the model
through extensive simulations and a case study.

The paper is organized as follows. In Section 2.2, we formulate the model and describe the
BSBK procedure and the parametric estimators for the continuous and discrete parts based
on a profile least squares method. The nonparametric kernel estimators for index functions
are given in Section 2.3. The consistency and normality of parametric and nonparametric
estimators are given in Section 2.4. Section 3 gives the parametric likelihood ratio statistic
and several nonparametric GLR statistics, as well as their theoretical properties. In Section
4, we report on simulation studies that illustrate the finite sample performance of the
proposed estimators and test statistics. In Section 5 we show the utility of the method by
applying it to a baby birthweight data set. Some concluding remarks are given in Section 6.
The proofs of the main results are relegated to the Appendix.

2. Estimation Procedures

2.1. Estimation Procedures

We focus on the situation with L = 1 for ease of presentation, and rewrite (1.1) as
Y=mq (B3 X)+ag Z+mi (8] X)G+ai ZG+e. (2.1)

The proposed procedure for model (2.1) can be easily extend to model (1.1) with multiple
G'’s (i.e., multiple SNPs), and it is still more general than the existing ones used for GXE
interaction. It is motivated by a recent genome-wide association study to identify genetic
risk factors interacting with maternal uterine environments to increase the risk of low and
high birth weight (HAPO Study Cooperative Research Group (2009)). The underlying
hypothesis is that the variation of birth weight can be explained by complex GxE
interactions in the context of the maternal-fetal unit. As a fetus resides inside its mother’s
womb, there is intensive signalling and chemical exchanges between the two. The effects of
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fetal genes could be modified by simultaneous exposure to multiple stimuli from the
mother’s side such as mother’s glucose level and blood pressure. For continuously measured
environmental variables, we propose to model the joint effect of environment variables as a
whole through an unknown index function /m(-). The index function can be linear or
nonlinear. That is determined by the data, with flexibility to capture the underlying
mechanism of environmental mixtures modifying genetic influences on disease risk. For
such discrete environmental variables as smoking status and family disease history, their
interaction effects with genes can be modeled through a parametric function.

The motivation for assessing nonlinear GXE interaction in complex disease has been
discussed extensively in Ma et al. (2011) and Wu and Cui (2013). The model for testing
nonlinear GXE interactions in Ma et al. (2011) can be viewed as a special case of (2.1) with
p =1 (the dimension of 8) and g = 0 (the dimension of a,). We assume the index loading
parameters By and B to be different; this differs from the single index model assuming
common loading parameters for different index functions proposed by Xia and Li (1999). Li
et al. (2010) studied the generalized functional linear models with semi-parametric single
index interaction, but did not allow dissimilar loading parameters in different index
functions. Although the varying-index coefficient model (VICM) proposed by Ma and Song
(2015) could consider the joint interaction of multiple environments with genes, it does not
admit discrete variables Z. Such discrete environmental variables are common in GXE
studies and the inclusion of these variables is crucial to assess the discrete GXE interactions,
as implemented in most partial linear single index models (Carroll et al. (1997); Xia and Li
(1999); Xia and Hardle (2006);Liang et al. (2010)). Nevertheless, including both parametric
and nonparametric terms into the same model poses computational and theoretical
challenges. As discussed earlier, our model differs from that proposed by Ma and Xu (2015)
in which they assumed the same loading parameters for different index functions. This
assumption is too strong in reality, the modulation effect of environmental variables may
differ from gene to gene. Our data analysis results in Section 5 indicate that such an
assumption is invalid there. Theoretical and practical considerations thus motivate us to
consider a more flexible model that can incorporate both linear and nonlinear interactions,
and without too many assumptions on the model parameters, as in (2.1).

2.2. Parameter estimation

Consider the PLVMICM model given in (2.1). Let 6= (a’, )7, where a=(af,aT)" and

ﬂ:(ﬂOT,ﬂlT)T. LetV;=(X;Z;G), i=1,+, n, be the observations, and ®, and 8 3 be the
parameter spaces for a and g, respectively. In this section, we derive the detailed estimation
procedure employing the BSBK method proposed by Wang and Yang (2007). Let &, be the
space of B-spline basis functions of order r(r= 2) (de Boor (2001)) with the B-spline basis
BAY) = (Bs[u) :1<s< )7, u€ [a b, where J,= N+ rand N'= N, is the number of
interior knots for a knot sequence £ ==0= &, <&pu1 < <Eup, <1 =Epppr ==
Enjr2rin Which A increases along with the sample size 7. Then m{u) with

w=uy(B;)=B} X, /=0, 1, can be approximated by a spline function,
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i (ug) = (g, B) =Y Bar(w) ey (B)=BT (w)\i(8),
s=1

where A{B) = (As£B), L < s< JpTand A(B) = (Ao, 11(B) 7). For given B, the B-spline
coefficients A(B) and a can be estimated as

@"ABT) = argmin R((@”,87)" . AB)).
ac®,,\(B)eR2In

where 7 (@7, 87)" A(8)=3_"_ [Yi—no(8] X:)—af Zi— (7 (BT X:)—al Z:)Gi]", Let
. -7 7T
Di(Z:,B)=|2; ,(Dia(B).1 < 5 < 1, 1=0,1)"] " where

Z;=(27,27G;)" , Di 0(Bo)=Bs, (B} X;)and D; 1 (8,)=B., (81 X;)G;. Let D(Z, ) =
(Dy(Z1, B), = DAZ p, B)T, an nx 2(q+ J,) matrix, and Y= (Y1, -, Y7, where Z = (Z4,
-+, Z ) Tis an nx 2gmatrix. Then the least squares estimators of a and A(B) is

"_(Dz,8D(Z.8) DZBY. 2

@ AB)")
Once the B-spline coefficients A(B) are estimated, we can obtain the first derivative of the
spline approximation of the nonparametric function as /7 (w,) = m, (u;, 8) ~ B..(w)" \/(8)

where B;(UI)T is the first derivative of B («)). Given the estimator /f,(,b’) in (2.2), we can
estimate the loading parameters S by

ﬁzarg minR ((dT, ﬂT)T, 5\(,3)) ,

BeEOg

Let /f,(ﬁ) be the estimators of the spline coefficients obtained by replacing D(Z, #) with
D(Z, ﬁ) in (2.2). Based on the parametric estimator 8, it is easy to obtain the estimator of the
nonparametric function m[u) as

i (w, B)=By(u) A(B),1=0,1. (2.3)

A detailed estimation algorithm is given in Supplementary Materials.

2.3. Kernel estimator of nonparametric functions

To obtain the asymptotic normality of the spline estimators for the nonparametric functions
mfuy), /=0, 1, as in Wang and Yang (2007), we use the BSBK estimator to establish their
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asymptotic normality. Define ¥;= (3, -+, ¥,,) " as the new pseudo-responses, and their
corresponding “oracle” responses as Y, =(Y,{, - -- ,Y,9 T 1=0,1. By using the B-spline

. .7 7T ,
estimators /7j(-) and the parametric estimators §=(a , a7, ﬂg, ﬁf) of Section 2.2, we have
- R AT ~ R n AT ~
Y=Y~ Z;—no(By Xi, B)—&] Z;G;, and Y,$ =Y;—64 Z;—mo(By Xi)—é1 Z:G;,

Similarly, Y and v, can be defined. In the “oracle” responses, the functions 771-) are
assumed to be known.

Based on the new responses Y3, we can obtain the BSBK estimator of /(1) as my(uy, ,5') =
d+bw by local linear fitting, in which

A7 . " -, ~T 2 ~T
(a,b)=arg lglan{Yu—aGi—b(m Xi_ul)Gi} Kp, (B Xi—u1),
a, =1

where Kx(f) = K(t/h)/hand K(:) is a kernel function and /4 is a bandwidth. By minimizing the
weighted least squares, the estimator /7 (4, ,B) has a closed form

PN

~ . —1 . ~
i (u1, B)=(1,0)[X WX] X WY1, (2.4)
where
Gy G,

T

X =X(u,B)=| . ) ,
:0) ( By Xi—u)Gi/hy - (By Xn—u1)Gn/My )

w = W(Ulaﬁl):diag {Khl (/éfxl_ul)a e aKhl (ﬁ?xn_ul)} .

Similarly, we can also obtain the “oracle” kernel estimator of m7(t4) as m? (us, Bl) based on
new data y;© by local linear fitting

w9 (ur, B)=(1,0[X " WX| X"WYP. (25

An outline of the algorithm can be found in Supplementary Materials. We use the BIC
criterion to select the number of interior knots, while fixing the order of basis function as
cubic to approximate the unknown functions, as described in Ma and Song (2015). The

positions of interior knots are chosen as the uniform quantiles of ul(’“):XTBl(k) in the (k+ 1)-

Stat Sin. Author manuscript; available in PMC 2017 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Liuetal.

Page 7

thstep (/=0, 1, ---,L). Thus they change at each step while the number of knots remain
fixed. This, however, does not affect the convergence of the algorithm in practice. To prove
convergence of the algorithm with changes in knots is beyond the scope of this work. The
BSBK estimator mi[{uy, éo is sensitive to the choice of bandwidth 4, /=0, 1. Bandwidth
selection has been intensively studied, see Sepanski et al. (1994) and Ruppert et al. (1995)
for good discussions. To avoid the estimation of high order derivatives, we employ a
bandwidth selector based on the mean squared error (MSE) criterion, called empirical bias
bandwidth selection (EBBS) (Ruppert (1997); Carroll et al. (1998); Liu et al. (2014)). The
details of EBBS are provided in Supplementary Materials.

Remark 1—Cui et al. (2011) and Ma and Song (2015) relaxed the constraints ||B/lo = 1 to ||
Bi-1ll <1lwith 8,1 =(Bp, -, ﬁ/p)T, /=0, 1. We work directly on the equality constraints ||
Bll2 = 1 which allows us to easily develop a Newton-Raphson algorithm. We can then test
Ho: Bi=0forall k=1, -, p(see Section 5 for a demonstration). In addition, the Newton-
Raphson algorithm is faster than the nonlinear optimization method adopted in Ma and Song
(2015), especially under nonlinear constraints.

2.4. Theoretical results

We need some additional notation to show the asymptotic normality of the estimator. Let &°
— T . T
= (a7, (B9 7) 7 be the true parameter 8, where a’=((a9)", (a9)")" and

ﬂO:((ﬂg)T, (ﬂg’)T)T. Let the space @ be a collection of functions with finite L, norm on
[, tolx[ar, Li]x® with M= {g(u) = go(vo) + G1(t1) G, Egf ) < o0}, where u = (o, t)”.

Forl< k<g, let ggk (1) be a maximizer in m for the optimization problem,

%, (U(B°)=gb (X" 80)+ (X" ) G=arg minF{ Z,—g(U (8"))}"

where 17(8%)=(XT 8, X7 8%)". Let Pe(Zi)=g, (U(B"))and P(Z) = (Pi(Z), -, PfZp).
We take P(X) = (Py(X1), -+, PAXp) T with Px(Xk)=g (U(B°)). LetZ =Z - P(Z), X = X -

P(X) and ¢(V.£°) = ($1(V.5) 7.4V B )7, where ¢1(V %) = (27,27 G)Tand
, T .~ T
b2V, %)= (WO(XTﬂO)X] [ (XTB%)XC] ) . Define the covariance matrix of &° as

ST={E[¢(V, 8]} {E[o(V)2(V, 8%} {E[6(V, 895},

1
where ¢®2 = (¢ for any vector ¢ T can be simplified as Z:o—g{E[qﬁ(V,,BO)@Z]} if the

error variance o(V) is a constant 2.
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Theorem 1—If assumptions (A.1)—(A.4) in the Appendix hold, and 7/AV* — oo and
AN2-2 — 0, then [|68-&P||, = O 12), and as n— oo, n'/? (9—00) Z, N(o, >
Theorem 2—If assumptions (A.1)—(A.4) in the Appendix hold, and 7A# — oo and

nN2r2 — 0, then for /=0, 1,

s (0 B) ()| =y (/) N ),
ure|ay,o;

where m(y, /9’) is given in (2.3), and () is the true function.

Next we show that the order of the asymptotic uniform magnitude of the difference between
the BSBK estimator m{u;, ) and its “oracle” version @ (v, 3) is 0,(r72%), so mfu;, B) and

m? (u;, B) share the same asymptotic distribution.
Theorem 3—If assumptions (A.1)-(A.6) in the Appendix hold, and 7A* — oo and n1NV-¢
— 0 with §=min(2r+ 2, 5r2), then for /=0, 1,

sup 1y (uy, B)—1nf (w, B)| =0, (n /7).
w €[ az,b]

Set = JEKK(Dat vi= [ K2(Hat. The consistency and asymptotic normality of the
unknown functions m(-) and m(-) now follow.

Theorem 4—If assumptions (A.1)—(A.6) in the Appendix hold, and 7”AV* — oo and
nN2r2 — 0, then, for /=0, 1,

()2 { i (w, B) = () by () i } 5 N (0, vy (w)), asn — oo,

where b, (w))=pym] (w;) /2 1= 0, 1, vy (up)=fo(uo) ‘o E [02(V)|XT B =uc], and

vi(u)=fi(u1) " E [GPo?(V)[XTB0=u] /(B[ G*XT B0=uy])’.

If Equation o(V)=0?2, the variance v{v) can be simplified as f,(u;) 102 for /=0, 1.

3. Hypothesis tests

3.1. Testing for nonparametric components

Our model can assess the interaction of the combined effect of multiple environmental
exposures with genes. This can be achieved by testing the nonparametric component 77,(-) to
discover the change trend of the interaction of the combined environmental effect. We

consider a test to detect whether /7;(¢4) is a linear function m (w; )=8y+6; w1,

Stat Sin. Author manuscript; available in PMC 2017 July 01.
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Homy()=m{(-)v. s. Hymq(-) #mi(-), (3.1

via a generalized likelihood ratio (GLR) test (Fan et al. (2001); Liang et al. (2010); Ma and
Song (2015)). Rejecting H indicates statistical evidence of nonlinear interaction between G
and multiple environmental mixtures. If we fail to reject Hp, we can further assess whether
there exists a genetic effect as well as linear interaction effect between a gene and multiple
environmental exposures by fitting a parametric linear interaction model.

Remark 2—In addition to the linear hypothesis, we are interested in testing Hp : m (1) =0
or Hy : () = cwhere cis a constant. Testing for zero or constant effect can be done under
the varying-coefficient model proposed in Ma et al. (2011), this cannot be done in the
current model setup due to the fact that the loading parameters £, are not identifiable under
the above nulls. If we fail to reject the null in hypotheses (3.1), we can fit a linear interaction
model as Y =my (8] X)+al Z+(6o+B8T X+aT Z)G+e&, where no constraints on 8, are
imposed. Then one can proceed to test HX:5,=8, =a; =0 to assess the overall effect of Gon
Y. One can continue to assess the marginal effect of Gon Yand the interaction effect

between Gand X or Z if gl is rejected.

Consider (3.1). Let 6be the BSBK estimate of @ proposed in Section 2.2. Let 7 1o(1) and
my 1 (u)) be the estimators under Hg and Hy, respectively. Let the residual sums of squares
no [ AT AT 2
under Ay and Hj in (3.1) be RSSI(HO):Zi:l{Yi_mOvHO (Bo Xi) =1, py, (B Xi)Gi} and
n [ AT AT 2
RSSl(Hl):Zi:l{Yi_ThO’Hl (Bo Xi) =11, yy, (B Xi)Gi} , where 7;= Y;- a’Z; We
define the generalized likelihood ratio (GLR) test statistic as

_ nRSS:(Ho)—RSS:1(H1)
) RSS; (Hy) ' (3.2)

Let ax = {K(0) - 12 I K2(u)du} [J{K(1) - 1L2K* K(t)}au]™1, where K* K(u) denotes the
convolution of K. Denote by Q,the support of g7'x, and by |Q/ the length of Q; /=0, 1.

Theorem 5—If assumptions (A.1)—(A.6) in the Appendix hold, and 7A#* — oo and
nN272 — 0, then under AHj in (3.1), when m(u;) is a linear function of ¢,

_ <z
Ulnl (Tl*:uln) - N(07 1)7

Where o7, = 2 |0 [ { K (u)— 1/2K # K (u)}* dus a0 py,,= |4 [{K (0)—1/2 K (u)du}-
Furthermore, a, Ty ~ 3, Where i = axth
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When assessing the linear form of the function, RSS;(Hp) and RSS;(H,) can be calculated
by first getting the estimators of /my(:) and m7,(:) using the B-spline method under the null
and alternative hypotheses. The B-spline estimators under Ay are given by

Mo 11, (uo):BTT(uo):\o and /my po(th) = 50 +&, 1, Where 30 &1, and /fo are the ordinary least
squares estimators of &, &1, and Ag. Then, we can obtain the kernel estimator /7, (o)

based on the new data (YHO,X,Z,G) and ﬁozﬁoTx, using the arguments in Section 2.3, where

N N N ~ ~ R AT
Yro= (Poiy = Yomp)Tand Y, =Yi—a' Zi—in, , (B1X;). Here mo 11,(-) and iy p(.)
are the BSBK estimators which can be obtained as in (2.4).

To illustrate the testing for the case with /> 1, we consider a model with two genetic
variables G; and G,

Y=my (87 X)+aj Z+{mi(B] X)+ai Z}G1+{ma (B3 X)+a3 Z}Go+e.  (33)

One can simultaneously test /7;(-) and n%(-), for example, testing

Ho:my ()=m(-),ma(-)=ma(-) v. s. Hyma () # my(-)orma() #m3(-), (3.4)

where m{(-) and m$ () are linear functions. Similarly, we can construct the corresponding
GLR test statistic

Ty=" {RSSa(Ho)~RSSy(H1)} /RSSa(Hh), (3.5)

where
A S AT . ~T . ~T 2
RSSz(Ho)=) ., {Yi_m(),HO (Bo Xi)=1n, 1, (B1 Xi)Gir—1n, (B Xi)Giz} ,RSSy(Hy)
no (e ~T . ~T . T 2
:Zizl Yi_mo,Hl (Bo Xi)_m],Hl (81 Xi)Gil_mz,Hl (B2 X)Gi2 ¢

. . T .
and v,=Y;—a&! Z,—a¥ Z,G;1 —al Z,G,. Note that 1y, ,, (B; Xi), /=0, 1, 2, are different
from those in 77, but the estimation is similar.

Theorem 6—If assumptions (A.1)-(A.6) in the Appendix hold, 7A\* — co and 1N 272 —

0, then under A in (3.4), when m{ (u; ) and m9 (uy) are linear functions,

_ <z
Uan (Tz—pan) — N(0,1),
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where 62, =2b,, [{K (u)—1/2K K (u)}? du, ton= bLKO) - 12 | K2(4)du} and b, =

k1,2 [Q)/y Furthermore, a® T < x3,, where dy=a’ j1o,, With @’ =215, /03,

Remark 3—The formulation of asymptotic normality in Theorem 6 is that in Fan and Jiang
(2005). Theorem 6 can be generalized to cases where three or more genetic variables can be
fitted and tested (/= 3). One can apply Theorem 6 for simultaneous inference on the
functions of some components of varying index coefficients. While the asymptotic results
for 77 and T, are available, they may not perform well when sample sizes are small. We
recommend the conditional bootstrap method (Cai et al. (2000); Fan et al. (2001)) in
applications.

3.2. Testing parametric components

We are also interested in assessing the interaction effects of genes with discrete
environments. This can be addressed via parametric hypothesis testing. Furthermore, if there
is GXE interaction, one may be interested in testing which index coefficients contribute to
the joint effect. This results in another parametric hypothesis testing problem. We consider a
class of general hypothesis testing problems with

H()ZAC:’)/ V. S. HliAC 7, (36)

where A is a known k& x (g + s) full-rank matrix, sis the number of elements in SC {1, ---,

o}, ¢=(ai 8L )" with Bs= By, Bi)". Ji€ S and yis a k-dimensional vector. For a
special case, we can detect whether a; and Bsare zeros by taking

Ho:a1=0,8,=0 v. s. Hy:a; #0 or B_#0. (3.7)

T
Let OHOZ(%T,HO ; alT,HO,ﬂZjHO,ﬁfHO) be the parameters corresponding to @under Ay in

T
3.7)and8,,=(a], el B, B, )" bethe counterparts under A. Define the residual

sums of squares under Hp and H, as

2
R AT ~ AT N ~T A ~T
(Vi B XisB ) =61 2, (B, KB, ) -6, 200G}

5]
S

|
s

1

-
[

2
o AT p AT o AT A AT
{Yimin,, B, X8, )-6T,, Zi-Gi,, (B, XiB, )47, Z)Ci)

S|
=

I
™=

=1

where éHO and éHl are the estimators of @under Hy and H; proposed in Section 2.2, and
My () and m; 1y, are estimators of m(-) proposed in (2.4) under A and H, /=0, 1,
respectively. We take the test statistic
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3= .
Ry, (3.8)

Theorem 7—If assumptions (A.1)-(A.6) in the Appendix hold, 7A\* — co and 1N 272 —
0, then when o(V) is a constant 52,

. under Hy in (3.6), T3 <. X

ii. under A in (3.6), 73 converges to a noncentral ;(2 distribution with &
degrees of freedom with noncentrality parameter ¢ = lim,, oo 76%(AL -
NT(AXIA) YA - ), where T is defined as in Theorem 1.

4. Monte Carlo simulation

The finite sample performance of the proposed method was evaluated by simulation studies.
Under model (2.1), we generated continuous X variables X1, X5, X3 as independent uniform
U0, 1) and discrete Zvariables 21, 2 as independent Bernoulli Ber(1, 0.5). The genetic
variable G was coded as (2, 1, 0) corresponding to genotypes (AA, Aa, ad). We set the minor
allele frequency (MAF) pa = (0.1, 0.3, 0.5) and assumed Hardy-Weinberg equilibrium. SNP
genotypes AA, Aa, and aawere simulated from a multinomial distribution with frequencies

P2, 2pa(1 = pa) and (1 - pa)?, respectively. The error term e was normal M0, 0.1).

We set () = cos(rze) and my(4) = sin{ (v - A)AB - A} with A=V/3/2—-1.645/ V12
and B=V/3/24+1.645/ V12 and g,=(/5, V4, V4)/v/13,8,=(1,1,1)/ V3. a0 = (05,
0.5)7, and a; = (0.3, 0.3) 7. We drew 1000 data sets with sample size 7= 200, 500. The
Epanechnikov kernel K(# = 0.75(1 — £), was chosen to localize the unknown functions
mo(-) and /my(+). The suitable smoothing bandwidths for estimating both functions were
selected using the EBBS method described in Section 2.3. The number of interior knots N
was selected by the BIC method.

4.1. Performance of estimation

Table 1 summarizes the average bias of the estimators (Bias), the standard deviation of the
1000 estimators (SD), the average of the estimated standard errors (SE) based on the
theoretical calculation, and the estimated coverage probability (CP) at the nominal 95%
confidence level for the parameters. In general, the coverage probability for all the
parameters was close to 95% and reasonably controlled. As the sample size increased, the
performance of the parameter estimators improved. We observed consistently smaller SD
and SE when nincreased from 200 to 500. The same trend was observed when rnincreased
to 1000 (see Supplementary Materials for more details). The parameter estimators for the
interaction effects (B, a;) improved as MAF increased. For example, the SD of ,311 went
from 0.028 to 0.012 when MAF increased from 0.1 to 0.5 under a fixed sample size 7= 200.
However, the estimators for the main effects (5y,ag) showed an opposite direction due to
limited data information to estimate these parameters when MAF increased. This is due to
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the fact that the amount of data used to estimate these parameters is proportional to (1 -
pa)>.

Figure 1 shows the plot of the estimators of /71(¢4), and its corresponding confidence bands
under different sample sizes and MAFs in the interval of ¢4 from 0.25 to 1.25. It can be there
seen that the estimated curves almost overlap with the corresponding true curves, and the
confidence bands are very tight, especially under large MAF and sample size. We also
plotted the estimate of rmy(-), see the Supplementary Materials.

4.2. Performance of hypothesis tests

We first evaluated the performance of the test for the nonparametric function under the

hypothesis Hy:m (-)=m?(-), where mS (u;)=8y43,u1, and & and &; are some constants.
Power was evaluated under a sequence of alternative models indexed by t,

HT:m7 () =m{(-)+7{m(-)=mi(-)}. When z=0, the test results provide the false positive
rates. The null model corresponds to a linear GxE effect.

Figure 2 shows the size (z=0) and power function (z >0) at significance level 0.05 based
on 500 Monte Carlo simulations each with 500 bootstrap samples under sample sizes n=
200, 500, 1000. The empirical type | errors under the three scenarios are very close to the
nominal level 0.05. We observed dramatic power increase when MAF increased from 0.1 to
0.3 in all scenarios. The results indicate that our method can reasonably control the false
positives and has appropriate power to detect genetic difference. We also considered the
PLVMICM model in (3.3) with two genetic components and tested if both /7 (:) and m»(:)
are simultaneously linear, following Theorem 6. The results are in the Supplemental
Materials.

To check the performance of the interaction test between G and discrete variable Z, under
model (2.1), we considered the hypothesis Hy : a; = 0. The power of the test was evaluated
under a sequence of alternatives indexed by z, A7 :a]=7a;. Data were simulated as in the
previous section. Figure 3 depicts the empirical size (z = 0) and power functions (z >0)
under different sample sizes and MAFs at the 0.05 significance level. As expected, the
power and size improve as MAF and sample size increase. Under low MAF (p4 = 0.1), the
size is a little inflated when n7is small (200 and 500), but is well controlled when 2 increases
to 1000. As tith the nonparametric test, dramatic power improvement is observed when
MAF increases from 0.1 to 0.3. The power difference between MAF=0.3 and MAF=0.5 is
small indicating good performance of the test.

5. A case study

We applied the proposed PLVMICM model to a data set from the Gene Environment
Association Studies initiative (GENEVA, http://www.genevastudy.org) funded by the trans-
NIH Genes, Environment, and Health Initiative (GEI), to show the utility of the method.
Low and high birth weights are not only the major causes of neonatal morbidity and
mortality, but are also related to increased risk of metabolic diseases later in life. Fetal
growth is determined by fetal genes as well as complex interactions between fetal genes and
the maternal uterine environment. We focused on the Thai population with 1126 subjects
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genotyped with the Omnil-Quad v1-0 B platform after removing outliers. After regressing
the baby’s body weight on twelve environmental variables, including nine continuous and
three discrete variables, five continuous variables and one discrete variable remained
significant at the 0.0001 significance level. Three of the five continuous variables were
chosen, including mother’s mean OGTT diastolic blood pressure (denoted as .X7), mother’s
one hour OGTT glucose level (denoted as X5), and mother’s mean OGTT systolic blood
pressure (denoted as X3). The discrete variable, denoted as Z, is baby’s gender. To show the
utility of the method, we picked one candidate gene CDKAL 1 for a demonstration. The gene
is located on chromosome 6 and contains 192 SNPs after removing those with MAF < 0.05.
Low birth weight has been shown to be associated with high risk in type 2 diabetes later in
life. Evidence of genetic studies on type 2 diabetes loci suggests that this gene is associated
with reduced birth weight in Caucasian populations (Zhao et al. (2009); Andersson et al.
(2010)). Our goal is to evaluate whether this gene also functions in the Thai population and,
if so, how SNPs in the gene interact with mother’s condition (considered as environment) to
affect birth weight and further determine the interaction mechanism.

We first tested whether any SNP is associated with birth weight based on the nonparametric
test of Hy : /my(w1) = & + &uy with p-value denoted by pp,, . Since we tested each SNP
individually, we applied a simple multiple testing correction method. We first calculated the
effective number of tests £ by using the Cheverud estimation method, given by

ik 2
Eo=1+L Zid:l(l—%‘), where L =192 is the total number of SNPs and r;;are the
pairwise correlation coefficients of SNPs (Cheverud (2001)). The estimated £y = 188.09,
which yields a gene-wide significance level of a = 0.01/& = 5.3 x 107°. Figure 4 depicts the
—logio(p-values). Clearly, six SNPs 7516884481 rs10946428, rs6904348, rs10806925,
59465873, and rs12662218 passed the significance level based on 10° bootstrap samples.

The testing results for the six SNPs are reported in Table 2. We report SNP ID, MAF, allele
information with bold font letter as the minor allele, p-values for the nonparametric test
(described in Section 4.2). We also report the p-value of the test Hy: fp= L V.S. Hy: B 2
B in the column labeled by pg as opposed to the model by Ma and Xu (2015) based on the
generalized likelihood ratio test in Section 3.2. The p-value of the parametric test Hp: a3 =0
is reported in the column labeled by p,, following the procedure described in Section 4.2.
To compare the goodness of fit for PLVMICM with an additive varying-coefficient model

avem), E(Y(X, Z, G)Zijlmw(XjHagZ +Zj:1m1j (X))G+ai ZG and to see the
relative gain by the integrative analysis, we calculated the MSEs of both models; they are
given in the last two columns of Table 2. The p-values for testing Hy : m1(X7) = Mo(X5) =
m3(X3) = 0 when fitting the AVCM model are reported in the column labeled by paycir

The p-values in column pg for the comparison of different model assumptions clearly show
that the loading parameters are different for different index functions, indicating the
necessity of the proposed model vs the one proposed by Ma and Xu (2015). The p-values in
column p,, indicate that SNPxgender interactions are not significant for these six SNPs.
The goodness of fit measure in the last two columns shows that the PLVMICM model fits
the data better than the AVCM model, indicating the potential benefit of integrative GXE
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analysis. Furthermore, the testing p-values for the AVCM model do not show significance.
The results imply that the genetic effects of these six SNPs are modified by the mixture
effect of the three X variables, rather than separately, which further indicate the power of the
integrative analysis.

For the 186 SNPs that were rejected, we fitted the model assuming my(w) = & + 614,
assuming linear GXE interaction, then testing Hp : & = &1 = 0. No SNPs showed signs of
significance at the 5.3E-05 significant level. The most significant SNP was 512209806 with
a p-value of 6.72E-05. This indicates that there is no linear interaction between these SNPs
and the three environmental variables. However, there are four SNPs, 7512196595,
156908425, rs6917599, and rs7773189 showing interactions with gender based on p,, for
the 186 SNPs; the p-values were 6.12E-08, 1.89E-07, 3.69E-07, and 1.61E-05, respectively.

We tested the significance of the individual X variable that contributes to the joint effect
following the procedure given in Section 3.2. The results showed that X7 and X, contribute
significantly to the joint effect in these six SNPs, but not X3 (see Table S2 in Supplementary
Materials). The estimators of the nonparametric function /() for the first two SNPs,
1516884481 and rs10946428 along with their 95% confidence band are given in Figure 5.
The estimators for the other four SNPs are shown in Section 3 in Supplementary Materials
due to space limit. The estimated function shows a decreasing pattern then slightly increases
as the index value ¢ increases. Our model clearly reveals the nonlinear modulating effect of
environmental mixtures on genetic effect of birth weight. Such dynamic effects can be
helpful in designing prevention strategy when the model is applied to other complex diseases
such as diabetes.

6. Discussion

GxE interaction has been studied intensively in the literature and many statistical methods
have been proposed. In this paper, we developed a partially linear varying multi-index
coefficient model (PLVMICM) to conduct a rigorous assessment of the combined effect of
multiple environmental exposures on the risk of disease under the paradigm of GxE
interaction. Our model can be interpreted as a systems genetics approach to modeling the
joint effect of environmental mixtures as a whole, then assessing how the integrative effect
modifies genetic influence on disease risk. Our model is biologically attractive in that it
addresses a long-term question on GxE interaction from a systems genetics perspective and
is well supported by epidemiological studies (Carpenter et al. (2002); Monosson (2005);
Powers et al. (2008)); and it has the flexibility to detect nonlinear interactions, and therefore,
is more powerful when genetic effects are nonlinearly modified by simultaneous exposure to
multiple environments.

From a statistical point of view, the index coefficient function treats multiple environmental
variables X as a single index variable, and therefore can reduce multiple testing burden when
interactions between the X variables and G are modelled separately. In addition, when there
exist interactions between the X variables, our model has the flexibility to incorporate such
interactions by adding interaction terms to the index function. PLVMICM is flexible and
includes several existing models as special cases, for example, the partially linear single-
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index model (Carroll et al. (1997); Xia and Li (1999); Xia and Hardle (2006); Liang et al.
(2010); Cui et al. (2011)) and the nonparametric additive model discussed by Fan and Jiang
(2005).

In a typical GXE study, there are usually a large number of genetic variables (e.g., SNPs),
and it is important to fit multiple SNPs in a single model and to select important players that
interact with environmental mixtures to affect disease risk in a high dimensional model
setup. In addition, many human diseases are measured on a binary scale. It is natural to
extend the current PLVMICM model to a generalized PLVMICM model framework. This
will be considered in a future investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Proofs

For any vector €= (&1, -+, £)T € RS, let ||8loo = MaXi<ks|&J. FOr any nonzero matrix A s,

denotes its L,norm as || A ||, =maxecr ezol| A, €] For any matrix A=(Ai;)77i_,, let

t
IIAHoo=maXi9sSZj:1\Aij. Let CP[a, b] = {y - vP € (a, b} be the space of the pth-
order smooth functions. Denote the space of Lipschitz continuous functions for any fixed
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constant ¢y as Lib([a, 4], o) = {y : | y(x1) - y(X)| < Glxa—xl, Vxi, x; €[4 O} The
following assumptions are required.

Al For each /=0, 1, the density function fg)(") of random variable U (8,)=47 X
is bounded away from 0 on Q, and there exists a constant 0 < ¢ <o such that

fu(ﬁ,)(-) € Lib([a, 4], c) for B;in the neighborhood of ﬂ?, where
0,={B7X,X € 2’} and 2 is a compact support of X.

A.2  The nonparametric function m,€ C\[a,, bj, /=0, 1.

A.3 The noise e satisfies A(e]V) = 0, A|e*) <o and ov) = var(e]V = v) < ¢ for
some 0 < ¢ <o,

A4 There exist constants 0 < ¢,< C, <00 such that ¢,< Q(x) = HZZT|X = x) <
C,forallxe %

A5 The kernel function K{(:) is a symmetric density function with compact support
[-1, 1] and K€ Lib([a 4], ck) for some constant ck. The bandwidth /=
omA), 1=0, 1.

A.6  The function tAK(v) and (AK’ () are bounded and [ A K(4)du <.

Let Yz,iZYQ—Z?CMS—Z?a?Gi, Yz=(Yz1, Yz,n)T, e=(ey, e, X=Xy, X)), Z
=2y, 2Zpn"Z=(1,2Z),and G = (Gy, -, G, . Define

U(B)=E[D;(8)D:(B)"], UB)=1D(B)'D(B),
U(Z.B)=E[Di(Z.B)Di(Z,8)'], U(Z,8)=1D(Z.8) D(Z.B), (a1

where DAB) = (D;sfB), L <5< Jp, 1=0,1)Tand D(B) = (D1(B), -, DAB), an nx 2,
matrix.

Proof of Theorem 1

This is a straightforward result of Lemma S.6 in the Supplementary Materials.

Proof of Theorem 2

For simplicity, we assume [a, b] = [a, 4] for /=0, 1. Since for any v, € [a; b]l, Bsu), s=
1, -, J, /=0, 1, have bounded first derivatives, by Lemmas S.4 and S.5 in the
Supplementary Materials and Theorem 1, we have for any v, € [a, 4],

A

g (1, B) 17 (w1, B°) | =ID(B) A(B)—D(8°) \(8)|
< D) {AB)-AB")}+{D(B)-D(B*)} "AB)|
< [n'D(E") 0(8°) 'D(B") e|+0,(n /)
=0, ((v/m)"?).
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Then, combined with Lemma S.4, we have

sup |y (u, B)—my(w)| < sup |y, B)—iy(w, B2)|+ sup |y (ur, B°)—my(w)]
u €[ a,b] w €[ a,b] w €[ a,b]

=0, ((N/71)1/2—|—N*’) .

This completes the proof of Theorem 2.

Proof of Theorem 4
As nfP = O(1), we have (nh)Y225 = o(1). By Theorem 3, we have

(nhl)1/2 {ml(ula,B)_ml(ul)_bl(ul)hlz} :(nhl)1/2 {m?(Uhﬁ)—mz(uz)—bl(ul)hzz} +0p(1)-

Thus Theorem 4 can be shown straightforwardly following Lemma S.7 in the
Supplementary Materials.

Proof of Theorem 7

This proof is similar to that of Liang et al. (2010). Accordingly, we only provide a sketch of
the proof here, more details can be found in the Supplementary Materials. We first prove
MLR(Hy) = E{o(V)}+0,(1). Let m(X, B) = my(X"Bo, B) + mi(X "By, A G and,
correspondingly, ° (X, 8)=m$ (X' B,, B8)+m? (XT B,,8)G. By Theorem 3 and Lemma S.
7 in the Supplementary Materials, 71 R(H,) can be decomposed as

n—lR(Hl) il{ 774 m(Xi,ﬁ)f
:%i{ o¥— AO XZ,,B )} +0p —2/5)+O (n_l/g)
i=1
_%;{ (m (Xza,BO) (X,,ﬂo } +o. ( —2/5)

=1 —HI2—HI3—|—OP (n72/5),

where ;=1 """ {mO(xi,ﬂO)—m(Xi,ﬁo)}?1[2=—2LZT‘ {9 (X;, 8%)—m(X:, %) }es,

and ;=2 Z . 2 Itis easy to see by the Law of Large Numbers thatll; = F{o(V)} +
Op(n‘l/z) By Theorem 2.6 in Li and Racine (2007), we have max;| m9(X, g°) - m(X; /)
= O((log(mAnh))*%2), which results inl, = O((log(nAPH)}?) and I = OLlog(n)Anh)).
This leads to 71 R(Hy) = E{o(V)} + 0,(1).

The difference R(Hp) — R(Hy) can be decomposed as
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R(Ho)~R(H1)= 3 {Z" (8, -6, ) +(1(X0.B,, ) -(Xe. B, Ny

Under the null, we have =21, EaN X2, and under the alternative o2, asymptotically follows
a noncentral Chi-squared distribution with & degrees of freedom and noncentrality parameter
¢. 1t remains to show that ll; = 0,(1). This can be shown along the same lines as l. This
completes the proof of Theorem 7.

The proofs of Theorem 3, 5, and 6 are in the Supplementary Materials.
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Figurel.
The estimation of function /,(-) under different MAFs and sample sizes. The estimated and

true functions are denoted by the solid and dashed lines, respectively. The 95% confidence

band is denoted by the dotted-dash line.
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Figure2.

The empirical size and power function of testing nonparametric function /7 (-) under
different sample sizes and MAFs.
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Figure 3.
The empirical size and power functions of testing Hp : a; = 0 under differen sample sizes

and MAFs.
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Figure 4.

Plot of —/og,o(p-value) for SNPs within gene CDKALL.
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Plot of the estimate (solid curve) of the nonparametric function /() for SNPs rs16884481
and rs10946428 along with their 95% confidence band (dash-dotted line).
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