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Abstract

Gene-environment (G×E) interactions play key roles in many complex diseases. An increasing 

number of epidemiological studies have shown the combined effect of multiple environmental 

exposures on disease risk. However, no appropriate statistical models have been developed to 

conduct a rigorous assessment of such combined effects when G×E interactions are considered. In 

this paper, we propose a partial linear varying multi-index coefficient model (PLVMICM) to 

assess how multiple environmental factors act jointly to modify individual genetic risk on complex 

disease. Our model includes the varying-index coefficient model as a special case, where discrete 

variables are admitted as the linear part. Thus PLVMICM allows one to study nonlinear interaction 

effects between genes and continuous environments as well as linear interactions between genes 

and discrete environments, simultaneously. We derive a profile method to estimate parametric 

parameters and a B-spline backfitted kernel method to estimate nonlinear interaction functions. 

Consistency and asymptotic normality of the parametric and nonparametric estimates are 

established under some regularity conditions. Hypothesis testing for the parametric coefficients 

and nonparametric functions are conducted. Results show that the statistics for testing the 

parametric coefficients and the non-parametric functions asymptotically follow a χ2-distribution 

with different degrees of freedom. The utility of the method is demonstrated through extensive 

simulations and a case study.

Key words and phrases

Association study; Backfitting; B-spline; Single index model; Varying coefficient model

1. Introduction

There has been great interest in identifying gene-environment (G×E) interaction in the 

scientific literature. G×E interaction is defined as how genotypes influence phenotypes 

differently under different environmental conditions (Falconer (1952)), a phenomenon also 
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termed as genetic sensitivity to environmental stimulus. A growing number of reports have 

confirmed the role of G×E interaction in many diseases, such as Parkinson disease (Ross and 

Smith (2007)) and type 2 diabetes (Zimmet et al. (2001)). G×E interaction has traditionally 

been pursued based on a single environment exposure model. Evidence from 

epidemiological studies has clearly indicated that disease risk can be modified by 

simultaneous exposure to multiple environmental factors, higher than what would be 

expected from simple addition of the effects of factors acting alone (Carpenter et al. (2002); 

Sexton and Hattis (2007)). Thus, assessing the combined effect of environmental mixtures 

and the mechanism in which they, as a whole, interact with genes to affect disease risk could 

shed novel insight into disease etiology. Suppose that Y is the trait response of primary 

interest. In many genetic studies, one collects a p-dimensional continuous covariate vector 

X, and a q-dimensional discrete covariate vector Z. Motivated by an empirical analysis to 

study G×E interaction, see Section 5, we propose a partial linear varying multi-index 

coefficient model (PLVMICM):

(1.1)

where Gl, l = 1, ⋯,L are genetic variables (e.g., single nucleotide polymorphisms (SNPs)) of 

interest, ε is an error term with mean 0 and finite variance; ml(·), l = 0, 1, ⋯,L are unknown 

index functions; α0, ⋯, αL and β0, ⋯, βL are parameters of interest, where the index 

coefficients βl are the index loadings or the loading parameters. The SNP variable Gl can be 

coded as 2, 1, and 0 for genotype AA, Aa, and aa, assuming an additive model. Note that the 

main genetic effect for each Gl is captured by the function . Thus we 

do not need to have a separate term to model the main genetic effect for each SNP. Model 

(1.1) provides a unified model framework for many existing models used for studying G × E 
interaction. Specifically, the model proposed in Ma et al. (2011) can be viewed as a special 

case with p = 1 (the dimension of βl), q = 0 (the dimension of αl), and L = 1. Model (1.1) 

also include the semiparametric varying-index coefficient model proposed by Ma and Xu 

(2015), studying G×E interaction, as a special case with β0 = βl = β, l = 1, ⋯,L, i.e., 

assuming the same index loading parameter. Our empirical analysis in the data example in 

Section 5 clearly shows that this assumption is not realistic, making it necessary to allow 

different loading parameters in the model.

Model (1.1) also includes many other existing models as special cases. It reduces to the 

partial linear single-index model (Carroll et al. (1997); Xia and Li (1999); Xia and Hardle 

(2006); Liang et al. (2010); Cui et al. (2011)), in which the discrete variable in the linear part 

is admitted if all Gl = 0; it reduces to VICM proposed by Ma and Song (2015) if Z = 0.

This paper aims to develop a set of statistical estimation and hypothesis procedures for 

model (1.1). We employ a B-spline backfitted kernel smoothing (BSBK) procedure to 

estimate the parametric parameters and the nonparametric functions (Wang and Yang 

(2007)). We first develop a profile least squares method to estimate the index coefficients βl 

and the linear coefficients αl by approximating unknown function ml(·) with B-spline basis 
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functions. The parametric estimates can be shown to be n1/2-consistent and asymptotically 

normal. We also obtain uniformly consistent estimators of the nonparametric functions. 

Given the n1/2-consistent parametric estimators and the consistent estimators of the 

nonparametric functions, the kernel estimators of nonparametric functions can be obtained 

from which we establish the asymptotic normality.

Under model (1.1), it is natural to ask whether there is an interaction between discrete/

continuous environments and genes, and whether the interaction with the combined 

environmental exposures is linear or nonlinear. Cai et al. (2000) studied the nonparametric 

testing problem for varying coefficient models based on the generalized likelihood ratio test. 

Nonparametric inferences for additive models were previously discussed by employing the 

generalized likelihood ratio (GLR) statistic (Fan and Jiang (2005)). We propose a parametric 

likelihood ratio test to test for the linear interaction term and a nonparametric GLR test to 

test for the nonparametric interaction functions (Fan et al. (2001)). We further show that the 

proposed nonparametric GLR statistic is asymptotically χ2. We conduct rigorous theoretical 

evaluation of the proposed estimators and test statistics and show the utility of the model 

through extensive simulations and a case study.

The paper is organized as follows. In Section 2.2, we formulate the model and describe the 

BSBK procedure and the parametric estimators for the continuous and discrete parts based 

on a profile least squares method. The nonparametric kernel estimators for index functions 

are given in Section 2.3. The consistency and normality of parametric and nonparametric 

estimators are given in Section 2.4. Section 3 gives the parametric likelihood ratio statistic 

and several nonparametric GLR statistics, as well as their theoretical properties. In Section 

4, we report on simulation studies that illustrate the finite sample performance of the 

proposed estimators and test statistics. In Section 5 we show the utility of the method by 

applying it to a baby birthweight data set. Some concluding remarks are given in Section 6. 

The proofs of the main results are relegated to the Appendix.

2. Estimation Procedures

2.1. Estimation Procedures

We focus on the situation with L = 1 for ease of presentation, and rewrite (1.1) as

(2.1)

The proposed procedure for model (2.1) can be easily extend to model (1.1) with multiple 

G’s (i.e., multiple SNPs), and it is still more general than the existing ones used for G×E 

interaction. It is motivated by a recent genome-wide association study to identify genetic 

risk factors interacting with maternal uterine environments to increase the risk of low and 

high birth weight (HAPO Study Cooperative Research Group (2009)). The underlying 

hypothesis is that the variation of birth weight can be explained by complex G×E 

interactions in the context of the maternal-fetal unit. As a fetus resides inside its mother’s 

womb, there is intensive signalling and chemical exchanges between the two. The effects of 
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fetal genes could be modified by simultaneous exposure to multiple stimuli from the 

mother’s side such as mother’s glucose level and blood pressure. For continuously measured 

environmental variables, we propose to model the joint effect of environment variables as a 

whole through an unknown index function m(·). The index function can be linear or 

nonlinear. That is determined by the data, with flexibility to capture the underlying 

mechanism of environmental mixtures modifying genetic influences on disease risk. For 

such discrete environmental variables as smoking status and family disease history, their 

interaction effects with genes can be modeled through a parametric function.

The motivation for assessing nonlinear G×E interaction in complex disease has been 

discussed extensively in Ma et al. (2011) and Wu and Cui (2013). The model for testing 

nonlinear G×E interactions in Ma et al. (2011) can be viewed as a special case of (2.1) with 

p = 1 (the dimension of βl) and q = 0 (the dimension of αl). We assume the index loading 

parameters β0 and β1 to be different; this differs from the single index model assuming 

common loading parameters for different index functions proposed by Xia and Li (1999). Li 

et al. (2010) studied the generalized functional linear models with semi-parametric single 

index interaction, but did not allow dissimilar loading parameters in different index 

functions. Although the varying-index coefficient model (VICM) proposed by Ma and Song 

(2015) could consider the joint interaction of multiple environments with genes, it does not 

admit discrete variables Z. Such discrete environmental variables are common in G×E 

studies and the inclusion of these variables is crucial to assess the discrete G×E interactions, 

as implemented in most partial linear single index models (Carroll et al. (1997); Xia and Li 

(1999); Xia and Hardle (2006);Liang et al. (2010)). Nevertheless, including both parametric 

and nonparametric terms into the same model poses computational and theoretical 

challenges. As discussed earlier, our model differs from that proposed by Ma and Xu (2015) 

in which they assumed the same loading parameters for different index functions. This 

assumption is too strong in reality, the modulation effect of environmental variables may 

differ from gene to gene. Our data analysis results in Section 5 indicate that such an 

assumption is invalid there. Theoretical and practical considerations thus motivate us to 

consider a more flexible model that can incorporate both linear and nonlinear interactions, 

and without too many assumptions on the model parameters, as in (2.1).

2.2. Parameter estimation

Consider the PLVMICM model given in (2.1). Let θ = (αT, βT)T, where  and 

. Let Vi = (Xi,Zi,Gi), i = 1, ⋯, n, be the observations, and Θα and Θβ be the 

parameter spaces for α and β, respectively. In this section, we derive the detailed estimation 

procedure employing the BSBK method proposed by Wang and Yang (2007). Let ℱn be the 

space of B-spline basis functions of order r (r ≥ 2) (de Boor (2001)) with the B-spline basis 

Br(u) = (Bs,r(u) : 1 ≤ s ≤ Jn)T, u ∈ [a, b], where Jn = N + r and N = Nn is the number of 

interior knots for a knot sequence ξ1 = ⋯= 0 = ξr < ξr+1 < ⋯< ξr+Nn < 1 = ξr+Nn+1 = ⋯= 

ξNn+2r in which Nn increases along with the sample size n. Then ml(ul) with 

, l = 0, 1, can be approximated by a spline function,
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where λl(β) = (λs,l(β), 1 ≤ s ≤ Jn)T and λ(β) = (λ0(β)T, λ1(β)T). For given β, the B-spline 

coefficients λ(β) and α can be estimated as

where . Let 

, where 

 and . Let D(Z̃, β) = 

(D1(Z̃
1, β), ⋯, Dn(Z̃

n, β))T, an n × 2(q + Jn) matrix, and Y = (Y1, ⋯, Yn)T, where Z̃ = (Z̃
1, 

⋯, Z̃
n)T is an n × 2q matrix. Then the least squares estimators of α and λ(β) is

(2.2)

Once the B-spline coefficients λ(β) are estimated, we can obtain the first derivative of the 

spline approximation of the nonparametric function as , 

where  is the first derivative of Br(ul). Given the estimator λ̂
l(β) in (2.2), we can 

estimate the loading parameters β by

Let λ̂
l(β̂) be the estimators of the spline coefficients obtained by replacing D(Z̃, β) with 

D(Z̃, β̂) in (2.2). Based on the parametric estimator θ̂, it is easy to obtain the estimator of the 

nonparametric function ml(ul) as

(2.3)

A detailed estimation algorithm is given in Supplementary Materials.

2.3. Kernel estimator of nonparametric functions

To obtain the asymptotic normality of the spline estimators for the nonparametric functions 

ml(ul), l = 0, 1, as in Wang and Yang (2007), we use the BSBK estimator to establish their 
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asymptotic normality. Define Ỹl = (Ỹ1l, ⋯, Ỹnl)T as the new pseudo-responses, and their 

corresponding “oracle” responses as , l = 0, 1. By using the B-spline 

estimators m̃l(·) and the parametric estimators  of Section 2.2, we have

Similarly, Ỹi0 and  can be defined. In the “oracle” responses, the functions ml(·) are 

assumed to be known.

Based on the new responses Ỹ1, we can obtain the BSBK estimator of m1(u1) as m̂1(u1, β̂) = 

â +b̂u1 by local linear fitting, in which

where Kh(t) = K(t/h)/h and K(·) is a kernel function and h is a bandwidth. By minimizing the 

weighted least squares, the estimator m̂1(u1, β̂) has a closed form

(2.4)

where

Similarly, we can also obtain the “oracle” kernel estimator of m1(u1) as  based on 

new data  by local linear fitting

(2.5)

An outline of the algorithm can be found in Supplementary Materials. We use the BIC 

criterion to select the number of interior knots, while fixing the order of basis function as 

cubic to approximate the unknown functions, as described in Ma and Song (2015). The 

positions of interior knots are chosen as the uniform quantiles of  in the (k + 1)-
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th step (l = 0, 1, ⋯,L). Thus they change at each step while the number of knots remain 

fixed. This, however, does not affect the convergence of the algorithm in practice. To prove 

convergence of the algorithm with changes in knots is beyond the scope of this work. The 

BSBK estimator m̂l(ul, θ̂) is sensitive to the choice of bandwidth hl, l = 0, 1. Bandwidth 

selection has been intensively studied, see Sepanski et al. (1994) and Ruppert et al. (1995) 

for good discussions. To avoid the estimation of high order derivatives, we employ a 

bandwidth selector based on the mean squared error (MSE) criterion, called empirical bias 

bandwidth selection (EBBS) (Ruppert (1997); Carroll et al. (1998); Liu et al. (2014)). The 

details of EBBS are provided in Supplementary Materials.

Remark 1—Cui et al. (2011) and Ma and Song (2015) relaxed the constraints ||βl||2 = 1 to ||

βl,−1|| < 1 with β l,−1 = (βl2, ⋯, βlp)T, l = 0, 1. We work directly on the equality constraints ||

βl||2 = 1 which allows us to easily develop a Newton-Raphson algorithm. We can then test 

H0 : βlk = 0 for all k = 1, ⋯, p (see Section 5 for a demonstration). In addition, the Newton-

Raphson algorithm is faster than the nonlinear optimization method adopted in Ma and Song 

(2015), especially under nonlinear constraints.

2.4. Theoretical results

We need some additional notation to show the asymptotic normality of the estimator. Let θ0 

= ((α0)T, (β0)T)T be the true parameter θ, where  and 

. Let the space ℳ be a collection of functions with finite L2 norm on 

[a0, b0]×[a1, b1]×ℛ with ℳ= {g(u) = g0(u0) + g1(u1)G, Egl(ul)2 ≤ ∞}, where u = (u0, u1)T. 

For 1 ≤ k ≤ q, let  be a maximizer in ℳ for the optimization problem,

where . Let  and P(Z) = (P1(Z1), ⋯, Pq(Zq))T. 

We take P(X) = (P1(X1), ⋯, Pp(Xp))T with . Let Ẑ = Z − P(Z), X̂ = X − 

P(X) and ϕ(V,β0) = (ϕ1(V,β0)T,ϕ2(V,β0)T)T, where ϕ1(V,β0) = (ẐT, ẐT G)T and 

. Define the covariance matrix of θ0 as

where ζ⊗2 = ζζT for any vector ζ. Σ can be simplified as  if the 

error variance σ(V) is a constant .
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Theorem 1—If assumptions (A.1)–(A.4) in the Appendix hold, and nN4 → ∞ and 

nN−2r−2 → 0, then ||θ̂−θ0||2 = Op(n−1/2), and as n → ∞, .

Theorem 2—If assumptions (A.1)–(A.4) in the Appendix hold, and nN4 → ∞ and 

nN−2r−2 → 0, then for l = 0, 1,

where m̃l(ul, β̂) is given in (2.3), and ml(·) is the true function.

Next we show that the order of the asymptotic uniform magnitude of the difference between 

the BSBK estimator m̂l(ul, β̂) and its “oracle” version  is op(n−2/5), so m̂l(ul, β̂) and 

 share the same asymptotic distribution.

Theorem 3—If assumptions (A.1)–(A.6) in the Appendix hold, and nN4 → ∞ and nN−δ 

→ 0 with δ = min(2r + 2, 5r/2), then for l = 0, 1,

Set μk = ∫tkK(t)dt, νk = ∫tkK2(t)dt. The consistency and asymptotic normality of the 

unknown functions m0(·) and m1(·) now follow.

Theorem 4—If assumptions (A.1)–(A.6) in the Appendix hold, and nN4 → ∞ and 

nN−2r−2 → 0, then, for l = 0, 1,

where , l = 0, 1, , and 

.

If Equation , the variance vl(ul) can be simplified as  for l = 0, 1.

3. Hypothesis tests

3.1. Testing for nonparametric components

Our model can assess the interaction of the combined effect of multiple environmental 

exposures with genes. This can be achieved by testing the nonparametric component m1(·) to 

discover the change trend of the interaction of the combined environmental effect. We 

consider a test to detect whether m1(u1) is a linear function ,
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(3.1)

via a generalized likelihood ratio (GLR) test (Fan et al. (2001); Liang et al. (2010); Ma and 

Song (2015)). Rejecting H0 indicates statistical evidence of nonlinear interaction between G 
and multiple environmental mixtures. If we fail to reject H0, we can further assess whether 

there exists a genetic effect as well as linear interaction effect between a gene and multiple 

environmental exposures by fitting a parametric linear interaction model.

Remark 2—In addition to the linear hypothesis, we are interested in testing H0 : m1(·) = 0 

or H0 : m1(·) = c where c is a constant. Testing for zero or constant effect can be done under 

the varying-coefficient model proposed in Ma et al. (2011), this cannot be done in the 

current model setup due to the fact that the loading parameters β1 are not identifiable under 

the above nulls. If we fail to reject the null in hypotheses (3.1), we can fit a linear interaction 

model as , where no constraints on β1 are 

imposed. Then one can proceed to test  to assess the overall effect of G on 

Y. One can continue to assess the marginal effect of G on Y and the interaction effect 

between G and X or Z if  is rejected.

Consider (3.1). Let θ̂ be the BSBK estimate of θ proposed in Section 2.2. Let m̂l,H0(ul) and 

m ̂l,H1 (ul) be the estimators under H0 and H1, respectively. Let the residual sums of squares 

under H0 and H1 in (3.1) be  and 

, where Ŷi = Yi − α̂TZ̃
i. We 

define the generalized likelihood ratio (GLR) test statistic as

(3.2)

Let aK = {K(0) − 1/2 ∫ K2(u)du} [∫{K(u) − 1/2K * K(u)}du]−1, where K * K(u) denotes the 

convolution of K. Denote by Ωl the support of , and by |Ωl| the length of Ωl, l = 0, 1.

Theorem 5—If assumptions (A.1)–(A.6) in the Appendix hold, and nN4 → ∞ and 

nN−2r−2 → 0, then under H0 in (3.1), when  is a linear function of u1,

where , and . 

Furthermore, , where d1 = aKμ1n.
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When assessing the linear form of the function, RSS1(H0) and RSS1(H1) can be calculated 

by first getting the estimators of m0(·) and m1(·) using the B-spline method under the null 

and alternative hypotheses. The B-spline estimators under H0 are given by 

 and m̂1,H0(u1) = δ̂0 +δ̂1u1, where δ0̂, δ̂1, and λ0̂ are the ordinary least 

squares estimators of δ0, δ1, and λ0. Then, we can obtain the kernel estimator m̂0,H0(u0) 

based on the new data (ŶH0,X,Z,G) and , using the arguments in Section 2.3, where 

ŶH0 = (Ŷ1,H0, ⋯, Ŷn,H0)T and . Here m̂0,H1(·) and m̂1,H1(.) 

are the BSBK estimators which can be obtained as in (2.4).

To illustrate the testing for the case with l > 1, we consider a model with two genetic 

variables G1 and G2,

(3.3)

One can simultaneously test m1(·) and m2(·), for example, testing

(3.4)

where  and  are linear functions. Similarly, we can construct the corresponding 

GLR test statistic

(3.5)

where 

, 

and . Note that , l = 0, 1, 2, are different 

from those in T1, but the estimation is similar.

Theorem 6—If assumptions (A.1)–(A.6) in the Appendix hold, nN4 → ∞ and nN−2r−2 → 

0, then under H0 in (3.4), when  and  are linear functions,
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where , μ2n = bn{K(0) − 1/2 ∫ K2(u)du} and bn = 

Σl=1,2 |Ωl|/hl. Furthermore, , where  with .

Remark 3—The formulation of asymptotic normality in Theorem 6 is that in Fan and Jiang 

(2005). Theorem 6 can be generalized to cases where three or more genetic variables can be 

fitted and tested (l ≥ 3). One can apply Theorem 6 for simultaneous inference on the 

functions of some components of varying index coefficients. While the asymptotic results 

for T1 and T2 are available, they may not perform well when sample sizes are small. We 

recommend the conditional bootstrap method (Cai et al. (2000); Fan et al. (2001)) in 

applications.

3.2. Testing parametric components

We are also interested in assessing the interaction effects of genes with discrete 

environments. This can be addressed via parametric hypothesis testing. Furthermore, if there 

is G×E interaction, one may be interested in testing which index coefficients contribute to 

the joint effect. This results in another parametric hypothesis testing problem. We consider a 

class of general hypothesis testing problems with

(3.6)

where A is a known k × (q + s) full-rank matrix, s is the number of elements in S ⊂ {1, ⋯, 

p},  with βS = (βj1, ⋯, βjs)
T, jl ∈ S, and γ is a k-dimensional vector. For a 

special case, we can detect whether α1 and βS are zeros by taking

(3.7)

Let  be the parameters corresponding to θ under H0 in 

(3.7) and  be the counterparts under H1. Define the residual 

sums of squares under H0 and H1 as

where θ̂H0 and θ̂H1 are the estimators of θ under H0 and H1 proposed in Section 2.2, and 

m̂l,H0(·) and m̂l,H1 are estimators of ml(·) proposed in (2.4) under H0 and H1, l = 0, 1, 

respectively. We take the test statistic
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(3.8)

Theorem 7—If assumptions (A.1)–(A.6) in the Appendix hold, nN4 → ∞ and nN−2r−2 → 

0, then when σ(V) is a constant ,

i. under H0 in (3.6), ;

ii. under H1 in (3.6), T3 converges to a noncentral χ2 distribution with k 
degrees of freedom with noncentrality parameter ϕ = limn→∞ nσ2(Aζ − 

γ)T (AΣ−1A)−1(Aζ − γ), where Σ is defined as in Theorem 1.

4. Monte Carlo simulation

The finite sample performance of the proposed method was evaluated by simulation studies. 

Under model (2.1), we generated continuous X variables X1, X2, X3 as independent uniform 

U(0, 1) and discrete Z variables Z1, Z2 as independent Bernoulli Ber(1, 0.5). The genetic 

variable G was coded as (2, 1, 0) corresponding to genotypes (AA, Aa, aa). We set the minor 

allele frequency (MAF) pA = (0.1, 0.3, 0.5) and assumed Hardy-Weinberg equilibrium. SNP 

genotypes AA, Aa, and aa were simulated from a multinomial distribution with frequencies 

, 2pA(1 − pA) and (1 − pA)2, respectively. The error term ε was normal N(0, 0.1).

We set m0(u) = cos(πu) and m1(u) = sin{π(u − A)/(B − A)} with 

and , and , α0 = (0.5, 
0.5)T, and α1 = (0.3, 0.3)T. We drew 1000 data sets with sample size n = 200, 500. The 

Epanechnikov kernel K(t) = 0.75(1 − t2)+ was chosen to localize the unknown functions 

m0(·) and m1(·). The suitable smoothing bandwidths for estimating both functions were 

selected using the EBBS method described in Section 2.3. The number of interior knots Nk 

was selected by the BIC method.

4.1. Performance of estimation

Table 1 summarizes the average bias of the estimators (Bias), the standard deviation of the 

1000 estimators (SD), the average of the estimated standard errors (SE) based on the 

theoretical calculation, and the estimated coverage probability (CP) at the nominal 95% 

confidence level for the parameters. In general, the coverage probability for all the 

parameters was close to 95% and reasonably controlled. As the sample size increased, the 

performance of the parameter estimators improved. We observed consistently smaller SD 

and SE when n increased from 200 to 500. The same trend was observed when n increased 

to 1000 (see Supplementary Materials for more details). The parameter estimators for the 

interaction effects (β1, α1) improved as MAF increased. For example, the SD of β̂11 went 

from 0.028 to 0.012 when MAF increased from 0.1 to 0.5 under a fixed sample size n = 200. 

However, the estimators for the main effects (β0,α0) showed an opposite direction due to 

limited data information to estimate these parameters when MAF increased. This is due to 
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the fact that the amount of data used to estimate these parameters is proportional to (1 − 

pA)2.

Figure 1 shows the plot of the estimators of m1(u1), and its corresponding confidence bands 

under different sample sizes and MAFs in the interval of u1 from 0.25 to 1.25. It can be there 

seen that the estimated curves almost overlap with the corresponding true curves, and the 

confidence bands are very tight, especially under large MAF and sample size. We also 

plotted the estimate of m0(·), see the Supplementary Materials.

4.2. Performance of hypothesis tests

We first evaluated the performance of the test for the nonparametric function under the 

hypothesis , where , and δ0 and δ1 are some constants. 

Power was evaluated under a sequence of alternative models indexed by τ, 

. When τ = 0, the test results provide the false positive 

rates. The null model corresponds to a linear G×E effect.

Figure 2 shows the size (τ = 0) and power function (τ > 0) at significance level 0.05 based 

on 500 Monte Carlo simulations each with 500 bootstrap samples under sample sizes n = 

200, 500, 1000. The empirical type I errors under the three scenarios are very close to the 

nominal level 0.05. We observed dramatic power increase when MAF increased from 0.1 to 

0.3 in all scenarios. The results indicate that our method can reasonably control the false 

positives and has appropriate power to detect genetic difference. We also considered the 

PLVMICM model in (3.3) with two genetic components and tested if both m1(·) and m2(·) 

are simultaneously linear, following Theorem 6. The results are in the Supplemental 

Materials.

To check the performance of the interaction test between G and discrete variable Z, under 

model (2.1), we considered the hypothesis H0 : α1 = 0. The power of the test was evaluated 

under a sequence of alternatives indexed by τ, . Data were simulated as in the 

previous section. Figure 3 depicts the empirical size (τ = 0) and power functions (τ > 0) 

under different sample sizes and MAFs at the 0.05 significance level. As expected, the 

power and size improve as MAF and sample size increase. Under low MAF (pA = 0.1), the 

size is a little inflated when n is small (200 and 500), but is well controlled when n increases 

to 1000. As tith the nonparametric test, dramatic power improvement is observed when 

MAF increases from 0.1 to 0.3. The power difference between MAF=0.3 and MAF=0.5 is 

small indicating good performance of the test.

5. A case study

We applied the proposed PLVMICM model to a data set from the Gene Environment 

Association Studies initiative (GENEVA, http://www.genevastudy.org) funded by the trans-

NIH Genes, Environment, and Health Initiative (GEI), to show the utility of the method. 

Low and high birth weights are not only the major causes of neonatal morbidity and 

mortality, but are also related to increased risk of metabolic diseases later in life. Fetal 

growth is determined by fetal genes as well as complex interactions between fetal genes and 

the maternal uterine environment. We focused on the Thai population with 1126 subjects 
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genotyped with the Omni1-Quad v1-0 B platform after removing outliers. After regressing 

the baby’s body weight on twelve environmental variables, including nine continuous and 

three discrete variables, five continuous variables and one discrete variable remained 

significant at the 0.0001 significance level. Three of the five continuous variables were 

chosen, including mother’s mean OGTT diastolic blood pressure (denoted as X1), mother’s 

one hour OGTT glucose level (denoted as X2), and mother’s mean OGTT systolic blood 

pressure (denoted as X3). The discrete variable, denoted as Z, is baby’s gender. To show the 

utility of the method, we picked one candidate gene CDKAL1 for a demonstration. The gene 

is located on chromosome 6 and contains 192 SNPs after removing those with MAF< 0.05. 

Low birth weight has been shown to be associated with high risk in type 2 diabetes later in 

life. Evidence of genetic studies on type 2 diabetes loci suggests that this gene is associated 

with reduced birth weight in Caucasian populations (Zhao et al. (2009); Andersson et al. 

(2010)). Our goal is to evaluate whether this gene also functions in the Thai population and, 

if so, how SNPs in the gene interact with mother’s condition (considered as environment) to 

affect birth weight and further determine the interaction mechanism.

We first tested whether any SNP is associated with birth weight based on the nonparametric 

test of H0 : m1(u1) = δ0 + δ1u1 with p-value denoted by pm1. Since we tested each SNP 

individually, we applied a simple multiple testing correction method. We first calculated the 

effective number of tests E0 by using the Cheverud estimation method, given by 

, where L = 192 is the total number of SNPs and rij are the 

pairwise correlation coefficients of SNPs (Cheverud (2001)). The estimated E0 = 188.09, 

which yields a gene-wide significance level of α = 0.01/E0 = 5.3 × 10−5. Figure 4 depicts the 

−log10(p-values). Clearly, six SNPs rs16884481 rs10946428, rs6904348, rs10806925, 

rs9465873, and rs12662218 passed the significance level based on 105 bootstrap samples.

The testing results for the six SNPs are reported in Table 2. We report SNP ID, MAF, allele 

information with bold font letter as the minor allele, p-values for the nonparametric test 

(described in Section 4.2). We also report the p-value of the test H0 : β0 = β1 v.s. H1 : β0 ≠ 

β1 in the column labeled by pβ as opposed to the model by Ma and Xu (2015) based on the 

generalized likelihood ratio test in Section 3.2. The p-value of the parametric test H0 : α1 = 0 

is reported in the column labeled by pα1 following the procedure described in Section 4.2. 

To compare the goodness of fit for PLVMICM with an additive varying-coefficient model 

(AVCM), , and to see the 

relative gain by the integrative analysis, we calculated the MSEs of both models; they are 

given in the last two columns of Table 2. The p-values for testing H0 : m11(X1) = m12(X2) = 

m13(X3) = 0 when fitting the AVCM model are reported in the column labeled by pAVCM.

The p-values in column pβ for the comparison of different model assumptions clearly show 

that the loading parameters are different for different index functions, indicating the 

necessity of the proposed model vs the one proposed by Ma and Xu (2015). The p-values in 

column pα1 indicate that SNP×gender interactions are not significant for these six SNPs. 

The goodness of fit measure in the last two columns shows that the PLVMICM model fits 

the data better than the AVCM model, indicating the potential benefit of integrative G×E 
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analysis. Furthermore, the testing p-values for the AVCM model do not show significance. 

The results imply that the genetic effects of these six SNPs are modified by the mixture 

effect of the three X variables, rather than separately, which further indicate the power of the 

integrative analysis.

For the 186 SNPs that were rejected, we fitted the model assuming m1(u1) = δ0 + δ1u1, 

assuming linear G×E interaction, then testing H0 : δ0 = δ1 = 0. No SNPs showed signs of 

significance at the 5.3E-05 significant level. The most significant SNP was rs12209806 with 

a p-value of 6.72E-05. This indicates that there is no linear interaction between these SNPs 

and the three environmental variables. However, there are four SNPs, rs12196595, 

rs6908425, rs6917599, and rs7773189 showing interactions with gender based on pα1 for 

the 186 SNPs; the p-values were 6.12E-08, 1.89E-07, 3.69E-07, and 1.61E-05, respectively.

We tested the significance of the individual X variable that contributes to the joint effect 

following the procedure given in Section 3.2. The results showed that X1 and X2 contribute 

significantly to the joint effect in these six SNPs, but not X3 (see Table S2 in Supplementary 

Materials). The estimators of the nonparametric function m1(u1) for the first two SNPs, 

rs16884481 and rs10946428 along with their 95% confidence band are given in Figure 5. 

The estimators for the other four SNPs are shown in Section 3 in Supplementary Materials 

due to space limit. The estimated function shows a decreasing pattern then slightly increases 

as the index value u1 increases. Our model clearly reveals the nonlinear modulating effect of 

environmental mixtures on genetic effect of birth weight. Such dynamic effects can be 

helpful in designing prevention strategy when the model is applied to other complex diseases 

such as diabetes.

6. Discussion

G×E interaction has been studied intensively in the literature and many statistical methods 

have been proposed. In this paper, we developed a partially linear varying multi-index 

coefficient model (PLVMICM) to conduct a rigorous assessment of the combined effect of 

multiple environmental exposures on the risk of disease under the paradigm of G×E 

interaction. Our model can be interpreted as a systems genetics approach to modeling the 

joint effect of environmental mixtures as a whole, then assessing how the integrative effect 

modifies genetic influence on disease risk. Our model is biologically attractive in that it 

addresses a long-term question on G×E interaction from a systems genetics perspective and 

is well supported by epidemiological studies (Carpenter et al. (2002); Monosson (2005); 

Powers et al. (2008)); and it has the flexibility to detect nonlinear interactions, and therefore, 

is more powerful when genetic effects are nonlinearly modified by simultaneous exposure to 

multiple environments.

From a statistical point of view, the index coefficient function treats multiple environmental 

variables X as a single index variable, and therefore can reduce multiple testing burden when 

interactions between the X variables and G are modelled separately. In addition, when there 

exist interactions between the X variables, our model has the flexibility to incorporate such 

interactions by adding interaction terms to the index function. PLVMICM is flexible and 

includes several existing models as special cases, for example, the partially linear single-
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index model (Carroll et al. (1997); Xia and Li (1999); Xia and Hardle (2006); Liang et al. 

(2010); Cui et al. (2011)) and the nonparametric additive model discussed by Fan and Jiang 

(2005).

In a typical G×E study, there are usually a large number of genetic variables (e.g., SNPs), 

and it is important to fit multiple SNPs in a single model and to select important players that 

interact with environmental mixtures to affect disease risk in a high dimensional model 

setup. In addition, many human diseases are measured on a binary scale. It is natural to 

extend the current PLVMICM model to a generalized PLVMICM model framework. This 

will be considered in a future investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Proofs

Notations

For any vector ξ = (ξ1, ⋯, ξs)T ∈ ℛs, let ||ξ||∞ = max1≤l≤s |ξl|. For any nonzero matrix As×s, 

denotes its Lr norm as . For any matrix , let 

. Let C(p)[a, b] = {ψ : ψ(p) ∈ C[a, b]} be the space of the pth-

order smooth functions. Denote the space of Lipschitz continuous functions for any fixed 
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constant c0 as Lib([a, b], c0) = {ψ : | ψ(x1) − ψ(x2)| ≤ c0|x1−x2|, ∀x1, x2 ∈ [a, b]}. The 

following assumptions are required.

A.1 For each l = 0, 1, the density function fU(βl)(·) of random variable 

is bounded away from 0 on Ωl, and there exists a constant 0 < c0 < ∞ such that 

fU(βl)(·) ∈ Lib([a, b], c0) for βl in the neighborhood of , where 

 and  is a compact support of X.

A.2 The nonparametric function ml ∈ C(r)[al, bl], l = 0, 1.

A.3 The noise ε satisfies E(ε|V) = 0, E(|ε|4) < ∞ and σ(v) = var(ε|V = v) < c1 for 

some 0 < c1 < ∞.

A.4 There exist constants 0 < cz ≤ Cz < ∞ such that cz ≤ Q(x) = E(Z̃Z̃T |X = x) ≤ 

Cz for all x ∈ .

A.5 The kernel function K(·) is a symmetric density function with compact support 

[−1, 1] and K ∈ Lib([a, b], cK) for some constant cK. The bandwidth hl = 

O(n−1/5), l = 0, 1.

A.6 The function u3K(u) and u3K′(u) are bounded and ∫ u4K(u)du < ∞.

Let , Yz = (Yz,1, ⋯, Yz,n)T, e = (ε1, ⋯, εn)T,  = (X1, ⋯, Xn)T, ℤ 
= (Z1, ⋯, Zn)T, ℤ̃ = (1n, ℤ), and G = (G1, ⋯, Gn)T. Define

(A.1)

where Di(β) = (Di,sl(βl), 1 ≤ s ≤ Jn, l = 0, 1)T and D(β) = (D1(β), ⋯, Dn(β))T, an n × 2Jn 

matrix.

Proof of Theorem 1

This is a straightforward result of Lemma S.6 in the Supplementary Materials.

Proof of Theorem 2

For simplicity, we assume [al, bl] = [a, b] for l = 0, 1. Since for any ul ∈ [al, bl], Bs,l(ul), s = 

1, ⋯, Jn, l = 0, 1, have bounded first derivatives, by Lemmas S.4 and S.5 in the 

Supplementary Materials and Theorem 1, we have for any ul ∈ [a, b],
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Then, combined with Lemma S.4, we have

This completes the proof of Theorem 2.

Proof of Theorem 4

As nh5 = O(1), we have (nhl)1/2n−2/5 = o(1). By Theorem 3, we have

Thus Theorem 4 can be shown straightforwardly following Lemma S.7 in the 

Supplementary Materials.

Proof of Theorem 7

This proof is similar to that of Liang et al. (2010). Accordingly, we only provide a sketch of 

the proof here, more details can be found in the Supplementary Materials. We first prove 

n−1R(H1) = E{σ(V)}+op(1). Let m̂(X, β) = m̂0(XTβ0, β) + m̂1(XTβ1, β)G and, 

correspondingly, . By Theorem 3 and Lemma S.

7 in the Supplementary Materials, n−1R(H1) can be decomposed as

where , 

and . It is easy to see by the Law of Large Numbers that 1 = E{σ(V)} + 

Op(n−1/2). By Theorem 2.6 in Li and Racine (2007), we have maxi | m̂O(Xi, β0) − m(Xi, β0)| 

= Op((log(n)/(nh))1/2), which results in 2 = Op((log(n)/(n2h))1/2) and 3 = Op(log(n)/(nh)). 

This leads to n−1R(H1) = E{σ(V)} + op(1).

The difference R(H0) − R(H1) can be decomposed as
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Under the null, we have , and under the alternative σ−2
4 asymptotically follows 

a noncentral Chi-squared distribution with k degrees of freedom and noncentrality parameter 

ϕ. It remains to show that 5 = op(1). This can be shown along the same lines as 4. This 

completes the proof of Theorem 7.

The proofs of Theorem 3, 5, and 6 are in the Supplementary Materials.
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Figure 1. 
The estimation of function m1(·) under different MAFs and sample sizes. The estimated and 

true functions are denoted by the solid and dashed lines, respectively. The 95% confidence 

band is denoted by the dotted-dash line.
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Figure 2. 
The empirical size and power function of testing nonparametric function m1(·) under 

different sample sizes and MAFs.
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Figure 3. 
The empirical size and power functions of testing H0 : α1 = 0 under differen sample sizes 

and MAFs.
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Figure 4. 
Plot of −log10(p-value) for SNPs within gene CDKAL1.
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Figure 5. 
Plot of the estimate (solid curve) of the nonparametric function m1(u1) for SNPs rs16884481 

and rs10946428 along with their 95% confidence band (dash-dotted line).

Liu et al. Page 25

Stat Sin. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 26

Ta
b

le
 1

Si
m

ul
at

io
n 

re
su

lts
 f

or
 p

A
 =

 0
.1

, 0
.3

, 0
.5

 w
ith

 s
am

pl
e 

si
ze

 n
 =

 2
00

, 5
00

.

n
P

ar
am

T
ru

e

p A
 =

 0
.1

p A
 =

 0
.3

p A
 =

 0
.5

B
ia

s
SD

SE
C

P
B

ia
s

SD
SE

C
P

B
ia

s
SD

SE
C

P

20
0

α 0
1

0.
50

0
4.

4E
-0

4
0.

01
6

0.
01

6
95

.2
3.

1E
-0

4
0.

02
0

0.
02

0
95

.2
9.

9E
-0

4
0.

02
6

0.
02

6
95

.1

α 0
2

0.
50

0
−

1.
6E

-0
4

0.
01

6
0.

01
6

95
.3

4.
1E

-0
4

0.
02

0
0.

02
0

95
.3

5.
6E

-0
4

0.
02

6
0.

02
6

95
.8

α 1
1

0.
30

0
9.

4E
-0

5
0.

04
0

0.
03

9
94

.1
6.

0E
-0

4
0.

02
4

0.
02

4
94

.1
6.

7E
-0

5
0.

02
2

0.
02

2
95

.2

α 1
2

0.
30

0
−

1.
1E

-0
3

0.
04

0
0.

03
9

95
.0

−
1.

1E
-0

3
0.

02
3

0.
02

4
95

.9
−

4.
4E

-0
4

0.
02

1
0.

02
2

96
.3

β 0
1

0.
62

0
−

3.
7E

-0
4

0.
01

1
0.

01
1

94
.7

−
1.

7E
-0

3
0.

01
2

0.
01

3
94

.8
−

2.
1E

-0
3

0.
01

4
0.

01
4

94
.5

β 0
2

0.
55

5
3.

3E
-0

4
0.

01
2

0.
01

2
95

.3
1.

0E
-0

3
0.

01
3

0.
01

3
96

.4
1.

5E
-0

3
0.

01
4

0.
01

5
96

.6

β 0
3

0.
55

5
−

2.
7E

-0
4

0.
01

2
0.

01
2

94
.0

4.
2E

-0
4

0.
01

3
0.

01
3

95
.3

3.
1E

-0
4

0.
01

5
0.

01
5

95
.4

β 1
1

0.
57

7
1.

4E
-0

3
0.

02
8

0.
02

7
92

.9
−

4.
0E

-0
4

0.
01

5
0.

01
5

95
.5

−
7.

5E
-0

5
0.

01
2

0.
01

2
95

.1

β 1
2

0.
57

7
−

3.
4E

-0
4

0.
02

9
0.

02
8

93
.5

9.
5E

-0
5

0.
01

5
0.

01
5

95
.3

2.
9E

-0
4

0.
01

1
0.

01
2

96
.2

β 1
3

0.
57

7
−

3.
2E

-0
3

0.
02

8
0.

02
7

94
.3

−
2.

6E
-0

4
0.

01
5

0.
01

5
96

.1
−

5.
7E

-0
4

0.
01

2
0.

01
2

96
.0

50
0

α 0
1

0.
50

0
−

3.
2E

-0
4

0.
01

0
0.

01
0

95
.8

−
5.

5E
-0

4
0.

01
2

0.
01

2
95

.2
−

4.
0E

-0
4

0.
01

6
0.

01
6

96
.1

α 0
2

0.
50

0
1.

9E
-0

4
0.

01
0

0.
01

0
94

.1
2.

0E
-0

4
0.

01
3

0.
01

2
94

.2
3.

8E
-0

4
0.

01
6

0.
01

6
94

.6

α 1
1

0.
30

0
5.

6E
-0

4
0.

02
3

0.
02

2
93

.7
9.

9E
-0

4
0.

01
5

0.
01

4
93

.8
6.

5E
-0

4
0.

01
3

0.
01

3
94

.5

α 1
2

0.
30

0
1.

2E
-0

5
0.

02
3

0.
02

2
94

.0
2.

6E
-0

4
0.

01
5

0.
01

4
93

.8
2.

0E
-0

4
0.

01
3

0.
01

3
94

.1

β 0
1

0.
62

0
−

4.
6E

-0
4

0.
00

7
0.

00
7

95
.2

−
1.

0E
-0

3
0.

00
8

0.
00

8
95

.7
−

1.
2E

-0
3

0.
00

9
0.

00
9

94
.9

β 0
2

0.
55

5
1.

2E
-0

4
0.

00
7

0.
00

7
95

.5
4.

3E
-0

4
0.

00
8

0.
00

8
95

.1
5.

5E
-0

4
0.

00
9

0.
00

9
95

.1

β 0
3

0.
55

5
2.

6E
-0

4
0.

00
7

0.
00

7
94

.2
5.

2E
-0

4
0.

00
8

0.
00

8
94

.1
5.

2E
-0

4
0.

00
9

0.
00

9
94

.4

β 1
1

0.
57

7
5.

2E
-0

4
0.

01
5

0.
01

6
95

.0
3.

0E
-0

5
0.

00
9

0.
00

9
96

.6
−

8.
5E

-0
6

0.
00

7
0.

00
7

95
.9

β 1
2

0.
57

7
−

3.
4E

-0
4

0.
01

6
0.

01
6

94
.0

−
8.

0E
-0

6
0.

00
9

0.
00

9
95

.6
1.

0E
-0

4
0.

00
7

0.
00

7
96

.3

β 1
3

0.
57

7
−

8.
3E

-0
4

0.
01

6
0.

01
6

94
.5

−
2.

3E
-0

4
0.

00
9

0.
00

9
95

.2
−

2.
3E

-0
4

0.
00

7
0.

00
7

94
.8

Stat Sin. Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 27

Ta
b

le
 2

L
is

t o
f 

SN
Ps

 w
ith

 M
A

F,
 a

lle
le

, p
-v

al
ue

s 
un

de
r 

di
ff

er
en

t h
yp

ot
he

si
s 

te
st

in
g 

an
d 

M
SE

SN
P

 I
D

M
A

F
A

lle
le

s

p-
va

lu
e

M
SE

p m
1

p β
p α

1
p A

V
C

M
P

LV
M

IC
M

A
V

C
M

rs
16

88
44

81
0.

19
60

C
/T

≤1
.0

E
-0

5
5.

1E
-0

4
0.

25
17

0.
17

99
0.

13
42

0.
14

02

rs
10

94
64

28
0.

27
44

A
/G

≤1
.0

E
-0

5
1.

5E
-0

5
0.

09
60

0.
12

27
0.

13
33

0.
13

99

rs
69

04
34

8
0.

27
66

A
/C

≤1
.0

E
-0

5
1.

9E
-0

5
0.

08
69

0.
13

58
0.

13
34

0.
13

99

rs
10

80
69

25
0.

47
61

C
/T

2.
0E

-0
5

2.
2E

-0
6

0.
36

71
0.

27
33

0.
13

40
0.

14
05

rs
94

65
87

3
0.

45
03

A
/G

3.
0E

-0
5

6.
5E

-0
6

0.
49

11
0.

25
62

0.
13

40
0.

14
03

rs
12

66
22

18
0.

27
19

A
/G

5.
0E

-0
5

5.
4E

-0
6

0.
28

02
0.

46
16

0.
13

45
0.

14
08

Stat Sin. Author manuscript; available in PMC 2017 July 01.


	Abstract
	1. Introduction
	2. Estimation Procedures
	2.1. Estimation Procedures
	2.2. Parameter estimation
	2.3. Kernel estimator of nonparametric functions
	Remark 1

	2.4. Theoretical results
	Theorem 1
	Theorem 2
	Theorem 3
	Theorem 4


	3. Hypothesis tests
	3.1. Testing for nonparametric components
	Remark 2
	Theorem 5
	Theorem 6
	Remark 3

	3.2. Testing parametric components
	Theorem 7


	4. Monte Carlo simulation
	4.1. Performance of estimation
	4.2. Performance of hypothesis tests

	5. A case study
	6. Discussion
	References
	Appendix: Proofs
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

