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The sarcoendoplasmic reticulum (ER) Ca?* ATPase 2
(SERCA2) pump is a P-type ATPase tasked with the
maintenance of ER Ca>* stores. Whereas -cell SERCA2
expression is reduced in diabetes, the role of SERCA2 in
the regulation of whole-body glucose homeostasis has
remained uncharacterized. To this end, SERCA2 hetero-
zygous mice (S2HET) were challenged with a high-fat
diet (HFD) containing 45% of kilocalories from fat. After
16 weeks of the HFD, S2HET mice were hyperglycemic
and glucose intolerant, but adiposity and insulin sensi-
tivity were not different between HFD-fed S2HET mice
and HFD-fed wild-type controls. Consistent with a defect
in B-cell function, insulin secretion, glucose-induced cyto-
solic Ca®* mobilization, and the onset of steady-state
glucose-induced Ca?* oscillations were impaired in HFD-
fed S2HET islets. Moreover, HFD-fed S2HET mice exhibited
reduced B-cell mass and proliferation, altered insulin pro-
duction and proinsulin processing, and increased islet ER
stress and death. In contrast, SERCA2 activation with a
small molecule allosteric activator increased ER Ca2*
storage and rescued tunicamycin-induced g3-cell death.
In aggregate, these data suggest a critical role for SERCA2
and the regulation of ER Ca%* homeostasis in the p-cell
compensatory response to diet-induced obesity.

Type 2 diabetes (T2D) is a metabolic disorder affecting more
than 415 million individuals worldwide that is characterized

by peripheral insulin resistance and inadequate insulin
secretion from the pancreatic B-cell (1). During the de-
velopment of T2D and in the face of advancing periph-
eral insulin resistance, the B-cell undergoes a functional
and proliferative compensatory response to increase in-
sulin output and maintain euglycemia. The ability of the
B-cell to continue in this extended state of compensation is
finite for a substantial proportion of individuals, and the
typical evolution to T2D is characterized by loss of pancre-
atic B-cell function, mass, and, possibly, identity (2,3).

As a secretory endocrine cell, the B-cell relies on a
highly developed and active endoplasmic reticulum (ER)
to ensure that insulin is robustly produced and efficiently
folded. Notably, the ER also serves as a dominant intra-
cellular store of Ca®*, and the intraluminal ER Ca®* con-
centration is estimated to be ~30-300 pwmol/L, an amount
at least three orders of magnitude higher than cytosolic Ca®*
(4,5). The integrity of this transmembrane Ca%* gradient
is maintained largely through activity of the sarco-ER Ca®*
ATPase 2b (SERCA2b) pump that actively transports two
Ca®" ions into the ER lumen during each catalytic cycle (6).
Within the ER, Ca* serves as a critical cofactor for protein
chaperones and foldases, whereas B-cell insulin secretion
is patterned by a dynamic cross talk between the ER and
cytosolic Ca®* pools (7-9).

To date, at least 14 different SERCA isoforms have
been identified in mammals (10). We previously showed
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SERCAZ2b is the most prevalent isoform expressed in the
pancreatic islet (11). Moreover, we and others have dem-
onstrated significantly reduced islet SERCA2b expression
and activity under diabetic and inflammatory conditions
(11-14). However, the role of SERCA?2 in the regulation
of whole-body glucose homeostasis remains largely un-
characterized. To this end, mice with whole-body SERCA2
heterozygous deficiency (S2HET) were challenged with a
high-fat diet (HFD), and metabolic analysis was performed.
Here, we show that SERCA2 deficiency, which occurs in
human Darier-White disease (15), leads to glucose intol-
erance, decreased insulin secretion, reduced B-cell prolifer-
ation, and increased (-cell ER stress. Together, these data
suggest a critical role for SERCA2 activity and the mainte-
nance of B-cell ER Ca’* homeostasis in the compensatory
response to diet-induced obesity and raise the possibility
that individuals with Darier-White disease may have an
increased susceptibility to metabolic disease.

RESEARCH DESIGN AND METHODS

Animal, Islet, and Cell-Based Studies
S2HET mice were developed by Gary E. Shull (University
of Cincinnati), backcrossed onto a C57BL6/J background
for at least 10 generations, and maintained under protocols
approved by the Indiana University Institutional Animal Care
and Use Committee. Male S2HET mice and wild-type (WT)
littermate controls were fed an HFD containing 45% of
kilocalories from fat (Harlan Laboratories, Indianapolis, IN)
beginning at 8 weeks of age. Intraperitoneal glucose tolerance
tests (IPGTT) and oral glucose tolerance tests (OGTT) were
performed after 6 h of fasting and administration of glucose
at a dose of 2 g/kg total body weight. Insulin tolerance tests
were performed after a 5- to 6-h fast and administration of
regular human insulin at a dose of 0.75 IU/kg of total body
weight. To assess insulin signaling, mice were fasted for 6 h
and injected intraperitoneally with insulin (10 IU/kg of total
body weight) or saline. After 10 min, liver, epididymal adi-
pose, and gastrocnemius skeletal muscle tissue were harvested
for immunoblot. Glucose levels were measured using the
AlphaTRAK glucometer (Abbott Laboratories, Abbott Park,
IL). Serum insulin and proinsulin levels were measured using
ELISAs from Crystal Chem (Chicago, IL) and ALPCO Diagnos-
tics (Salem, NH), respectively. DEXA analysis was performed
to estimate body composition using the Lunar PIXImus II (GE
Medical Systems) mouse DEXA. To assess [3-cell death, drop-
let digital PCR was used to measure serum levels of unmethy-
lated insulin DNA using a QX200 Droplet Digital PCR System
from Bio-Rad Laboratories, as previously described (16).
B-Cell mass and proliferation were assessed as detailed
previously (17) using the antibodies outlined in Supplemen-
tary Table 1. Mouse pancreatic islets were isolated by colla-
genase digestion as previously described (18). Isolated islets
were fixed in 2% glutaraldehyde and 4% paraformaldehyde
in 0.1 mol/L sodium cacodylate buffer and transferred to
the Advanced Electron Microscopy Facility at the University
of Chicago to generate transmission electron micrographic
images. The relative percentages of mature, immature, and
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rod-like secretory granules were quantitated manually using
ImageJ software, as previously described (19).

A clustered regularly interspaced short palindromic re-
peats (CRISPR)/Cas 9 technique was used to produce an
SERCA2 knockout (KO) INS-1 832/13 cell line in the
Genome Engineering Center (GEC) at Washington Univer-
sity in St. Louis (St. Louis, MO). For SERCA2b rescue
studies, KO and parent INS-1 cells were transduced with an
adenovirus expressing SERCA2b or LacZ (12). INS-1 cells or
mouse islets were cultured in RPMI containing 25 mmol/L
glucose and 500 wmol/L BSA-conjugated palmitate for 24 h
to mimic the diabetic milieu (20). The Promega CellTiter-Glo
Luminescent Cell Viability Assay (Madison, WI) was used
according to the manufacturer’s instructions.

Glucose-stimulated insulin secretion (GSIS), immunoblot,
and immunofluorescence in cultured INS-1 cells and isolated
mouse islets were performed as previously described (11,12).
Quantitative real-time PCR was performed using previously
published primer sequences (11) or the primers outlined in
Supplementary Table 2. CDN1163 was a gift from Djamel
Lebeche (Icahn School of Medicine at Mount Sinai).

Cytosolic and ER Ca®* Imaging

Cytosolic Ca®* dynamics in INS-1 cells were assessed using
the FLIPR Calcium 6 Assay Kit (Molecular Devices, Sunny-
vale, CA), as previously described (13). The ratiometric Ca%*
indicator fura-2-acetoxymethylester (Fura-2 AM) (Life Tech-
nologies) was used for islet cytosolic Ca>* imaging experi-
ments using a Zeiss Z1 microscope, as previously published
(21). To directly image ER Ca”* in individual B-cells, mouse
islets were dispersed with Accutase (Innovative Cell Technol-
ogies, Inc., San Diego, CA), and 10° dispersed islets cells
were seeded in imaging dishes pretreated with poly-L-lysine
(Sigma-Aldrich, St. Louis, MO). Dispersed islets and INS-1
cells were transduced with the ER-directed Ca®* biosensor
DA4ER adenovirus, and fluorescence lifetime imaging micros-
copy (FLIM) was used to monitor ER Ca* levels in accor-
dance with previously published protocols (12).

Statistical Analysis

Differences between groups were analyzed for significance
using the unpaired Student t test or one-way ANOVA
with Tukey-Kramer post hoc analysis. Results are reported
as the means = SEM. GraphPad Prism software (GraphPad
Software, Inc., La Jolla, CA) was used for data analysis. A
P value < 0.05 was taken to indicate the presence of a
significant difference between groups.

RESULTS

Whole-Body SERCA2 Haploinsufficiency Leads to
Impaired Glucose Tolerance in Response to Diet-
Induced Obesity

To define the role of SERCA2 in the compensatory re-
sponse to diet-induced obesity, S2ZHET and WT mice were
challenged with an HFD containing 45% of kilocalories
from fat beginning at 8 weeks of age. Islet SERCA2 levels
were suppressed by the expected 50% before (PreHFD) and
after the HFD, and no changes in SERCA3 protein or mRNA
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expression were observed (Fig. 1A-C). Moreover, the per-
centage of lean and fat mass was identical between groups
PreHFD and after HFD, and temporal patterns of weight
gain in response to HFD were no different between geno-
types (Fig. 1D and E). In contrast, after HFD, S2HET mice
demonstrated significantly higher fasting blood glucose lev-
els and lower fed insulin levels compared with HFD-fed WT
controls (Fig. 1F and G).

WT and S2HET mice were challenged with intraperito-
neal or oral glucose (IPGTT and OGTT) before and/or after
16 weeks of the HFD. Although no differences in glucose
tolerance were observed at baseline between PreHFD-
S2HET and WT mice, glucose tolerance in both groups
was significantly worsened by the HFD. Furthermore, in
response to both the intraperitoneal and oral glucose chal-
lenge, HFD-fed S2HET mice exhibited significantly increased
glucose excursions and reduced glucose tolerance compared
with HFD-fed WT controls, as assessed by area under the
curve analysis (Fig. 1H-K).

Although insulin tolerance tests revealed significantly
decreased insulin sensitivity after the HFD in both S2HET
and WT mice, no differences were observed between geno-
types (Fig. 2A and B). Next, levels of AKT phosphorylation at
serine 473 in the epididymal adipose tissue, liver, and gas-
trocnemius skeletal muscle were measured after acute insulin
or saline administration. Again, no differences were observed
between HFD-fed S2HET and WT mice (Fig. 2C-E).

SERCA2 Deficiency Results in Impaired GSIS

Initial analysis of HFD-fed S2HET mice revealed hypergly-
cemia, reduced serum insulin levels, and impaired glucose
tolerance without apparent alterations in insulin sensi-
tivity or adiposity, suggesting a primary defect in (-cell
function. To define further the (-cell phenotype associ-
ated with in vivo SERCA2 deficiency, insulin levels were
measured in HFD-fed S2ZHET and WT controls after a 5-h
fast and 10 min after an intraperitoneal glucose injection.
In response to the glucose challenge, serum insulin levels
were significantly lower in the HFD-fed S2HET mice than
in the HFD-fed WT controls (Fig. 34). Similar to in vivo
findings, results from ex vivo GSIS assays revealed a sig-
nificant decrease in insulin secretion in islets isolated from
HFD-fed S2HET mice (Fig. 3B).

SERCA2 Deficiency Leads to Impaired Islet Ca%*
Homeostasis

Next, Ca®* imaging experiments using Fura-2 AM were
performed in islets isolated from PreHFD and HFD-fed
WT and S2HET mice. PreHFD, no differences in baseline
cytosolic Ca®* levels were observed between S2HET and WT
islets. However, baseline cytosolic Ca?* levels were increased
by the HED in both genotypes, with S2HET islets exhibiting
a significantly larger increase in baseline cytosolic Ca®* (Fig.
4A-C). The HFD also induced a significant delay in the
onset of steady-state cytosolic Ca®" oscillations in response
to glucose (phase 1 duration) in both WT and S2HET islets.
Again, compared with PreHFD-S2HET and WT islets and
HFD-fed WT islets, HFD-S2HET islets exhibited a significantly
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longer phase 1 duration (Fig. 4D). The HFD similarly in-
creased the initial glucose-stimulated Ca®* response (phase
1 amplitude; AF1) in WT islets. However, the phase 1 am-
plitude was blunted in HFD-S2HET islets compared with
islets from HFD-fed WT controls (Fig. 4E). The amplitude
of the oscillatory response (relative oscillatory amplitude;
AF2) was not significantly different between groups (Fig.
4F). To assess the response to another secretagogue, islets
from HFD-fed WT and S2HET mice were treated with
30 mmol/L KCl. Similar to the AF1 response to glucose,
Ca”* mobilization in response to KCl was also decreased in
islets isolated from HFD-S2HET mice (Fig. 4G and H).

FLIM was next used to monitor directly ER Ca®* levels
in dispersed islets from PreHFD-WT and S2HET mice. Dis-
persed islets were transduced with an adenovirus encoding
the D4ER Ca?* biosensor probe (9) and then treated for
48 h with or without 25 mmol/L glucose and 500 pwmol/L
BSA-conjugated palmitate (control or glucolipotoxicity [GLT])
to mimic in vivo HFD conditions. FLIM was used to mon-
itor the change in donor lifetime that results from Ca®*
binding to the biosensor. Analysis revealed lower ER Ca”*
levels in S2HET B-cells, as indicated by the reduced change
in the donor lifetime of the biosensor, and this was further
exacerbated by GLT (Fig. 41 and J).

SERCA2 Deficiency Results in Altered Insulin
Production, Processing, and Packaging
To test whether changes in 3-cell calcium homeostasis were
sufficient to affect insulin biosynthesis, total insulin con-
tent and insulin mRNA levels were measured in isolated
islets, and both were found to be significantly reduced in
HFD-fed S2HET mice compared with HFD-fed WT controls
(Fig. 5A and B). Furthermore, compared with HFD-fed WT
controls, HFD-fed S2HET mice exhibited a nearly threefold
increase in the serum proinsulin-to-insulin ratio (Fig. 5C),
suggesting a parallel decrease in proinsulin maturation.
Insulin granule morphology was next assessed by quan-
titative analysis of islet electron micrographic images. Typ-
ical mature insulin granules were defined according to
previously published protocols (22) and exhibited a dense
homogenous core with a clear halo, whereas immature gran-
ules exhibited an empty or lighter core and the absence of
a defined halo (Fig. 5D) (19). The percentage of immature
granules was nearly twofold higher in HFD-fed S2HET mice
than in HFD-fed WT controls. In addition, HFD-S2HET islets
displayed a significantly higher percentage of rod-like gran-
ules, indicating defective insulin crystallization and pack-
aging (Fig. 5E). Consistent with observed defects in insulin
processing, proprotein convertase (PC) 1/3 mRNA levels were
significantly decreased in islets isolated from HFD-fed S2HET
mice, and there was a trend toward reduced PC1/3 pro-
tein expression (Fig. SF-H).

SERCA2 Haploinsufficient Mice Exhibit Reduced

B-Cell Proliferation and p-Cell Mass and

Increased B-Cell Death in Response to the HFD

B-Cell mass was quantitated before and after 16 weeks
of the HFD. There was no significant difference in B-cell
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Figure 1—S2HET mice exhibit impaired glucose tolerance in response to HFD. SERCA2 HET and WT littermate controls were fed an HFD
containing 45% of kilocalories from fat for 16 weeks starting at 8 weeks of age. A-C: Protein and RNA were isolated from HET and WT islets
before (WT-PreHFD and HET-PreHFD) and after 16 weeks of HFD (WT-HFD and HET-HFD). A: Immunoblot analysis was performed using
antibodies against SERCA2, SERCAS, and actin. B: Quantitative SERCA2 protein levels are shown graphically. C: Reverse-transcribed RNA
was subjected to real-time quantitative PCR to measure SERCA2b and SERCAS3 transcript levels (normalized to Actb). D and E: Longi-
tudinal changes in body weight were measured, and DEXA analysis was performed in HET and WT mice at the start and after 16 weeks of
the HFD. F: Blood glucose in 6-h fasted WT and HET mice before and after 16 weeks of HFD. G: Random-fed serum insulin levels after
16 weeks of the HFD. H-K: IPGTT or OGTT were performed before or after 16 weeks of HFD treatment in HET and WT mice; area under the
curve (AUC) analysis is shown graphically. Results are displayed as means = SEM (n = at least 8 per group, except panel F, where n =
19 for S2HET group, and G, where n is indicated by the scatterplot). Indicated comparisons are significantly different: *P < 0.05; **P < 0.01;
**P < 0.001; n.s. indicates that no significant differences were observed between groups.
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Figure 2—HFD-fed S2HET and WT mice exhibit comparable levels of insulin sensitivity. A and B: Insulin tolerance tests were performed
before (WT-PreHFD and HET-PreHFD) and after 14 weeks of HFD feeding (WT-HFD and HET-HFD), with area under the curve (AUC)
analysis shown graphically. Protein homogenates from adipose (C), liver (D), or skeletal muscle (E) were obtained from saline (basal) or
insulin-injected HET and WT mice fed the HFD for 16 weeks. Immunoblot analysis was performed using antibodies against phosphorylated
(P)AKT (ser473), total AKT, and actin. Relative protein levels are shown graphically. Results are displayed as means = SEM (n = 6 per
group). Indicated comparisons are significantly different: **P < 0.01; n.s. indicates that no significant differences were observed between

groups.

mass between 8-week-old PreHFD-S2HET and WT control
mice. In contrast, HFD-S2HET mice demonstrated signifi-
cantly lower B-cell mass than age-matched HFD-fed WT
controls (Fig. 6A and B). However, no significant difference
in the number of a-cells per islet was noted between

genotypes (Fig. 6C and D). To assess 3-cell proliferation,
pancreatic sections were stained with antibodies against
insulin and proliferating cell nuclear antigen, and double-
positive cells were counted. Results indicated a significant
reduction in the percentage of proliferating 3-cells in the
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HFD-fed S2HET mice compared with the HFD-fed WT however, no differences between groups were noted after
controls (Fig. 6E and F). Finally, to assess B-cell death, 17 weeks of the HED (Fig. 6G).

droplet digital PCR was used to measure circulating lev-  gerca2 Deficiency Leads to Activation of B-Cell ER
els of unmethylated cell-free Ins2 DNA (16). PreHFD, gtress

S2HET mice exhibited a trend of higher unmethylated  Qur results suggested that SERCA2 haploinsufficiency
DNA levels. After 8 weeks of the HFD, S2HET mice had  reduced the ability of the pancreatic islet to compen-

significantly higher circulating levels of unmethylated sate for the metabolic challenge of the HFD, resulting
Ins2 DNA. These differences persisted through 12 weeks; in impaired B-cell secretory function, decreased B-cell

I and J: Dispersed islets were transduced with a D4ER adenovirus, and FLIM was used to measure ER Ca2*. Representative lifetime map
with lookup table indicating donor lifetime in ns (scale bar = 10 um) and average donor lifetime in PreHFD-WT and S2HET B-cells treated
under control (CTR) or GLT conditions (n = at least 10 cells per condition). Results are displayed as means *= SEM. Indicated comparisons
are significantly different: *P < 0.05; *P < 0.01; P < 0.001; n.s. indicates that no significant differences were observed between groups.
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proliferation, and increased {3-cell death. To define fur-
ther the mechanisms underlying these observations, ER
morphology was analyzed from electron micrographic
images of islets isolated from HFD-fed S2HET and WT
mice. In contrast to the regularly spaced stacks of ER
sheets observed in B-cells from WT mice, analysis of
S2HET B-cells revealed swollen and fragmented ER
morphology (Fig. 7A). Expression of genes encoding pro-
teins involved in ER stress signaling, including Dnajc3,
Hsp90b1, and Pdia4, were significantly increased, and the
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spliced Xbp-1-to—total Xbp-1 ratio was higher in HFD-
S2HET islets (Fig. 7B). These findings were confirmed
using islets isolated from PreHFD-S2HET and WT con-
trol mice that were treated ex vivo with GLT stress.
Expression of Grp78, Dnajc3, Hsp90b1, and Pdia4 were
increased at baseline in S2HET islets and further ele-
vated in response to GLT, whereas the spliced-to-total
Xbp-1 ratio was significantly increased in GLT-treated
S2HET islets compared with levels observed in WT con-
trols (Fig. 70).
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observed between groups.
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To confirm a B-cell-autonomous defect of SERCA2 de-
ficiency, an SERCA2 knockout INS-1 832/13 cell line
(S2KO) was generated. SERCA2b mRNA and SERCA2
protein were reduced in S2KO cells, but no significant
alterations in RyR2 or IP3R3 expression were observed.
SERCA3 transcript levels were decreased by ~40% in
S2KO cells, but no reduction in SERCA3 protein level
was observed (Fig. 7D and E). Consistent with the analysis
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performed in S2HET islets, expression of genes involved in
ER stress signaling, including Grp78, Dnajc3, Hsp90b1,
and Pdia4 and the spliced-to-total Xbp-1 ratio, were ele-
vated in S2KO INS-1 cells under basal conditions and in
response to GLT stress (Fig. 7F). Similar to results observed
in islets from HFD-S2HET mice, immunoblot performed
in S2KO cells also confirmed reduced levels of PC1/3 pro-
tein and mRNA (Fig. 7G-I).
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SERCAZ2b Reconstitution Protects Against 3-Cell
Death and Ca?* Dyshomeostasis in Response to ER
and GLT Stress

S2KO and WT cells were next treated with tunicamycin (TM)
to perturb protein folding through inhibition of protein
glycosylation. Under control conditions and in response to
TM, cleaved caspase-3 protein levels were significantly higher
in S2KO cells (Fig. 8A and B). Similarly, S2KO cells exhibited
decreased cell viability with TM- and GLT-induced stress
(Fig. 8C). To test whether SERCA?2 reconstitution was suffi-
cient to reverse these effects, cells were transduced with an
adenovirus expressing SERCA2b or LacZ (Fig. 8D). SERCA2b
overexpression improved viability in both WT and S2KO
cells treated with GLT and TM (Fig. 8E and F).

Ca”* imaging experiments were next performed in S2KO
and WT cells that had been treated with GLT or TM and
transduced with the adenovirus expressing SERCA2b or
LacZ. Carbachol and caffeine were used to stimulate IP3R-
and RyR-mediated ER Ca”* release, respectively, to provide
an indirect assessment of ER Ca* storage (13). Results were
analyzed as the change in CaZ* (AF) in response to caffeine
or carbachol, normalized to the baseline cytosolic Ca?* level
(F0). Under control conditions, S2KO cells exhibited a sig-
nificant reduction in the AF-to-FO ratio. The AF-to-F0 ratio
was further decreased in GLT-treated WT and S2KO cells,
whereas SERCA2b overexpression rescued the carbachol and
caffeine response in S2KO cells and the carbachol response
in WT cells (Fig. 8G and H). Similar to results obtained in
S2HET islets, FLIM performed in S2KO cells also revealed a
significant reduction in ER Ca* levels (Fig. 8D).

Finally, INS-1 cells were treated with the small molecule
SERCA2 allosteric activator, CDN1163. Treatment with
10 pwmol/L CDN1163 increased ER Ca?* within 2 h, with no
further increase observed after 24 h. Moreover, CDN1163
partially rescued TM-induced cleaved caspase-3 expression
in WT INS-1 cells (Fig. 8J-L).

DISCUSSION

In rodent and human models of diabetes, acquired loss
of SERCA2 expression and activity under inflammatory
conditions has been correlated with altered B-cell Ca®*
homeostasis, reduced insulin secretion, and impaired B-cell
survival, whereas SERCA2 restoration has been shown to
improve these parameters (11,13). However, whether in
vivo deficiency of SERCA2 is sufficient to impair systemic
metabolic function and/or B-cell health has never been
addressed. Homozygous loss of SERCA2 is embryonically
lethal (23), so here mice with total-body SERCA2 hetero-
zygosity (S2HET) were analyzed. Our results indicate that
SERCA2 deficiency leads to impaired glucose tolerance and
hyperglycemia in response to an HFD challenge. These
alterations occurred secondary to decreased insulin produc-
tion, altered B-cell Ca®* homeostasis, decreased insulin se-
cretion, reduced B-cell proliferation, and increased B-cell
ER stress.

Similar to changes observed in the (-cell, several re-
ports have revealed reduced SERCA2 expression in liver,
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skeletal muscle, and macrophages under diabetic condi-
tions (24-28). Previous in vitro experiments have also
shown that SERCA2 and SERCA1 interact with insulin
receptor substrate 1 and 2 in skeletal muscle in an in-
sulin-dependent manner, suggesting an effect of SERCA
activity on glucose uptake (29). Furthermore, in vivo
adenoviral-mediated restoration of SERCA2b expression
in the liver improved glucose homeostasis in obese mice
(24,28), whereas treatment with the SERCA activator
CDN1163 improved hepatic ER stress and glucose toler-
ance in the ob/ob mouse model (30). In our study, however,
S2HET and control mice exhibited indistinguishable pat-
terns of weight gain, body composition, and systemic and
tissue-specific insulin sensitivity, suggesting that the glu-
cose intolerance observed in the HED-fed S2HET mice did
not arise from perturbations in adiposity or insulin sensitiv-
ity. Rather, we conclude the phenotype of this model was
largely driven by an impaired (3-cell compensatory response
to diet-induced obesity.

The ER is a key intracellular Ca®* store, wherein the
intraluminal Ca®* concentration is estimated to be at least
several orders of magnitude higher than cytosolic Ca®".
The SERCA family of ATPases is the only known group of
transporters tasked with Ca?* uptake into the ER lumen,
whereas ER Ca®* release occurs via the RyRs and IP3Rs,
which become activated in response to specific ligands or
intracellular signaling pathways (31,32). To date, the in
vivo role of the IP3R in the pancreatic B-cell has yet to
be studied. However, a single-point mutation in the RyR,
leading to unregulated ER Ca”* leak, resulted in decreased
insulin secretion, impaired glucose tolerance, increased
B-cell ER stress, and mitochondrial dysfunction (33). These
results as well as our study emphasize a pivotal role for ER
Ca”* homeostasis in the maintenance of B-cell function
and health.

Three different SERCA genes (ATP2A1, ATP2A2, and
ATP2A3) encode the proteins SERCAL, -2, and -3, and at
least 14 isoforms are expressed as a result of alternative
splicing. Temporal patterns of isoform expression during
development and tissue-specific patterns of expression
postnatally suggest nonredundant function of individu-
al isoforms (10). Three isoforms, SERCA2a, -2b, and -3,
are expressed in the B-cell. SERCA2b is the most highly
expressed, and SERCA3 mRNA is expressed at ~50% of
the level of SERCA2b in mouse islets. SERCA2a is ex-
pressed at a level of ~1% that of SERCA2b (11). This
distinction is important because our mouse and cell line
model included loss of both SERCA2a and -2b. However,
given the low levels of SERCA2a expression, the role of
this isoform in the B-cell is unclear. Moreover, our results
suggest that overexpression of just SERCA2b in S2KO
INS-1 cells is sufficient to rescue Ca?* homeostasis and
TM- and GLT-induced cell death. Structurally, SERCA2b
is unique among all of the other isoforms because it
contains an extra 11th transmembrane helix with an as-
sociated ER luminal extension or “2b tail” imparting this
isoform with the highest Ca%t affinity (34).
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SERCA3 function in the islet was previously investigated
in series of elegant studies by Gilon and colleagues (9,35)
using mice with homozygous and whole-body SERCA3
deletion. Under chow-fed conditions, SERCA3 KO mice
exhibited normal glucose tolerance without overt evidence
of ER stress. SERCA3 ablation also did not affect basal
cytosolic Ca®* levels or the initial glucose-induced Ca®*
response within islets (35). After glucose stimulation,
SERCA3-null islets exhibited a higher phase 2 cytosolic
Ca®* oscillatory amplitude, consistent with impaired ER Ca®*
uptake that interestingly led to increased insulin secretion (9).

Although SERCA3 mice have never been challenged with
diet-induced obesity, somewhat limiting direct compari-
sons, our results still suggest nonoverlapping function for
the two isoforms. We show that SERCA2 haploinsuffi-
ciency, combined with HED stress, led to increased basal
cytosolic Ca®* levels, impaired glucose and KCl-stimulated
Ca”* responses, and delayed onset of glucose-induced Ca®*
oscillations. In aggregate, these results suggest a broader
role for SERCA2 in patterning B-cell Ca®* architecture and
insulin secretion that is independent of glucose sensing and
ATP generation. In contrast to SERCA3-null islets, pertur-
bations in Ca®* signaling in SERCA2-deficient islets were
sufficient to impair GSIS both in vivo and ex vivo. Notably,
no compensatory upregulation of SERCA3 protein expres-
sion in our mouse model or in the clonal SERCA2 KO B-cell
line was observed.

In addition to altering insulin secretion, SERCA2 de-
ficiency also had a significant effect on B-cell ER health.
S2HET islets exhibited altered ER morphology and in-
creased expression of genes involved in ER stress signaling,
whereas SERCA2-deficient INS-1 cells were more suscepti-
ble to GLT- and TM-induced cell death. Previous work has
shown that B-cell ER stress results in insulin mRNA deg-
radation through hyperactivation of inositol-requiring en-
zyme lo, whereas protein kinase RNA-like ER kinase
activation suppressed insulin translation (36-38). Con-
sistent with these studies, islet insulin mRNA and protein
levels were decreased, and circulating insulin levels were
lower in HFD-fed S2HET mice compared with age- and
diet-matched WT controls. In addition to defective in-
sulin production, S2HET islets also exhibited impaired
insulin processing and decreased insulin granule matu-
ration after HFD.

Proteolytic cleavage of proinsulin into mature insulin
requires activity of PC1/3, PC2, and carboxypeptidase E
within secretory granules. Ca®* is also required to direct
PC1/3 into dense core secretory granules (39) while further
serving as an essential cofactor for both PC1/3 and 2 activ-
ity (8). The Ca®* content within secretory granules is pat-
terned by ER Ca®* levels, suggesting a relationship between
SERCA?2 deficiency and convertase enzyme activity (40).
An unanticipated finding in our study was that PC1/3
mRNA and protein expression were also decreased in
S2HET islets and S2KO cells. Regarding this point, a recent
study in GLUTag murine enteroendocrine cells, which se-
crete glucagon-like peptide, also revealed decreased PC1/3
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protein levels with palmitate-induced ER stress (41). A sim-
ilar effect was observed in MIN-6 B-cells after 7 days of
palmitate and oleate treatment (42).

Finally, our data also show that SERCA2 deficiency
resulted in decreased B-cell proliferation in response to
diet-induced obesity. A number of important Ca®*-regulated
proliferative pathways have been identified in the
B-cell, including those regulated by nuclear factor of
activated T-cells (NFAT) and cAMP-response element-
binding protein (CREB), which are both activated in re-
sponse to a rise in cytosolic Ca%* (43-45). Moreover,
a direct relationship between ER stress and (-cell pro-
liferation has also been suggested by two recent studies.
Sharma et al. (46) showed that mild ER stress favored
B-cell proliferation, whereas Szabat et al. (47) showed
that reduced insulin production relieved B-cell ER
stress and induced B-cell proliferation. Precisely how
altered SERCA2 activity in our model affects known
Ca”*-dependent proliferative pathways and integrates
with the above studies will be the subject of future
investigation.

In summary, we provide evidence that loss of SERCA2
leads to a cell-autonomous defect in B-cell secretory func-
tion, Ca®* homeostasis, proliferation, and survival. Al-
though tissue-specific deletion models are needed to
fully resolve the effects of SERCA2 loss on B-cell func-
tion and peripheral insulin sensitivity, our data and
those of others suggest that strategies aimed at resto-
ration of SERCA2 expression and/or modulation of
SERCA?2 activity represent viable strategies to improve
glucose homeostasis (24,28,30). Finally, these data also
have relevance for humans with Darier-White disease,
in which one copy of the ATP2A2 gene is defective. Al-
though the metabolic effects of SERCA2 haploinsufficiency
have not been reported in these individuals, a selective
predisposition to diet-induced metabolic disease and
other conditions, such as heart disease (48), could easily
be overlooked in this rare population and should be
further studied.
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