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Applications
in Plant Sciences

Quantifying the distribution and abundance of plants is of 
fundamental importance to plant ecology. Our ability to estimate 
plant distributions over large areas (i.e., several hectares) using 
traditional approaches (transect or quadrat methods) is generally 
limited because of the time and expense required. Intensive plant 
surveys may also result in unacceptable levels of disturbance to 
sensitive ecosystems due to soil compaction, disruption of soil 
organic layers, trampling, and vegetation damage. While remote 
sensing via satellites provides information on landforms and 
the general distribution of vegetation types over large areas, it is 
unlikely to provide adequate spatial or temporal resolution for 
determining the distributions of individual species or fine-scale 
differentiation among landscape features and vegetation types. 
Moreover, available satellite images may not represent optimal 
phenological stages for the identification of different species and 
vegetation types. Manned aircraft and large drone surveys can 
have increased resolution, but are prohibitively expensive for 
most investigations and generally do not provide a high enough 
resolution to assess the distributions and compositions of plant 
communities. Utilization of micro–unmanned aerial vehicles 
(UAVs, unmanned aerial systems [UAS], small aerial drones) 

may provide adequate levels of image detail to estimate the dis-
tribution of individual plant species or vegetation types over 
several hectares at a relatively low cost (Anderson and Gaston, 
2013). Our goal in this article is to describe the advantages and 
limitations of small aerial drone surveys for estimating the 
distributions of individual plant species and vegetation types at 
fine spatial scales. We describe a number of factors researchers 
should consider for planning aerial drone surveys. An example 
is provided to illustrate the application of micro-UAV surveys 
for the estimation of the distribution and abundances of vegeta-
tion types and plant species across a 16-ha area of vernal pool 
habitat in southern Oregon, USA.

METHODS

General considerations for data collection with UAVs—The prospect of 
using drones for vegetation sampling is exciting because of the large amount of 
information that can be collected with minimal effort. On the other hand, there 
are many limitations to this approach that should be considered before investing 
in the equipment necessary to conduct micro-UAV surveys. Researchers should 
begin by carefully considering whether their goals are a good match for the ac-
quisition of data from aerial images obtained from aerial drones. Suitable appli-
cations include surveys of the distribution and abundance of individual species 
or vegetation types, and aerial sampling of sensitive habitats or terrain that is 
difficult to access. These methods are particularly suitable in cases where re-
searchers wish to develop accurate vegetation maps over moderately large 
areas (i.e., up to 40 ha). Conducting aerial surveys using small drones greatly 
expands the size of the area that can be assessed with minimal disruption of 
sensitive plants and vegetation. By obtaining a high density of images, research-
ers can construct composite images (orthomosaic) and digital elevation models 
(DEMs). DEMs of elevation differences of the vegetation and landforms over a 
geographic area are referred to as digital surface models (DSMs).

1 Manuscript received 1 April 2016; revision accepted 28 July 2016.
The authors thank L. Hickerson for assistance in the field, and M. Morrison 

and The Nature Conservancy for permission to access the field site. This 
research was supported with funds from a U.S. National Science Foundation 
MacroSystems Biology award (no. 1340746).

4 Author for correspondence: cruzan@pdx.edu

doi:10.3732/apps.1600041

ApplicAtion Article

Small unmanned aerial vehicleS (micro-uavS, droneS) 
in plant ecology1

Mitchell B. cruzAn2,4, Ben G. Weinstein3, MonicA r. GrAsty2, BrendAn F. Kohrn2, 
elizABeth c. hendricKson2, tinA M. Arredondo2, And pAMelA G. thoMpson2

2Department of Biology, Portland State University, P.O. Box 751, Portland, Oregon 97207 USA; and 3Department of Ecology  
and Evolution, Stony Brook University, Stony Brook, New York 11794 USA

•	 Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used 
for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We 
provide an overview of methods and procedures for conducting surveys and illustrate some of these applications.

•	 Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to cre-
ate a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and 
using an automated routine. Coverage of an individual species was estimated from aerial images.

•	 Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one spe-
cies. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate.  
A species with high contrast to the background matrix allowed adequate estimate of its coverage.

•	 Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on 
the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have 
potential for a wide range of applications in plant ecology.

Key words: aerial drone (micro-UAV, UAS); aerial survey; digital elevation model (DEM); digital surface model (DSM);  
orthomosaic; vegetation mapping.
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is probably less than 40 ha at the upper limit, and more reasonably would be 
within 5 to 20 ha. Surveys of larger areas are feasible with the use of mini-UAVs, 
which are commonly used in agricultural applications. These vehicles are con-
siderably more expensive than micro-UAVs and in the United States require 
special waivers from federal agencies. In this article we focus on applications of 
small copter drones, but many of the principles we discuss can be extended for 
the use of larger vehicles.

Identification of organisms and objects from aerial images—There is a large 
amount of literature discussing the analysis of remote imaging data from satel-
lites and manned aircraft (Nagendra, 2001; Kerr and Ostrovsky, 2003; Rango  
et al., 2009; Anderson and Gaston, 2013). The typical goal of these applications 
is vegetation and landform classification over relatively large geographic areas. 
The ability to discriminate among plant species and habitats may depend on the 
phenological stage of plants, which may require images captured at finer spatial 
and temporal scales (Richardson et al., 2009). Researchers can take advantage of 
the distinctive spectral values for leaves, flowers, and fruiting structures by con-
ducting multiple surveys over the growing season. Incorporating spectra outside 
the visible range may require using specialized photographic equipment, but 
may also be achieved by simple modifications of standard cameras as described 
above. Testing spectral profiles of the vegetation and plant species of interest 
with hand-held cameras is advisable prior to investing in micro-UAV technologies. 
Species identification that requires morphological measurement or nonspectral 
characters such as leaf shape or growth form may be less suited to aerial surveys.

Strategies for image collection—One of the primary considerations for eco-
logical surveys with small UAVs is the density and elevation of images over the 
region of interest. Reconstruction of orthomosaics and DSMs requires a high 
density of images that provide overlapping views of landscape features from 
multiple angles. The typical sampling strategy establishes a grid of aerial tran-
sects. The UAV is either flown at a constant speed along transects in automatic 
image capture mode, or is flown manually between imaging grid points. The 
former strategy can be facilitated by software that allows programming flights 
based on multiple GPS coordinates. Manual flights may be necessary if the time 
required to store large images is greater than a few seconds. This is particularly 
true of raw image formats, which may require five seconds or more to process. 
JPEG images use averaging algorithms to reduce image size, and consequently 
have lower resolution. Whether lower-resolution image formats such as JPEG 
can be used will depend on the flight elevation and the level of detail needed to 
identify objects from images. Some small UAVs may not allow the association 
of the metadata needed for orthomosaic construction (i.e., GPS coordinates and 
flight elevation) with all image formats, so it may be necessary to use raw images.

Minimal imaging densities will depend on the flight elevation along with the 
topographic relief and complexity of vegetation elevation. Higher densities of 
images may be needed to ensure that there is adequate image overlap in portions 
of the landscape that are between large bushes or trees (Fig. 1). In this depiction, 
larger gaps in the orthomosaic will be generated when the density of aerial im-
ages is lower. Higher densities of images are necessary to cover landscapes that 
include gaps between shrubs or trees, and this problem becomes more acute 
when openings in the vegetation are smaller than the height of shrubs.

The potential for taller trees and shrubs to block the view of vegetation fea-
tures within gaps can be minimized by flying at an elevation that is at least three 
times the average height of the canopy (Fig. 2). While larger areas are covered 

Before engaging in drone usage, researchers should be careful to obtain per-
mission from land owners and managers. Regulations for drone use differ among 
nations and are constantly in flux in response to new technologies and applica-
tions. Researchers should check with local and federal agencies before engaging 
in research activities with UAVs. In the following sections, we discuss some 
general advantages and limitations of using small drones in ecological research.

Equipment considerations—The diversity of small drones available for rec-
reational use has increased dramatically since 2013, and many of these are suit-
able for research. Of these, we specifically focus on hovering UAVs with four 
(quadcopter), six (hexacopter), or eight (octocopter) propellers because they are 
the easiest to fly and have a number of features that are advantageous over fixed-
wing aircraft for conducting aerial surveys. These aircraft are extremely stable in 
flight. They are relatively safe and easy to pilot and can be maneuvered for aerial 
surveys with a minimal amount of training and experience. More expensive 
models have GPS tracking systems that allow them to maintain position at a 
specific location and altitude. The drone’s flight time on a single charge will set 
an upper limit to the area that can be sampled during a flight. Quadcopters tend 
to be the most efficient, and at the time of this writing some models can fly up to 
30 min on a single battery.

At a minimum, you will need a drone that is capable of carrying a small 
camera that can be programmed to take photographs every few seconds. The 
camera also needs to be capable of taking photos directly below the drone’s posi-
tion. The cameras on many inexpensive drones have limited angle rotation and 
are not suitable for vegetation surveys because of their inability to point down-
ward at 90 degrees from horizontal. More sophisticated UAVs have cameras 
mounted on gimbal systems that stabilize the camera as the craft pitches during 
flight. These more expensive UAVs also provide video feeds from the onboard 
camera to the pilot along with information on altitude, flight speed, and distance 
from the point of origin (home) for the current flight; some also have automatic 
object avoidance systems to reduce the chance of collisions. Other features that 
can be useful include automatic homing when the battery charge falls too low 
and when the signal from the controller is lost. In some models, the home loca-
tion can either be set as a fixed point or can move with the location of the control-
ler. Some manufacturers implement additional safety features in the drone’s 
firmware such as “no-fly” zones within 8 km of airports and federal buildings. 
A list of necessary and desirable features can be found in Appendix 1.

The second major consideration for equipment is the camera. Many ready-to-
fly drones have integrated high-resolution cameras that are very suitable for re-
search. These systems have the advantage of constant video feeds to the pilot and 
provide manual control of the camera position and image capture during flight. 
Cameras need to be as light as possible because small drones have a limited 
payload capacity and additional weight will reduce flight time. A wide-angle 
lens provides coverage of a large area at a moderate elevation and provides side 
views of peripheral features that are useful for generating accurate DSMs. The 
images captured from wide-angle lenses can be corrected for distortion with 
standard software applications. Some cameras may be customized to remove 
internal filters to allow detection of a broader spectral range, which is particu-
larly important for some types of vegetation classification methods that use ra-
tios of reflectance in the visual and ultraviolet ranges (e.g., normalized difference 
vegetation index [NDVI]; Bannari et al., 1995; Xie et al., 2008). Cameras capa-
ble of capturing images in a number of different formats (e.g., JPEG and raw 
formats such as TIFF [Tagged Image File Format] or DNG [Digital NeGative]) 
as well as video capture are the most suitable for research applications. For con-
struction of orthomosaic images, it is imperative that the camera is capable of 
storing metadata with each image including GPS coordinates and flight eleva-
tion. Considerations of image resolution along with elevation and limitations on 
flight duration are discussed below.

Geographic scale—The most important factor to consider is whether the 
geographic scale of your study is suitable for micro-UAV surveys. The majority 
of small aerial drones are currently limited to a flight time of 15 to 30 min for 
each battery. Depending on the flight elevation and density of photographs, sev-
eral batteries may be required to perform surveys. Furthermore, depending on 
local and federal regulations, the flight distance from the pilot is limited because 
the vehicle usually must be maintained within line-of-sight at all times. Depend-
ing on the characteristics of the drone used, line-of-sight flight distances will 
generally be limited to less than 200 m from the pilot. This distance could be 
extended if the pilot could move in the direction of the flight path, but this will 
generally not be advisable on foot, as walking in rough terrain while trying to 
track the drone would be difficult and dangerous. Depending on the number, 
spacing, and elevation of photographs (see below), and under current regulations 
in the United States, the feasible limit to ecological surveys using micro-UAVs 

Fig. 1. Considerations for using small aerial drones for vegetation sur-
veys. A schematic of the predicted effects of aerial imaging density on shad-
owing (gaps) due to trees and shrubs for the orthomosaic and digital surface 
model (DSM) generated from aerial surveys. Lower densities of aerial im-
ages results in larger areas of image shadows around closely spaced shrubs 
or trees.
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flying under 50 m elevation can be visually tracked up to 200 m distance from 
the operator under most weather conditions. By flying in both directions away 
from the controller, transects that are 400 m in length can be sampled. Using 
programmed flight plans at slow speeds (e.g., 3 m per second), low-resolution 
images can be captured at frequencies of 10 m or less. Capturing of high-resolution 
images will require more time for processing and positioning of the aircraft, 
although it is not necessary to sample exact positions and grid locations can be 
approximate. Transect sampling is facilitated by using a drone with GPS posi-
tioning capabilities as the distance between the aircraft and the operator are 
provided during flight. Manual sampling can also be made more efficient by 
capturing images at alternate grid locations during flight along transects in two 
directions. Taking into account the amount of time required to position the air-
craft at the proper elevation at the initiation of sampling and for landing upon 
return, a single battery charge may be enough to sample two to three 400-m 
transects in automatic mode and perhaps one to two transects when manually 
capturing high-resolution images at a spacing of 10 to 20 m. Batteries generally 

by images as the elevation increases, there is also a loss of resolution of smaller 
objects on the ground. The loss of acuity at higher elevations can be compen-
sated by capturing images with higher pixel densities; however, image size is 
limited by the characteristics of the charge-coupled device (CCD) image sensor 
within the camera, and larger images will require longer times for processing 
and storage. The optimal flight elevation for aerial surveys will necessarily be a 
compromise between maximum coverage, image acuity for the identification of 
vegetation and landform features, and the image overlap requirements of the 
software used to process and generate orthomosaics and DSMs.

The combination of flight elevation, spacing between images along transects, 
and limitations of processing times for large images need to be considered 
to determine optimal sampling strategies. The distance between images on the 
sampling grid should be half the flight elevation or less, and depending on the 
complexity of the vegetation topography, it may be necessary to use higher den-
sities of sampling points. Researchers should also consider the fact that coverage 
is necessarily lower at the edge of the sampling grid, so the area sampled should 
exceed the geographic region of interest. Some of these factors may not need to 
be considered if low-resolution images with rapid capture times can be used. The 
image capture and data storage characteristics of the UAV and resolution of 
small objects at different elevations and image capture modes should be tested 
before designing the sampling grid. In any case, it is better to err on the side of 
higher-density sampling grids and higher-resolution images to ensure adequate 
coverage of and identification of vegetation and landform features within the 
geographic region of interest.

Aerial imaging grid designs will also depend on the topography of the ter-
rain being sampled. It is easiest to sample relatively flat areas where a single-
elevation grid can be established. Conducting aerial surveys over flat terrain is 
relatively easy when using UAVs that have GPS positioning capabilities, which 
are capable of holding a relatively constant elevation above sea level. For slop-
ing terrains, it may be necessary to conduct stratified sampling at different eleva-
tions along the slope (Fig. 3). Each sampling grid should have good overlap 
with others to facilitate orthomosaic image and DSM construction. The goal is 
to keep the distance between the camera and the ground within a range that 
allows adequate resolution of vegetation features, so steeper slopes will require 
more overlapping grids. More complicated terrains such as valleys and curved 
slopes may require larger numbers of sampling grids to provide adequate cover-
age and resolution of objects on the ground.

When developing sampling strategies, researchers should keep in mind the 
limits imposed by the flight duration of the aircraft on a single battery charge and 
the maximum distance that can be flown while maintaining visual contact. For 
example, a small drone such as the DJI Phantom models (DJI, Shenzhen, China) 

Fig. 2. Considerations for using small aerial drones for vegetation surveys. The effects of the distance above shrub or tree elevation (dX, where d is the 
multiplier of canopy height, X) on shadowing for aerial images. Diminishing returns in shadow reduction is obtained for elevations greater than 2X.

Fig. 3. Strategies for aerial surveys using small drones in rough terrain. 
Starting from the highest elevation, the entire area should be imaged at low 
density (thin arrow). Stratified surveys at each elevation are indicated by 
thicker arrows. Note that the elevation of each survey is constrained and that 
there is considerable overlap among surveys.
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representative plants or vegetation cover to allow for ground-truthing of these 
points with the aerial images. These reference points can provide valuable con-
firmation of the appearance of objects, plant species, and vegetation types on the 
orthomosaic and DSM images.

Processing and analysis of image data—The analysis of drone photography 
can be separated into two stages: (1) orthomosaic and DSM generation, and (2) 
habitat classification and estimation of species distributions and densities. Most 
UAVs with integrated camera systems return images that are sequentially num-
bered and tagged with spatial and temporal data. The goal is to turn these images 
into a single stitched map known as an orthomosaic and to estimate the DSM. 
Individual images are first corrected for lens distortion and then stitched together 
with a computer vision technique known as structure-through-motion to create 
an orthomosaic (Dandois and Ellis, 2010). Point features are extracted from each 
image, and the algorithm searches for the greatest number of overlaps between 
images for each of the point features. More extensive overlap in images will lead 
to a greater number of matching features and create a more complete final ortho-
mosiac. Insufficient overlap will lead to grainy or ragged orthomosaic with holes 
where the algorithm was unable to find a match among the pool of supplied 
images. In the example provided below, we used AgiSoft PhotoScan software 

require several hours to charge, so several batteries and flights over several days 
may be required to sample larger areas.

Sampling procedures—Prior to data collection, the UAV should be flown to 
test its imaging and flight capabilities. The drone should only be flown in dry 
weather and calm wind conditions in areas that are clear of buildings and large 
concentrations of people. Operators should practice flying the drone to test the 
camera’s image resolution at different elevations. Drones with GPS and inte-
grated cameras generally provide a manual flight controller and are capable of 
video/data feeds to a digital device during flight. At least two people will be re-
quired to safely fly the UAV; one person should act as pilot and maintain visual 
contact with the aircraft and the second should use the digital device to monitor 
the video feed, operate the camera, and track the drone’s position. Under some 
circumstances, a third person may be required to help maintain visual contact 
with the drone, to watch for potential hazards, and to ensure that the drone re-
mains clear of other aircraft, buildings, tall trees, and people.

Once a preliminary sampling strategy has been developed, it is best to image 
a portion of your area of interest to determine whether the imaging density provides 
adequate coverage for construction of orthomosaics and DSMs. Researchers 
should also record GPS coordinates and elevation of major features and of 

Fig. 4. An orthomosaic of the vernal pool region of the Whetstone Savanna Preserve in southern Oregon generated from aerial images collected using a 
small drone (DJI Phantom 2 Vision+). To the north is a rural road and light industrial complex. There is a fence line along the west side that is evident as a 
linear disruption in the vegetation. Along the east side is an agricultural field, and to the south is oak savanna. Examples of shrub, swale (vernal pools), and 
trees are indicated. Hummocks are regions that generally border between swales and shrubs.
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those training sets (Papes et al., 2013). Although supervised methods are often 
more accurate than unsupervised methods, the need for training data can be dif-
ficult in sparsely sampled ecological landscapes.

The orthomosaic and DSM may provide adequate information to estimate the 
distribution and cover of individual species. The success of this approach will 
depend on whether one species can be adequately discriminated from others 
based on a combination of spectral and elevation data. For species that present 
an adequate contrast, the automated classification methods described above may 
be successfully implemented. Grouping of pixels could then be used to generate 
raster data containing percent cover, which can then be displayed as heat maps 
or isoclines using standard GIS tools. For example, below we describe the distri-
bution of shrub habitat, which is equivalent to the distribution of Ceanothus  
cuneatus (Hook.) Nutt., and the coverage and distribution of the vernal pool an-
nual, Lasthenia californica DC. ex Lindl. Accuracy of the resulting species dis-
tribution maps will depend on the degree to which reliable nonoverlapping 
classification methods for individual pixels or groups of pixels can be established.

Example: Creating a vegetation map of the Whetstone Savanna

Methods—To illustrate some of the procedures for conducting vegetation 
mapping with small aerial drones, we obtained aerial images that surveyed the 
Whetstone Savanna Preserve, which is an upland prairie vernal pool site in 
southern Oregon that is managed by The Nature Conservancy. We used images 
that provided coverage of a 16-ha (400 × 400 m) region of savanna that consists 

(AgiSoft LLC, St. Petersburg, Russia) to create the orthomosaic and DSM of a 
region of a prairie and vernal pool landscape in southern Oregon.

Once the orthomosaic is created, it can be used to extract information on the 
distribution of species and habitats. Habitat classification can be conducted man-
ually or can be automated. For manual classification, a number of different GIS 
and image applications can be used to draw shape borders using differences in 
vegetation color, vegetation height (based on a DSM), or a combination of these. 
For automated habitat classification, cells in the spectral raster are analyzed 
individually. There are two main approaches for automated landscape classifi-
cation: unsupervised and supervised methods. Unsupervised methods use mul-
tivariate clustering algorithms to group similar cells based on spectral values. 
These ordination approaches, such as k-means classification, depend on defining 
a preset number of groups. In the example described below, we were interested 
in delineating tree, shrub, swale, and hummock vegetation types. The k-means 
algorithm iteratively looks for the best grouping of pixels that minimizes the 
mean similarity among k classes. This method is robust to derivations and re-
quires no training data, but will fail when confronted with highly overlapping or 
nonsymmetrical classes (Pielou, 1984). Alternatively, supervised classification 
methods are a family of machine-learning techniques that use training data to 
learn about classes. Supervised methods, such as neural networks, are gaining 
popularity due their flexibility and greater accuracy (Guisan and Zimmermann, 
2000; Elith et al., 2008). In a supervised classification, a researcher collects GPS 
points from the field for each of the classes. The algorithm is trained on these 
data points, and then classifies the spectral raster based on the characteristics of 

Fig. 5. A DSM of the vernal pool region of the Whetstone Savanna Preserve in southern Oregon generated from aerial images collected using a small 
drone. The same examples of shrub, swale, and trees used in Fig. 4 are indicated. The heat map represents elevation of vegetation above the land surface 
across the prairie.
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from the home base, hovered in place using the DJI controller, and a raw image 
in DNG format was captured using the tablet application. The capture and pro-
cessing of each image required five to 10 seconds. Consequently, sampling the 
entire area required multiple flights and used eight to 10 batteries for each of two, 
4-h sampling sessions that were conducted over a two-day period. All flights 
were conducted during the morning on partly cloudy days with calm winds.

We created an orthomosaic and DSM using a total of 457 aerial images with 
the Agisoft PhotoScan software (Agisoft LLC; Appendix 2). The DNG images 
were converted to TIFF using Adobe Photoshop (Adobe Systems, San Jose, 
California, USA) prior to processing. PhotoScan corrected each image for fish-
eye (barrel) distortion prior to stitching them together (Appendix 3, Fig. A1) to 
create the orthomosaic (Fig. 4) and DSM (Fig. 5). These layers were reprojected 
to the North American Datum 1983 (NAD83) Universal Transverse Mercator 
(UTM) Zone 10N projection. A geodatabase file (.gdb) was created to classify 
the three distinct habitat types as polygons. These geodatabase features were used 
to draw polygons following perceived habitat boundaries. By combining 
these layers, the habitat type could be classified with greater confidence than 
using either the aerial orthomosaic or the DSM on its own. Polygons were 
created using the Editor tool in ArcGIS (release 10; Esri [Environmental 
Systems Research Institute], Redlands, California, USA), with a streaming 
tolerance of 1 map unit (1 m). A true topology of adjoining polygons was 
achieved using the Snapping feature in the Editor tool. For the manual clas-
sification, we pooled shrub and tree habitat, and discriminated this vegetation 
type from hummock and swale (Fig. 6).

of a mosaic of vernal pools (swales) that are separated by hummocks (higher-
elevation areas that are not routinely inundated and not covered by shrubs), 
hedges of buckbrush (Ceanothus cuneatus) with an understory of a nonnative 
herbaceous umbel (Anthriscus caucalis M. Bieb.), and scattered Oregon oaks 
(Quercus garryana Douglas ex Hook.). Hummock habitats support a diverse flora 
including Plagiobothrys nothofulvus (A. Gray) A. Gray, Lomatium utriculatum 
(Nutt. ex Torr. & A. Gray) J. M. Coult. & Rose, Lupinus bicolor Lindl., Litho-
phragma parviflorum (Hook.) Nutt., and Saxifraga integrifolia Hook. Swale 
(vernal pool) floras had little species overlap with hummocks and were 
characterized by Lasthenia californica, Downingia yina Applegate, Navarretia 
leucocephala Benth., Plagiobothrys bracteatus (Howell) I. M. Johnst., and 
Limnanthes pumila Howell. Our goal was to generate a vegetation map of the 
region for the analysis of seed- and pollen-mediated gene flow within species 
using landscape genetic methods.

A small aerial drone equipped with an integrated camera (DJI Phantom 2 
Vision+ with a high-definition camera mounted on a motion-stabilized gimbal) 
was flown at 40-m elevation along 400-m transects that were spaced every 15 m. 
The camera mode was set to single capture with 14.4-megapixel image size (Ap-
pendix 2), and images were captured manually using the DJI application in-
stalled on a Samsung Galaxy Tab 4 (Samsung Electronics, Seoul, Korea). The 
center point of each transect was located using a hand-held GPS and used as the 
home location for each flight. From this point, the drone was flown in a straight 
line using a distant landmark for orientation and images were captured every 15 m 
along transects. For each photo, the drone was flown to a measured distance 

Fig. 6. Results of a manual habitat classification based on the orthomosaic and DSM (Figs. 4 and 5, respectively). The same examples of shrub and swale 
used in Fig. 4 are indicated.
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and provided accurate information for the delineation of habi-
tats in this prairie using both automated and manual methods. 
The manually mapped habitats displayed strong correspondence 
with high concentrations of image cells automatically identified 
as the same habitat types.

The estimates of the distribution and density of L. californica 
for one sample area were adequate as the large majority of fil-
tered pixels were within this species’ swale habitat. A low density 
of pixels that were classified as L. californica flowers appeared 
in the adjacent hummock and hedge habitats (Appendix 3, Figs. 
A1, A2, A3). Because these pixels were outside of the swale 
habitat, they may represent artifacts or other yellow-flowered 
species. These artifactual pixels could be removed to produce a 
cleaner heat map by using filters based on habitat classification 
or vegetation elevation.

Our results indicate that low-elevation aerial surveys with 
small drones can be a highly efficient and relatively accurate 
method for conducting vegetation surveys over moderately large 
areas. This approach was particularly useful for the survey of 
the vernal pool habitat as traditional mapping methods using 
GPS and transects would have required many hundreds of hours, 
would have generated more substantial habitat disturbance, and 
would have produced lower-accuracy maps. The resulting habitat 

The automated procedure described above was applied to determine the dis-
tribution of habitats within the region of interest using a k-means classification 
based on a combination of the DSM and spectral values to delineate four classes 
(trees, shrubs, swale, and hummock; Fig. 7). We first separated the DSM into 
three classes (tree, shrub, swale/hummock), and then separated the areas classi-
fied as swale/hummock based on the spectral values. The resulting representa-
tion has four classes and provides a high-resolution habitat map based on the 
drone-collected images. The R scripts used for automated habitat delineation are 
available on GitHub (https://github.com/bw4sz/Drone/blob/master/Kmean.md).

To illustrate the use of micro-UAVs to estimate the cover of individual spe-
cies, we evaluated the distribution and percent coverage of L. californica at peak 
flowering based on the presence of flowers in a single aerial image (Appendix 3, 
Fig. A1). Flowers of this species are easily identified by their distinctive yellow 
color. We started by segregating pixels using image manipulation functions in 
Python (v3.5.1; Appendix 3). The converted image (Appendix 3, Fig. A2) was then 
imported into ArcGIS to generate a heat map representing the density of pixels 
within the reflectance range of flowers of L. californica (Appendix 3, Fig. A3).

RESULTS AND DISCUSSION

We successfully surveyed the 16-ha vernal pool region of the 
Whetstone Savanna Preserve for one phenological period by ob-
taining images that were collected using a small aerial drone that 
was flown over two consecutive days. The orthomosaic and 
DSM created from this survey contained a high level of detail 

Fig. 7. Results of an automated habitat classification based on the orthomosaic and DSM (Figs. 4 and 5, respectively). The same examples of shrub, 
swale, and trees used in Fig. 4 are indicated.
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maps from aerial micro-UAV surveys were relatively accurate and 
will prove useful for subsequent landscape genetic analyses.

Aerial surveys with a micro-UAV worked quite well for habi-
tat mapping in the Whetstone Savanna Preserve and for estimat-
ing the density of L. californica in one sample area. Our habitat 
classification success was facilitated by distinctive elevation and 
spectral characteristics associated with each vegetation type. 
The difference in spectral qualities can be seen from the hum-
mock and swale classification of image cells (Fig. 7), but note 
that misclassification of cells was also quite common compared 
to the manual classification (Fig. 6). We note that the manual 
classification is probably more accurate in this case because of 
the elevation difference between these habitats, and the auto-
mated classification could be improved in this case by incorpo-
rating the elevation data to discriminate between hummock and 
swale habitats.

The task of vegetation classification was more difficult for 
discriminating between the hummock and shrub habitats be-
cause vegetation characteristic of hummocks often occurred in 
small gaps between shrubs. These gaps were difficult to identify 
from the orthomosaic and DSM due to the unevenness of the 
shrub canopy height, and because the density of aerial images 
was not always high enough to detect them. Such gaps did not 
show up in the orthomosaic and DSM when the interpolation 
option was enabled in the PhotoScan software (Appendix 2). 
When conducting manual classification, the small islands of 
hummock habitat were difficult to discern from the images and 
were often ignored. The automated habitat mapping probably 
more accurately identified hummock islands within hedges in 
many cases, but still may have misclassified vegetation in in-
stances where the shrub canopy was low or where the canopy 
was interpolated. A more accurate classification could probably 
be derived by integrating the automated classification map with 
the orthomosaic and the DSM to manually delineate habitats. 
Using an orthomosaic that was created with the interpolation 
option disabled may have provided additional information to lo-
cate the smaller gaps between shrubs.

Conclusions— Small aerial drones have considerable poten-
tial for a number of applications in plant ecology. For the ex-
ample described above, relatively accurate habitat maps were 
generated with minimal effort and habitat disruption. While a 
single phenological stage provided adequate contrast for accu-
rate habitat discrimination and the distribution of some species, 
it would generally be desirable to conduct aerial surveys at 
several different times over the growing season. For example, 
the vernal pools may have been easier to discriminate earlier 
in the season when they were inundated with water. Applying 
these methods for habitat mapping will be feasible in many other 
types of vegetation, but only if associated floras and landforms 
display strong spectral or elevation differences.

Small drone surveys provide a mechanism for plant ecologists 
to collect large amounts of information with minimal effort. As 
illustrated above, the distribution and density of individual spe-
cies can be derived from aerial images if the foliage, flowers, or 
fruiting structures could be adequately distinguished from other 

species in the area. Aerial surveys conducted at different times 
during plant flowering could provide valuable information on 
differences in phenology for different areas of the survey re-
gion. A number of other applications may also be possible, in-
cluding surveys of plant diseases using infrared spectra (e.g., 
Mutka and Bart, 2014), surveys of damage to vegetation due to 
natural and human-mediated disturbance, monitoring restoration 
efforts, and other management practices (Morgan et al., 2010). 
Many of the methodologies used from manned aerial surveys 
and satellite imaging can be adapted for use with small drone 
surveys (Rango et al., 2009; Anderson and Gaston, 2013).
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Appendix 2. Tables of the camera settings used for aerial surveys and the 
PhotoScan software options used for generation of the orthomosaic 
and DSM in Figs. 4 and 5, respectively.

Camera specifications (DJI Phantom 2 Vision+ integrated camera):

Sensor size 1/2.3″
Pixels 14 MP
Resolution 4384 × 3288
HD recording 1080p30/1080i60/720p60
Recording FOV 110/85 degrees

Note: FOV = field of vision; HD = high definition.

Camera settings:

Capture mode Single capture

Photo size Large: 4384 × 3288, 4:3, 14.4 MP
Photo format RAW
ISO 400
White balance Cloudy
Exposure metering Center
Exposure compensation 0
Sharpness Standard
Antiflicker 60 Hz

Agisoft PhotoScan orthomosaic creation settings:

Parameter Location Setting

Camera type Tools > Camera calibration Fisheye
Align photos: Accuracy Workflow > Align photos High
Align photos: Pair preselection Disabled
Align photos: Key point limit 400,000
Align photos: Tie point limit 0
Build dense cloud: Quality Workflow > Build dense cloud High
Build dense cloud: Depth filtering Mild
Build mesh: Surface type Workflow > Build mesh Height field
Build mesh: Source Dense cloud
Build mesh: Face count Medium
Build mesh: Interpolation Enabled

Appendix 1. Recommendations for features of aerial drones used in plant ecology.

Feature* Necessary Desirable

Enough power to carry a camera Yes –
High-resolution camera that can be oriented straight down Yes –
Flight time greater than 10 min Probably Yes
Onboard GPS for hovering in place and flight stabilization Probably Yes
Camera capable of adding GPS and altitude metadata to images Probably Yes
Camera capable of saving images in raw formats Probably Yes
Gimbal with camera stabilization No Yes
Mobile app with camera controls and video feed from the drone No Yes
Flight information on altitude, speed, and distance from origin No Yes
Programmable to fly to multiple GPS waypoints No Yes
Automatic homing on low battery and control signal loss No Yes
Automatic no-fly zone avoidance and altitude limit No Yes
Ground detection for landing assistance No Yes
Object proximity detection and avoidance No Yes

* At the time of this publication, the Phantom series from DJI (Phantom 2 Vision+, and Phantom 3 and 4 models; DJI, Shenzen, China) and the Solo micro-
UAV from 3D Robotics (Berkeley, California, USA) meet all of the necessary and, depending on the specific model, most of the desirable criteria listed 
here.

http://www.bioone.org/loi/apps
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Appendix 3. Method used to convert aerial images into plant density.

Fig. A1. A lens distortion–corrected image taken at 8-m elevation using the DJI Phantom 2 Vision+ aerial drone.

We started with a single aerial image captured at 8-m elevation over a patch of Lasthenia californica (Fig. A1). Adobe Photoshop Elements (v14; Adobe Systems, 
San Jose, California, USA) was used to convert the raw image (DNG) into a TIFF file and corrected for barrel distortion. Percent coverage estimates and contours 
around each flower were generated in Python (v3.5.1; www.python.org) with the Anaconda (v4.0.0) platform (Continuum Analytics, Austin, Texas, USA) using the 
following packages: SciPy’s SciKit-Image (SKImage v0.12.3), NumPy (v1.10.4), and OpenCV (v3.1.0) (Bradski, 2000; van der Walt et al., 2011, 2014).

After importing the image with SciKit-Image, the gamma was adjusted to a value of 10 with the gain remaining at a value of 1. These specific values segregated 
the L. californica from the surrounding vegetation in the image and could be adjusted to best accentuate the color of the flower in question. We separated the color 
channels to further isolate L. californica (Fig. A2). The flowers and reference clipboards only appeared in the red channel, and the clipboards only appeared in the blue 
channel. As analyzing L. californica using only the red channel would result in error from the clipboards, we subtracted the blue channel from the red channel in the 
final image to isolate flower pixels.

To generate the percent coverage of the flower pixels in the image, we counted any non-black pixels in the red and blue channels. The pixels of flowers are assumed 
to be the final number of pixels found in the blue channel subtracted from the red channel. We used this number to find the percent coverage for the entire image.

Drawing contours on the image around the flowers allows for other programs, such as ArcGIS (ArcGIS Desktop, release 10; Esri [Environmental Systems Research 
Institute], Redlands, California, USA), to use the percent coverage information. To reduce noise when drawing the contours, we applied an opening Morphology 
operation found in OpenCV. The threshold function of OpenCV further defines the flowers. Next, we determined the contours using OpenCV with a Tree Contour 
Retrieval Mode and the Simple Contour Approximation method. Finally, the contours are drawn on a blank image generated by NumPy, which is exported as a TIFF 
file (Fig. A3).

We converted the RGB channel data in the TIFF image to indicate flower presence or absence (1 or 0) for each pixel using the Raster Calculator in ArcMap (Esri). 
To visualize the percent cover of plants based on the presence of flowers, we used Esri’s Aggregate tool to sum the number of flower pixels in a 75 × 75-cell grid. This 
parameter reflects percent cover of flowers and functions as a proxy for the likelihood of plants existing in each aggregated cell.

http://www.bioone.org/loi/apps
www.python.org
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Fig. A2. The same image as Fig. A1 after pixels representing the distribution of Lasthenia californica flowers have been segregated.

Fig. A3. A heat map of plant density generated in ArcGIS using the image shown in Fig. A2. Values represent number of pixels representing Lasthenia 
californica flowers out of 5625 pixels in each grid area.
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