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Abstract
Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutri-

ents and flow-associatedmechanical stimuli. Locally, these flow conditions can vary

depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix

deposition. In this study, a novel application of the immersed boundarymethod was intro-

duced in order to represent a detailed deformable cell attached to a 3D scaffold inside a per-

fusion bioreactor and exposed to microscopic flow. The immersed boundarymodel permits

the prediction of mechanical effects of the local flow conditions on the cell. Incorporating

stiffness values measuredwith atomic force microscopy and micro-flow boundary condi-

tions obtained from computational fluid dynamics simulations on the entire scaffold, we

compared cell deformation, cortical tension, normal and shear pressure between different

cell shapes and locations. We observed a large effect of the precise cell location on the

local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm,

at the lower end of the range reported in literature. The proposedmethod provides an inter-

esting tool to study perfusion bioreactors processes down to the level of the individual cell’s

micro-environment, which can furtheraid in the achievement of robust bioprocess control

for regenerative medicine applications.

Author Summary

Tissue Engineering involves the combination of cells, growth factors and biomaterials into
artificial constructs which, upon implantation, can improve the healing capacity of the
human body. A remaining challenge involves providing physical stimuli to individual
cells, thereby guiding them towards the properties of the desired tissue type. Perfusion
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bioreactors try to control the local concentration of oxygen, nutrients and growth factors
and mechanical stresses by varying the fluid flow. In this work, we predict the shear stress
that individual cells experience at the microscopic scale, as a function of the bioreactor
inlet flow velocity, by making use of the immersed boundarymethod. This method com-
bines an Eulerian grid (fixed in space) with a Lagrangian grid (moving with the flow) to
model the deformation of cells due to flow inside a scaffold pore. Our simulations show
that the local shear stress levels on specific, realistic cell geometries are different from the
shear stress levels on empty scaffolds, which are often still used as a reference. Finally, we
predict and discuss the additional effect of realistic flow on other mechanical cell proper-
ties, such as its deformation and its cortical tension.

Introduction
The culture of stem cell populations in dynamic set-ups, for example in perfusion bioreactors,
holds great potential for the production of tissue engineered constructs [1]. The use of bioreac-
tors permits automated seeding and expansion of progenitor cells [2,3], facilitating the produc-
tion of clinically relevant cell populations in close systems, while maintaining their phenotype
and bone forming potential [4]. Additionally, these systems can provide controlled biomechan-
ical stimuli, such as fluid flow-induced shear stresses, that might significantly affect stem cell
properties during dynamic culture in bioreactors. For example, mechanical stimuli have been
associated to early stem cell lineage commitment [5] and osteogenic priming in the absence of
inductive growth factors [6–8]. Moreover, they have been shown to further promote osteogenic
differentiation of bone marrow, periosteum and adipose derived osteochondroprogenitor cells
in the presence of osteoinductive growth factors [9–13]. Osteogenic differentiation has been
linked to the magnitude of shear stress, showing dose dependent enhancement of extra-cellular
matrix deposition and subsequent mineralization by the cultured cells [14–17].

In order to characterize the dynamic environment throughout cell seeded scaffolds in perfu-
sion bioreactors, many Computational Fluid Dynamics (CFD) modeling studies have been pre-
sented in the past decade [18–22]. However, the majority of these studies considered empty
scaffold geometries without incorporating a cell domain. Recently this issue was addressed by
representing the growing neotissue as a porous medium in order to model the effect of neo-tis-
sue growth on the flow profile [23–27]. Still, these models predict the local distribution of shear
stress and pressure throughout a volume averaged porous domain and do not take into account
the local mechanical and geometrical environment of individual cells.

Mechano-transduction of stress induced by shear flow conditions is highly localized at spe-
cific areas of the cell’s interface with its environment, such as focal adhesions, FAs [28], and
primary cilia [5]. The latter have been shown to be involved in the osteogenic response of bone
cells to dynamic shear flow conditions [29], as well as in remodeling of the extracellularmatrix
[30]. The amount of force perceived at the level of FAs as a result of external flow conditions is
influenced by the cell’s mechanical properties, cell shape and the geometry of its microscopic
environment, e.g. location of attachment points, and presence of extracellularmatrix (ECM).
In this respect, the concept of cell cortical tension has gained a renewed interest in the last
years as a mediator of mechano-transduction processes [31]. Cortical tension is created by the
cell itself through active acto-myosin contractility, resulting in a prestressed cytoskeleton. This
self-generated stress is an essential aspect of the tensegrity theory as introduced by [32], which
posits that the cytoskeleton constitutes a tensegrity structure, with tension generating cortical
stress fibers as ‘ropes’ and load bearing capacity provided by other cytoskeletal elements, the
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substrate or the ECM. Next to additional structural integrity, the mechanically stressed state of
a cell can boost the mechano-sensitivity of a cell [33]. External flow however, can also contrib-
ute to locally elevated levels of cortical tension, especially close to attachment point such as
FAs. This passive source of cortical tension, as well as its importance relative to the cell-gener-
ated active tension and prestress, has not yet been investigated for perfusion cell culture sys-
tems. Therefore, a scaling gap exists between small scale i.e. ‘single cell’ and ‘neotissue/whole
scaffold’ macro-scale that needs to be bridged. Computational models using realistic single cell
geometries are a prime candidate for facilitating this task. Similar concepts of cross-scale
model integration in order to capture mechanical interactions across scales from a whole organ
to single cell level have been already described and envisaged [34,35] and have served as a para-
digm for the current study focusingmostly on a scaffold-based in vitro process.

Computational models of cell deformation due to shear flow have been developed consid-
ering the cell as a 2D Gaussian interface [36] or a 3D linear elastic solid [23,37–47]. The latter
use a mixed Lagrangian-Eulerian formulation to solve the Fluid-Structure Interaction (FSI)
problem, with a coupling through continuity boundary conditions. Additional numerical
methods have been recently developed for modeling fluid-flow driven solid deformations in a
biomechanical context. Immersed finite element methods have been used for modeling soft
tissue deformation under the influence of blood flow [47] and within the walls of the aortic
root [48]. In addition cell motility and deformation through contracted channels reminiscent
of microfluidic experiments were also captured using a similar method operating with a single
analysis mesh for solid and fluid that was not subjected to any deformation [49]. For larger
deformations, the interaction between cell and fluid has been resolved by means of the level-
set method [50]. Alternatively, the Immersed BoundaryMethod (IBM) is able to explicitly
take into account discrete entities in the cell’s cortex and, possibly, its internal cytoskeletal
structure. It has been used to model the movement and deformation of vesicles, red blood
cells and bacteria under flow conditions [51,52]. An FSI model for osteoblasts attached to scaf-
fold struts was recently published [53], with a rigid single cell consisting of a half-sphere with
two focal adhesion points. In the work presented in this study, more realistic cell shapes are
introduced, which are not rigid but deform due to the fluid flow. Still, the cytoskeleton consti-
tutes a highly complex, mechanoadaptive material [54–56] and its mechanical behavior differs
between various temporal and spatial scales, [57,58]. Hence at present, only a strongly simpli-
fied mechanical representation of a complete attached cell is considered computationally
feasible.

The main purpose of this study is to use the IBM to investigate fluid-inducedmechanical
stimuli on progenitor cells used for bone tissue engineering (human periosteal derived cells,
hPDCs) attached to regular pore titanium scaffolds inside a perfusion bioreactor set-up. Each
cell is represented by a simplified model of the cortical shell, similar to [59], supplemented
with discrete Focal Adhesions (FAs) and an elastic nucleus. A multi-scale modeling approach
is presented, consisting of a CFD analysis at the scaffold macroscopic (tissue) scale in order to
determine suitable input boundary conditions at the microscopic scale (single cell scale) where
the fluid-structure interaction is modeled by means of the IBM. The impact of the spatial loca-
tion of the cells within the scaffold during flow perfusion on a number of key mechanical quan-
tities at the cellular scale was investigated. To illustrate how (location-induced) geometrical
differencesmight affect the biomechanical environment of single cells, three characteristic
locations and corresponding cell geometries were chosen: one cell spread along the direction of
the flow (A), one facing the flow (F) and one bridging between two struts (B). Furthermore, the
presented model was used to assess how small clusters of cells attached to the scaffold are
mechanically affected by perfusion flow. In order to investigate mechanical effects of mutual
shielding [60], a ‘three cells configuration’ (T) facing the flow was investigated.
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Methods

ImmersedBoundaryMethod
The IBM has been developed for simulating moving, deformable membranes immersed in a
fluid, based on a combination of an Eulerian and a Lagrangian approach [61]. The deformable
object (the cell in this study), is represented by a discretizedmembrane/cortexΓ(t) and is able
to move freely through the fixed Eulerian mesh O on which the flow is computed. The inter-
connection between both lattices is accomplished by means of a smoothedDirac function δ.

In the 3D mesh O, the equations for incompressible Stokes flow are solved (as appropriate
for the low Reynolds numbers typically encountered in bioreactors, see also in the supplemen-
tary information):

� mΔuþ

Δ

p ¼ F; ð1Þ

Δ

� u ¼ 0; ð2Þ

with suitable boundary conditions which are explained in following section. In Eqs (1) and (2),
u represents the fluid velocity, p the pressure and μ the viscosity. The influence of the cell
boundaryΓ(t) immersed in the fluid is taken into account through the distributed force density
F and can be expressed as:

Fðx; tÞ ¼
Z

Γ ðtÞ
f ðs; tÞdðx � Xðs; tÞÞds: ð3Þ

Here, x are the Eulerian coordinates and X(s,t) are the discretized cell membrane coordi-
nates indicating the position of the membrane at time t. As mentioned previously, the interac-
tion between both meshes is realized through the introduction of a Dirac function δ defined by
the following continuous function of the distance r:

dðrÞ ¼
1

4
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Using Eq (4), Eq (3) can be rewritten in a discrete formulation

Fðx; tÞ ¼
XN

i¼1
f i
ðs; tÞdhðx � Xiðs; tÞÞds; ð5Þ

with N the number of nodes of the cell membrane, h the Eulerian mesh size and

dhðxÞ ¼
1

h3
d

x
h

� �
d

y
h

� �
d

z
h

� �
: ð6Þ

Once the flow is computed, the membrane positions are updated using the following equa-
tion of motion:

dXðs; tÞ
dt

¼ UðXðs; tÞ; tÞ; ð7Þ

with U the interpolated flow velocity on Γ(t) which can be expressed as follows:

UðXðs; tÞ; tÞ ¼
Z

Ω
uðx; tÞdðx � Xðs; tÞÞdx: ð8Þ
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Mechanical representationof a cell
The mechanical representation of a cell in the Eulerian domain relies on the work presented in
[62] where the underlying mechanisms and assumptions are discussed in detail. Briefly, the
model assumes that most of the cytoskeletalmaterial is present in a relatively thin cortical shell
and that an elastic description of deformations at short timescales is adequate. Hence, the
mechanical properties of this cortical shell will account for the mechanical response of the
complete cytoskeleton. The immersed boundarywhich represents the cell is composed of a tri-
angulated surface with a stretching stiffness ks and a bending energy kb. Finally, the cell nucleus
is represented as a submerged solid elastic sphere with Young’s modulus En.–see Fig 1.

The linear spring force of node i for each connected node j at distance dij and resting length
dij

0 is expressed as:

f ij
s ¼ ksðd

ij
0 � dijÞeij; ð9Þ

where eij denotes a unit vector pointing from i to j. A moment of bending is computed between
all adjacent triangles k and m with angle θkm and resting angle y

km
0

:

Mkm
b ¼ kbsinðy

km
� y

km
0
Þ: ð10Þ

A force corresponding to this moment is applied to the non-common points of each of the
two triangles, and a compensating force is applied to the common edge points, ensuring that
the total force on the cell remains unchanged, i.e. for two triangles with common nodes c1 and
c2 and non-common nodes lk and lm:

f c1 ¼ f c2 ¼ �
Mkm

b

2

nk

Lk
þ

nm

Lm

� �

;

Fig 1. Mechanical representation of the cell. Left: Lagrangian elastic boundary of the cell with stretching stiffness ks, bending stiffness kb and
integration points X(s,t), immersed in an Eulerian lattice with positions x. Right: Mechanical representation of a cell attached to a scaffold, approximated
through the use of a cortical shell model with stretching and bending stiffness (resp. ks and kb), volume compression modulus K and nucleus stiffness
En. Discrete attachment points representing focal adhesions (FA) connect the cell to the rigid scaffold.

doi:10.1371/journal.pcbi.1005108.g001
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f lk
¼

Mkm
b

Lk
nk; f lm

¼
Mkm

b

Lm
nm: ð11Þ

Lk and Lm are the distances from resp. node lk and lm to the line containing the common edge,
and nk and nm are the normal unit vectors of triangle k and m. We denote the total bending
force contribution of all adjacent triangle pairs of node i as f i

b . This type of bending stiffness is
commonly found in the literature for Red BloodCell models [63]. The cell’s volume is main-
tained through an effective bulk modulus K. For this, an internal pressure Pv is computed
based on a cell’s volume V and equilibrium volume V0:

Pv ¼ K
V0 � V

V
: ð12Þ

Subsequently, a force f i
v ¼ PvAini is obtained for each node i with Ai and ni respectively the

area and outward normal unit vector of each node, both of which are calculated using a discrete
version of the Laplace-Beltrami operator. Furthermore, the nucleus is represented as a solid,
elastic sphere with Young’s modulus En for which contact with the cortical nodes is considered
Hertzian, i.e.

f i
n ¼

4En
ffiffiffiffiffi
Rn
p

3
d

i
n

3=2ei
n ; dn > 0

0 ; dn � 0

8
<

:
ð13Þ

for node i indenting a nucleus with radius Rn and overlap distance d
i
n, and with ein a unit vector

pointing from the nucleus center to node i. Discrete attachment points serve as Focal Adhe-
sions (FAs). These points are placed outside of the fluid domain and are therefore not displaced
by the fluid. Finally, the total force per node fi(s,t) is computed as the sum of all aforementioned
partial forces:

f i
ðs; tÞ ¼ f i

s þ f i
b þ f i

v þ f i
n: ð14Þ

Atomic Force Microscopy measurementsof cell cortical stiffness
Cell cortical stiffness was measured using Atomic Force Microscopy (AFM). Measurements
were performed using a Nanowizard 3 BioScienceAFM (JPK) with a working range of
100×100×15 μm mounted on the stage of an inverted microscope (Olympus 1) placed on a
vibration-isolation table. A V-shaped gold-coated silicon nitride cantilever with a four-sided
pyramidal tip (Budget Sensors) with a nominal tip radius rtip of 15 nm and an opening angle θ
of 35 degrees was used as the probe. The spring constant kspring of the cantilever was ca. 0.3
Nm−1. Exact values have been calibrated using the thermal fluctuation method. Force curves
have been recorded at 5 μm/s approach and retract speed, of which only the approach curves
have been analyzed to arrive at the instantaneous Young’s modulus using the Sneddon model
for forces> 200 pN. We neglect the information at low indentations, since according to [64],
the Sneddon model is accurate at higher indentation δ, allowing us to extract the cortical
Young’s modulus Ec as:

F ¼
EctanðyÞffiffiffi
2
p
ð1 � n2Þ

d; ð15Þ

where F is the measured force. Assuming a Poisson’s ratio ν of 0.5 [65], we can fit this formula
to the typical force-indentation curves obtained by AFM for every pixel on the cell’s surface
(we use the Levenberg-Marquard algorithm in MINPACK through its python-interface
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provided by SciPy for curve-fitting). To extract the stiffness of the cortical layer, we select
regions on the cell away from the nucleus where the average cell height is very low so that we
can assume that the measured stiffness is indeed the compressive stiffness of the cell’s cortex
and not dominated by effects from bending of the cortical layer or the intra-cellular fluid—see
S1 Text and S2 Fig. To limit the influence of the underlying substrate, the maximal force was
chosen to keep the indentation depth to less than 20–30% of the height of cortex cell thickness.
The full procedure to select usable patches within the AFM stiffnessmaps is detailed in the sup-
plementary information. The global average over all measured cells and all patches yields an
estimated cortical stiffness Ec = 3.5 ± 2 kPa (Fig 2).

Fig 2. AFM measurements of the cell cortical stiffness.a) Optical image of the cell, b) AFM height map, c) histogram of cortical Young’s modulus Ec
from N = 13 cells (in which in total 22 different cortex regions were sampled) d) Young’s modulus image.

doi:10.1371/journal.pcbi.1005108.g002
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Calibration of cell mechanicalmodel
For a relatively thin cortical ‘sheet’, and assuming that the cortex consists out of some homoge-
nous elastic material, the stretching stiffness ks and bending energy kb can be related to the cor-
tical Young’s modulus Ec and the cortical thickness tc:

kb ¼
Ect3

c

12ð1 � n2
c Þ

ð16Þ

ks ¼
2Ectcffiffiffi

3
p ð17Þ

where we usually assume the Poisson’s ratio of the actin cortex vc to be close to 0.5 [66]. Having
determined the effective stiffness of the cortical shell and its thickness from AFM, these equa-
tions allow us to calculate the parameters of the mechanical cell model. To evaluate our proce-
dure, these estimated mechanical parameters can be compared to simulated Micropipette
Aspiration (MA). Hereto, a simulation was set up where a spherical cell is aspirated into a thin
cylindrical structure with a rounded tip and radius Rp—Fig 3. The relationship between the
applied under-pressure in the pipette and the aspirated length Lp of the cell expresses an effec-
tive equilibriumYoung’s Modulus E1 which can be compared to experimental values obtained
using the same technique [67]:

ΔP ¼
2p

3
E1

Lp

Rp
Φ ð18Þ

whereΦ� 2.1 is a scaling factor.

Fig 3. Determination of cell stiffness by means of micropipette aspiration.Left: Visualization of simulated micropipette
aspiration experiment. Right: EquilibriumYoung’s Modulus E1 as a function of stretching stiffness ks for varying cortical
thickness tc. For the parameter values extracted from the AFMmeasurements, an equilibriumYoung’s modulus of 194.7 Pa
was obtained.

doi:10.1371/journal.pcbi.1005108.g003
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The cell’s Young’s modulus obtained by applying this procedure—seeFig 3—from the param-
eter values estimated from AFM measurements (Table 1) is 194.7 Pa, which compares well to
measured values from MSCs; e.g. [68] report Young’s moduli in the range of 150–350 Pa.

Design of simulations
The flow profile around a single cell attached to the scaffold is computed by solving the
immersed boundary problem at the scale of the investigated cell. For this purpose, the Eulerian
computational domain O corresponds to a box of a few hundred microns wide/long containing
the cell and not the whole scaffold pore—see Fig 4F.

In order to obtain the magnitude of flow velocity which is to be used as a Dirichlet boundary
condition on the microscopic domain O, see Eqs (1) and (2), Stokes’ equation was solved on an

Table 1. List of parameters used in study.

Parameter Symbol Value Unit Source

Viscosity μ 0.001 Pa � s Water at 293K

Bending energy cortex kb 8.5e-17 Nm AFM; Eq (15)

Cortical stiffness ks 2.34e-3 N/m AFM; Eq (16)

Bulk modulus K 200 Pa Assumption

Young’s modulus nucleus En 1000 Pa [69]

Poisson’s ratio nucleus vn 0.5 - [69]

doi:10.1371/journal.pcbi.1005108.t001

Fig 4. Overview of the computational domains. a) The computational domain and boundary conditions at
the macro-scale. b) Computed flow velocity magnitude used as input for the micro-scalemodels. c)
Immersed Boundarymethod representation: Ω and Γ are resp. the Eulerian and Lagrangian mesh (left), with
an illustration of the smoothed Dirac distribution (right).d) Black dots represent the three locations where the
micro-scale Dirichlet boundary conditions for flow velocity vib are extracted. e) Red dots represent the three
locations of cells: along the flow (A), bridging (B), facing the flow (F) and ‘three cell cluster’ configuration (T).
f) Micro-scale domain; the grey cylinder is the scaffold strut, the box is the Eulerianmesh Ω and the cell is
the Lagrangian mesh Γ.

doi:10.1371/journal.pcbi.1005108.g004
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entire scaffold pore. An inlet velocity corresponding to the bioreactor flow rate Qin was set at
the entrance of the pore and symmetry boundary conditions were applied on each sides of the
pore–Fig 4A. Next, the calculated flow velocities vms at specific locations in the scaffold pore
were used to extract suitable boundary conditions vib for the IBM problem–Fig 4D. These loca-
tions are indicated in Fig 4E and correspond to characteristic positions inside a pore: a cell on a
cylindrical strut with flow parallel to the cylinder axis (A), a cell on a cylindrical strut with flow
perpendicular to the cylinder axis (F), a small cluster of three interconnected cells on a cylindri-
cal strut with flow perpendicular to the cylinder axis (T) and a single cell attached on a strut
junction, forming a bridge between two perpendicular struts (B).

At each of these locations, a spread out cell was positioned that conforms to the local geom-
etry of the scaffold strut(s)–see Fig 5. The procedure that was used to obtain the detailed cell
shapes is explained in the supplementary information. All cells were attached with discrete FAs
which are located on the surface of the struts and of which the position did not change in time.

Implementation
The Immersed Boundary implementation was realized using the Finite Element software Free-
FEM++ [70], which solves the Stokes flow problem, with the Lagrangian forces computed in a
coupled module implemented in the particle-based simulation platform Mpacts [71].

Ethics statement
This procedure was approved by the ethics committee for Human Medical Research KU Leu-
ven (ML7861). Patient informed written consent was provided by the legal guardian.

Results and Discussion
Four potentially relevant mechanical measures were computed for cells experiencing flow con-
ditions inside a scaffold pore: nodal displacement, cortical tension, normal pressure and local
shear stress. Moreover, we compared between four different geometries as illustrated in Fig 5.
All these geometries are regularly encountered in experimental set-ups where cells are attached

Fig 5. Initial representations of the four studied cell configurations.Along the flow (A), facing the flow
(F), the three cells clump (T) and the corner bridging cell (B). Bottom right: DAPI/Phalloidin staining of cells
attached on scaffold struts.

doi:10.1371/journal.pcbi.1005108.g005
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to titanium scaffold struts—see Fig 5. A parameter study was performed to investigate the effect
of changes in volumetric flow rate in the bioreactor on the specifiedmechanical measures and
shows a linear relationship for all four quantities (see supplementary information). In the fol-
lowing section, we will discuss for each of these geometries the effect of flow on the four
mechanical measures. In order to permit a direct comparison, the spatial distribution of every
quantity will be shown for each geometry using the same scaling.

Fig 6 summarizes the effect of flow on the nodal displacements. Very low displacements
were obtained for flow parallel to the cylindrical strut (A), while intermediate displacements
were found for flow perpendicular to the cylindrical strut (F) and relatively high displacements
were observed for the cell forming a bridge at a scaffold corner (B).

For inlet bioreactor flow rates in the order of 1 ml/min,maximal displacements are in the
range of 30 nm which has been reported as a critical displacement for the detachment of mes-
enchymal stem cells of bridgedmorphology from irregular scaffolds [72,73]. However, these
studies were carried out using a one-way fluid–structure interaction (FSI) approach and did
not consider the influence of cellular deformation on the surrounding fluid flow, something
that in this study was included (two way interaction between cell and fluid). In another study
[74], ‘microdisplacements by machine vision photogrammetry’ (DISMAP) was used to mea-
sure flow-induced strain of osteocytes on a flat substrate. Here, a linear strain-shear stress rela-
tionship was found. In our simulations, configurations (F) and (A) produce a maximal cell
strain of resp. 0.412% and 0.062%, for empty scaffold shear stress magnitudes of resp. 0.0723
Pa and 0.0143 Pa. Using the linear relationship found in [74], strains of resp. 0.307% and
0.0608% would be expected. Even though the cell types are not identical, very similar values
would be obtained by our computational model as found by these experiments.Moreover, the
higher strain found in the (F) configuration is an expected result of the less shielded cell
location.

The observed ranges of cell deformation are much smaller than typical deformations of cells
in tissue: e.g. for chondrocytes in mature cartilage, strains higher than 20% (i.e. more than
1 μm) have beenmeasured upon tissue compression [75]. However, it should be stressed that
our simulations report the instantaneous elastic response in deformation to a step increase in
flow velocity, and neglect the viscous deformations that might occurwhen cells are exposed to
constant flow conditions for a long time (i.e. days).

In Fig 7, the distribution of cortical tension T is shown for the four different geometrical
configurations. Positive values of T indicate tensile conditions, whereas negative values of T
indicate compressive stresses in the cortical shell. Unlike the cell deformations, which were
maximal for the cell bridging between two struts (B), the maximal tension T occurs for cells on
cylindrical struts with flow perpendicular to the strut (F) and (T). Moreover, maximal cortical
tensions are observed close to the nucleus and close to FAs, with tensile stresses occurring at
the side of incoming flow and compressive stresses at the side of out-going flow. Maximal ten-
sions, which are highly localized, are around 5 pN/μm. For comparison, these values are several
orders of magnitude below the values for membrane rupture [76]. Other experimental studies
have looked at the induction of blebbing, for which it was reported that cortical tensions of at
least 200 pN/μm were required [77], while inside blebs, cortical tensions between 10 and 100
pN/μm were measured [78]. The cell’s acto-myosin contractility alone creates an average rest-
ing cortical tension in the order of 0.5pN/μm [79]. In other words, the predicted additional cor-
tical tension due to shear flow is relatively low, but it cannot be excluded that these tensions
could nonetheless result in some conformational changes in the cytoskeleton.

Fig 8 shows the distribution of the fluid pressure (P) on each cell’s surface. Cells located in
the configurationwhere the flow is facing the strut, i.e. where the flow velocity is the highest (F
and T), show the largest variation in the pressure distribution, reaching a maximal amplitude
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of ± 0.5 Pa. Contrarily, cells located in (A) and (B) display few pressure differences due to the
low flow speed and the lack of large changes in the flow streamlines.

Fig 9 shows the flow induced shear stress (τ) across the examined cells. While the average
value of τ taken over the entire cell-surface (including the ‘bottom’ of the cells, facing the strut)
is generally low due to the reduced flow speed and related shear stress at the bottom of the cell,
it is very interesting to compare the maximum wall shear stress values at the top of the cells.
Due to their location, configuration (F) and (T) show the highest shear stress, reaching up to
0.16 Pa while cells located in (A) and (B) show a low value of shear stress, around 0.02–0.03 Pa.
In vivo, cells in the bone tissue have been found to experience shear stresses of 0.8–3.0 Pa dur-
ing routine physical activity [41,80]. A maximal shear stress value of 0.77 Pa was observedon
the surface of osteocytes due to flow in the pericellular domain [44].

Compared to the expectedwall shear stresses in an empty scaffold, we see that the maxi-
mum stress predicted by the IBM is generally about twice as high, while the average stress over
the complete cell surface is significantly lower. This clearly indicates the importance of taking
the shape and mechanical response of the cells into account for estimating their relevant wall
shear stress. Regarding the (F) and (T) configurations, as expected, the distribution of shear
stress is more homogenous with half of the cell surface exposed to a higher value than 0.015 Pa,
while the two other configurations present most of their surface exposed to low shear stress
value (below 0.005 Pa). For the flow rate level used in this study, we have previously reported

Fig 6. DisplacementD of the immersed boundary due to flow, relative to the no-flow condition, for distinct configurations (A, F, T and B) of
cells on scaffold struts. Left: color map showing local displacements. The arrows indicate the direction of the flow; scale bar 10 μm. Top right:
distribution of the displacements for A, F, T, B. a.u.: arbitrary units. Bottom right: mean nodal displacement (dark color) and maximal nodal
displacement for cases A, F, T and B.

doi:10.1371/journal.pcbi.1005108.g006
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the effect of increasing flow rates resulting in osteogenic priming of hPDCs in the absence of
supplementary growth factors [8] with genes such as osterix and bone sialoprotein being
slightly upregulated. Additionally, again for similar flow rates and in the presence of osteoin-
ductive medium, hPDCs have been shown to secrete higher levels of ECM and to enhance min-
eralization for increasing flow rates [81]. It has been observed [82] that for a shear stress value
exceeding a threshold value of 0.088 Pa, human MSCs can detach from the scaffold surface and
by doing so negatively affect the final properties of tissue engineered constructs, resulting in an
inhomogeneous distribution of neotissue across the scaffold [83]. This illustrates the impor-
tance of having a numerical model such as the one presented in this study, to quantify and
characterize the mechanical environment that cells experience in novel scaffold designs in
order to avoid the development of suboptimal or detrimental mechanical regimes.

Conclusions and outlook
In the presented work, a novel application of the immersed boundarymethod was developed,
representing a deformable cell exposed to microscopic flow and attached to a 3D scaffold inside
a perfusion bioreactor. Cells were represented by a deformable Lagrangian surface mesh, which
was immersed in an Eulerian fluid domain, with flow in the Stokes regime. We demonstrated
the effect of shear flow for multiple realistic geometrical cell configurations and strut locations
inside a regular pore scaffold. This tool can be used to estimate shear flow conditions directly

Fig 7. Cortical tension (T) due to imposed flow for distinct configurations (A, F, T and B) of cells on scaffold struts.Positive values indicate
tensile conditions, while negative values indicate compressed conditions. Left: color map showing local tension. The arrows indicate the direction of
the flow; scale bar 10 μm. Right: Boxplot showing distribution of local tension for cases A, F, T and B.

doi:10.1371/journal.pcbi.1005108.g007
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on the surface of individual cells, and assess the micro-scale variability of mechanical condi-
tions inside single scaffold pores. The instantaneous cell stiffness was measured using AFM
experiments on hPDCs, and the mechanical model was calibrated using micro-pipette aspira-
tion simulations in the range of short term deformations. Simulations confirmed that mechani-
cal cues originating from the flow are highly dependent on the exact geometry of the cell and
its environment. For example, a cell on a cylindrical strut with flow perpendicular to the strut
will experience a much larger shear stress than a cell on a similar strut with parallel flow. This
should be a major consideration when designing novel scaffold designs. Moreover, it was
found that wall shear stress calculated in the empty scaffold would underestimate the actual
maximal wall shear stress experiencedby the cells by a factor of two in the investigated cases.

Next, the model was used to estimate the additional instantaneous flow-induced cell defor-
mation, tension and pressure. Compared to the cell-generated deformation and tension due to
acto-myosin activity these values are very small for the applied realistic flow conditions. For
example, the predicted magnitude of additional cortical tension due to flow is much lower than
the pre-stress of a spread out cell. Hence, it is not expected to affect the tensional homeostasis
of a cell in steady-state conditions. Nonetheless, in cyclic conditions, small deviations from the
resting state can still have pronounced biological effects, as is explained by the tensegrity model
[32,33]. In the same vein, small cytoskeletal deformations away from the cell's resting configu-
ration might alter the configuration of several intracellular mechanosensing molecules, which
are linked to downstream targets in pathways such as the mitogen-activated protein kinase

Fig 8. Pressure (P) on the cell surface due to imposed flow for distinct configurations (A, F, T and B) of cells on scaffold struts. Left: color maps
showing local pressure. The arrows indicate the direction of the flow; scale bar 10 μm. Right: boxplot showing distribution of pressure for cases A, F, T
and B.

doi:10.1371/journal.pcbi.1005108.g008
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(MAPK) or phosphoinositide-3-kinase (PI3K) pathways [84]. Since the predicted strain of the
cell is highest near its attachment points on the substrate, which also constitute focal sites of
mechanotransductionmachinery, a discernible biological response could result even from
small deformations, as long as the dynamics of the perturbations in flow conditions are faster
than the relaxation time of tensional homeostasis.

In the current work, a strongly simplifiedmodel for the mechanical behavior of single cells
was used, which limits its predictive value to small deviations from the resting state. A more in-
depth computational analysis of the mechanisms at play involved in large cell deformations
would require a more detailedmodel of the mechanoadaptive behavior of the cytoskeleton and
will be reserved for future research. Similarly, the effect of shear flow on the long timescale vis-
cous-like deformation of living cells remains to be investigated. This would also require a more
elaborate description of the cell’s mechanical behavior, which for this study was greatly simpli-
fied and limited to linearly elastic deformation. The model’s limitation of small deformations
and short timescales will mainly restrict in scope the predictions of cell deformation and corti-
cal tension, whereas predictions of shear stress and local pressure, being surface properties, are
expected to remain largely unaffected. Finally, to simulate adhesion and detachment behavior
(e.g. in very high shear flows), the presented methodologyhas to be extended since adhesion is
only implicitly captured by placing FAs out of the fluid domain thereby fixing them in space
independently of applied forces. For this, an adhesion force formulation as proposed in [62]
could be included.

Fig 9. Shear stress (τ) on the cell surface due to imposed flow for distinct configurations (A, F, T and B) of cells on scaffold struts. Left: color
maps showing local shear stress. The arrows indicate the direction of the flow; scale bar 10 μm. Top right: distribution of shear stress for A, F, T, B.
Bottom right: mean shear stress (dark color) and maximal shear stress (light color) for cases A, F, T and B. The empty bars indicate the shear stress on
the empty scaffold strut at the cell’s location (computed at the macro-scale).

doi:10.1371/journal.pcbi.1005108.g009
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A parameter study (see supplementary information) showed linear behavior in the relevant
cell-mechanical and flow parameters, showing that the model can be used to inter-/extrapolate
to different cell types and flow conditions. For a cell of thickness 5 μm facing flow on a strut of
diameter 200 μm, the wall shear stress can be estimated as: τ� 0.08�Qin. Evidently, the maxi-
mal wall shear stress experiencedby a cell does not depend strongly on the cell’s mechanics.
This implies that even though a cell may undergo structural changes (e.g. migration, re-align-
ment), it can still reliably ‘sense’ the shear flow (e.g. with its primary cilium). This study consti-
tutes an important step towards model-based control of a cell’s biophysical micro-
environment (stem cell niche engineering) in a perfusion bioreactor.

Supporting Information
S1 Text. Computational and experimental implementation details.Description of the meth-
odology to obtain computational meshes for realistic spread out cells, the technical procedure
of the AFM experiments, and numerical details of the CFD simulations.
(DOCX)

S1 Fig. Geometricalmodel of the cell. From left to right:An example of the procedure for
obtaining geometries of cells attached in flow, starting from a perfect sphere. The blue sphere
inside the cell represents the nucleus.
(TIFF)

S2 Fig. Additional data on AFM experiments. a) Selection of regions on the cellular extension
used for the cortex-stiffness analysis, b) Average thickness h of all thus selected regions, c)
Young's modulus Ec vs. thickness h for all regions, no correlations are apparent.
(TIFF)

S3 Fig. Results of a parameter study varying inlet volumetric flow rate Qin and cortex stiff-
ness ks for configuration (F). Top left:maximal local displacement;Top right:maximal nor-
mal pressure; Bottom left: maximal local shear stress and Bottom right: maximal local tension.
From Qin the Dirichlet boundary conditions in the micro-scalemodel were determined using a
CFD simulation of the complete scaffold pore—Fig 4A. The resulting maximal deformation,
pressure, shear stress and cortical tension were quantified. One might notice that the dependence
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levels of Eulerianmesh refinement.At each height, an average was taken over a narrow region
of x 2 [-5 μm, 5 μm] and z 2 [-5 μm, 5 μm].
(TIFF)

S6 Fig. Node displacement of the Lagrangianmesh (representing the cell) in the ‘F’ configu-
ration for varying levels of Eulerianmesh refinement. If the Lagrangianmesh is much finer
than the Eulerian grid, the Immersed BoundaryMethod will fail to properly resolve internal
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(TIFF)
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Stokes Equations.
(XLS)
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with parameters and output measures as explained in the file header.
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