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Abstract
Safingol, L- threo-dihydrosphingosine, induces cell death in human oral squamous cell car-

cinoma (SCC) cells through an endonuclease G (endoG) -mediated pathway. We herein

determined whether safingol induced apoptosis and autophagy in oral SCC cells. Safingol

induced apoptotic cell death in oral SCC cells in a dose-dependent manner. In safingol-

treated cells, microtubule-associated protein 1 light chain 3 (LC3)-I was changed to LC3-II

and the cytoplasmic expression of LC3, amount of acidic vesicular organelles (AVOs)

stained by acridine orange and autophagic vacuoles were increased, indicating the occur-

rence of autophagy. An inhibitor of autophagy, 3-methyladenine (3-MA), enhanced the sup-

pressive effects of safingol on cell viability, and this was accompanied by an increase in the

number of apoptotic cells and extent of nuclear fragmentation. The nuclear translocation of

endoG was minimal at a low concentration of safingol, but markedly increased when com-

bined with 3-MA. The suppressive effects of safingol and 3-MA on cell viability were

reduced in endoG siRNA- transfected cells. The scavenging of reactive oxygen species

(ROS) prevented cell death induced by the combinational treatment, whereas a pretreat-

ment with a pan-caspase inhibitor z-VAD-fmk did not. These results indicated that safingol

induced apoptosis and autophagy in SCC cells and that the suppression of autophagy by 3-

MA enhanced apoptosis. Autophagy supports cell survival, but not cell death in the SCC

cell system in which apoptosis occurs in an endoG-mediated manner.

Introduction

Autophagy is originally achieved by the depletion of glucose in order to overcome starvation
and promote cell survival. Although it is essentially considered to protect cellular functions [1–
3], it leads to cell death under some conditions. Autophagy signals are generally mediated by
the phosphatidylinositol 3-phosphase kinase (PI3k), Akt, and mammalian target of rapamycin
(mTOR) signaling pathways. mTOR functions downstream of Akt and has been identified as a
key regulator of autophagy [4, 5]. In normal situation, signals from growth factor receptors and
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nutrient sensors are collected throughmTOR and its downstream effector p70 S6 kinase to
promote the growth of cell and inhibit autophagy. When these signals are inhibited by pharma-
cological reagents or nutrient deprivation, one possible cellular response is the induction of
autophagy [6]. Autophagy begins with the isolation of double-membrane-bound structures.
These membrane structures elongate and microtubule-associated protein 1 light chain 3 (LC3)
is recruited to the membrane [7, 8]. The elongated double membrane forms an autophago-
some, which sequesters cytoplasmic proteins and organelles. Thereafter autophagosomes
mature and fuse with lysosomes to become autolysosomes. The sequestered contents are then
digested by lysosomal hydrolases for recycling.

Various anticancer therapies activate autophagy or autophagic cell death in cancer cells [9].
However, the autophagic response of cancer cells is not always an indication of cell death, it can
be also a protective response to the treatment, allowing the recycling of proteins and cellular
components. In oral squamous cell carcinoma (SCC), chemotherapeutic agents such as epigallo-
catechin-3, C2-ceramide, resveratrol and IL-24 that induced caspase-dependent apoptosis and/
or necrosis of SCC cells also contributed to cell survival or cell death of cancer cells [10–14].

Protein kinase C (PKC) comprises a family of phospholipid-dependent serine/threonine
kinases, including novel and atypical isoforms [15] and plays a pivotal role in signal transduc-
tion involved in the control of cell proliferation, differentiation and apoptosis of tumor cells
including oral SCC cells [16, 17]. Safingol is a synthetic L-thero-dihydrosphingosine, the effects
of which are attributed to its suppressive effect on the protein kinase C (PKC) family [18, 19],
and its ability to affect the balance of ceramide and sphingosine 1-phosphate as a sphingosine
kinase inhibitor [20]. The antitumor ability of safingol was examined in combination with
doxorubicin or cisplatin in a clinical trial for solid tumors [21, 22]. We showed that safingol
released the apoptogenic factor, endonuclease G (endoG), frommitochondria, which translo-
cated into the nucleus, and this was followed by the apoptosis of human oral squamous cell car-
cinoma (SCC) cells at concentrations of 25 μM and 50 μM [23, 24]. Caspase 3 was not
activated but the down-regulation of endoG blunted the antitumor ability of safingol under
these conditions; radioactive oxygen species (ROS) were found to be upstreammediators of
safingol-induced apoptosis [25, 26]. Safingol has been shown to induce autophagy by inhibiting
PKCs and PI3k in human colon cancer cells, and the cell death that occurredhad a distinctly
autophagic morphology [6]. However, the role of autophagy in endoG-mediated apoptosis in
oral SCC cells has not yet been investigated. In the present study, we examined the ability of
safingol to induce autophagy and determinedwhether autophagy contributed to cell death or
cell survival in endoG-mediated apoptosis.

Materials and Methods

Cells

The human oral SCC cell lines SAS and HSC-3 were obtained from the RIKEN BRC CELL
BANK (Tsukuba, Japan) and Ca9-22 from the Japanese Collectionof Research Bioresources
(Tokyo, Japan). Cells were cultured in Dulbecco’s modifiedEagle’s medium supplemented
with 5% fetal bovine serum, 4 mM L-glutamine, 100 μg/ml penicillin, and 100 μg/ml strepto-
mycin and then grown in an incubator at 37°C in a humidified atmosphere with 5% CO2.

Reagents

Safingol and the broad caspase inhibitor z-VAD-fmk were obtained from Calbiochem-Nova-
biochem (San Diego, CA, USA) and a stock solution was made in dimetyl sulphoxide (DMSO).
3-MA, bafilomycin A1, MTT, and PI were obtained from Sigma (St.Louis,MO, USA). Acridine
orange and NAC were obtained fromWako (Osaka, Japan).
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3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

assay

Cells were grown in 96-well culture plates and treated with safingol. Thereafter, 10 μl of
5mg/mlMTT solution was mixed with 100μl of medium in each well and cells were incubated
at 37°C for 4 h. After the addition of 100 μl of 0.04N HCl in isopropanol, the plates were mixed
to dissolve the dark blue crystal. The plates were read on a Benchmark Plus microplate spectro-
photometer (Bio-Rad Laboratories, Hercules, CA, USA) with a reference wavelength of 630
nm and a test wavelength of 570 nm. Background absorbance at 630 nm was subtracted from
the 570 nm reading as describedpreviously [23].

Flow cytometric analysis

FITC-annexin V and PI staining was performed using Vybrant Apoptosis Assay Kit#3 (Life
Technologies, Carlsbad, CA, USA) following the manufacturer’s instructions. After being
treated, floating cells were harvested with medium and attached cells were dissociated with
EDTA-trypsin solution. Cells were collected by centrifugation at 1,000 rpm for 5 min. Cells
were centrifuged and washed twice with phosphate-buffered saline (PBS), and the pellets were
suspended in 100 μl binding buffer containing 10 mMHEPES, 140 mMNaCl, and 2.5 mM
CaCl (pH 7.4) and incubated with 5 μl of FITC-annexin V and 1 μl of 100 μg/ml PI solution for
15 min at room temperature. Thereafter, 400 μl of binding buffer was added, mixed gently and
kept on ice. Stained cells were analyzed by FACSCalibur (BectonDickinson,Mountain View,
CA, USA). Data were analyzed by Cell Quest software (BectonDickinson).

Regarding acridine orange staining, cells floating and attached cells were harvested and col-
lected by centrifugation at 1,000 rpm for 5 min. Acridine orange was added at a final concen-
tration of 1 μg/ml and incubated for 15 min. The emission of red (564–606 nm) fluorescence
was measured with a FACSCalibur.

Transmission electron microscopy (TEM)

SAS cells were plated on 100 mm dish and cultured for 48 h. cells were treated with 10 μM
safingol for 24 h and fixed in phosphate buffered 2.5% glutaraldehyde and post-fixed in 2%
osmium tetra-oxide for 3 h in the ice bath. The specimens were dehydrated in a draded ethanol
and embedded in the epoxy resin. Ultrathin sections obtained by ultramicrotome technique
were stained with uranyl acetate for 10 min and lead staining solution for 5 min, and observed
using JEM-1200 EX (JEOL, Tokyo, Japan).

Cell fractionation

Nuclear fractionwas prepared using NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Thermo Scientific,Waltham, MA, USA) following the manufacturer’s instructions. Cells were
suspended in 500 μl of PBS in a 1.5-ml micro tube. Nuclear proteins were released from the
nuclei in a high salt buffer (Nuclear Extraction Regent) and the supernatant containing nuclear
proteins was obtained as the nuclear fraction after centrifugation at 15,000 x g for 10 min.

Immunoblot analysis

To detect proteins other than cytochrome c and endonuclease G, cells were washed in PBS and
lysed in a buffer containing 20 mM Tris-HCl (pH 7.4), 0.1% SDS, 1% TritonX-100, 1% sodium
deoxycholate, and protease inhibitor cocktail. After sonication on ice and subsequent centrifu-
gation at 15,000×g for 10 min at 4°C, the supernatant was collected and the protein concentra-
tion was determined using a Protein Assay Kit (Bio-Rad,Hercules, CA,USA). A protein sample
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(20 μg) was electrophoresed through a polyacrylamide gel and transferred to a PVDFmem-
brane (Millipore, Bedford,MA, USA) by electroblotting. The membrane was probed with anti-
bodies and antibody binding was detected using an enhanced chemiluminescence (ECL) kit
(GE Healthcare, Amersham, Buckinghamshire, UK) according to the manufacturer’s instruc-
tions. The antibodies used were as follows: rabbit polyclonal antibodies against endoG (Sigma),
mouse monoclonal antibodies against LC3 (Medical & Biological Laboratories, Nagoya, Japan),
rabbit polyclonal antibodies against Atg5, beclin-1 and histone (Cell Signaling Technology,
Beverly, MA, USA), mouse monoclonal antibodies against β-actin (Sigma), and horseradish
peroxidase-conjugated secondary antibodies (Cell Signaling Technology, Beverly, MA, USA).

Confocal laser microscopic analysis

After being treated, cells were fixed in 4% paraformaldehyde phosphate buffer solution (Wako)
and incubated with a rabbit polyclonal antibody against endoG (Sigma, St.Louis, MO, USA)
diluted 1:100 in PBS or an antibody against LC3 diluted 1:500 for 1 h at room temperature.
After washing, the cells were incubated with an Alexa Fluor 488 goat anti-rabbit antibody or
Alexa Fluor 488 goat anti-mouse IgG antibody (Life Technologies, Carlsbad, CA, USA) diluted
1:500 in PBS for 1 h. After washing, coverslips were mounted onto microslides using a ProLong
Gold Antifate Reagent with DAPI (Life Technologies Corporation). The slides were analyzed
under the confocal laser-scanningmicroscope Leica TCS SP8 (LeicaMicrosystems, Mannheim,
Germany).

Regarding acridine orange staining, acridine orange was added at a final concentration of
1 μg/ml and incubated for 15 min. Cells were observedunder a confocal laser microscope
equipped with a 488-nm excitation filter (green fluorescence) and 579-nm excitation filter (red
fluorescence).

siRNA transfection

Chemically synthetic siRNA against endoG and AllStars negative control siRNA (nonsense
siRNA) were purchased fromQiagen (Valencia, CA, USA). The target sequence of the siRNA
for endoGwas 5’-AAAUGCCUGGAACAACCUUGA-3’. Cells were plated on 6-well plates at a
density of 1×105 cells /well, cultured for 24 h, and transfected with 40 nM endoG siRNA or
nonsense siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s directions. The mediumwas replaced with DMEM after 3 h and cells were used
for experiments 24 h after transfection.

Statistical analysis

Statistical analysis were performed using the Student’s t-test with Microsoft Excel (Microsoft,
Redmond,WA, USA). Results were expressed as the mean±SD. Differences were considered
significant at P<0.05.

Results

Inhibition of cell viability by safingol in oral SCC cells

To determine the inhibition of cell viability by safingol, oral SCC cells were treated with various
concentrations of safingol and cell viability was determined by MTT assay. When SAS cells
were treated for 24 h, cell viability decreased in a dose-dependentmanner (Fig 1A). Viability
decreased to 83% and 16% of the control at concentrations of 10 μM and 25 μM, respectively.
The decrease in cell viability by safingol was also observed in other SCC cells lines, Ca9-22 and
HSC-3, in a dose-dependentmanner (Fig 1B). At a concentration of 10 μM, viability decreased
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Fig 1. Inhibition of cell viability by safingol in oral SCC cells. (A) Oral SCC cells were treated with safingol at various

concentrations for 24 h and cell viability was determined using the MTT assay. (B) The effects of safingol on the oral SCC

cells lines, Ca9-22 and HSC-3, were also tested at various concentrations and cells were treated for 24 h. Data were means

±SD (n = 6). *P<0.05, **P<0.01 compared to untreated control.

doi:10.1371/journal.pone.0162786.g001
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to 76% and 69% of the control in Ca9-22 and HSC-3 cells, respectively. The IC50 determined
using the MTT assay data for SAS, Ca9-22 and HSC-3 cells were 17 μM, 15 μM and 15 μM.

Induction of apoptosis by safingol

SAS cells were treated with safingol at various concentrations for 24 h, stained with annexin V
conjugated to fluorescein isothiocyanate (FITC-annexin V) and propidium iodide (PI), and
then subjected to flow cytometry. Cell populations were grouped into four types; annexin V-
negative and PI-negative viable cells, annexin V-positive and PI-negative early apoptotic cells,
annexin V-positive and PI-positive late apoptotic cells, and annexin V-negative and PI-positive
necrotic cells. The number of early apoptotic cells and late apoptotic cells increased in a dose-
dependent manner (Fig 2A). At all doses tested, the proportion of late apoptotic cells was also
higher than that of early apoptotic cells. At concentrations of 10 μM and 25 μM, the propor-
tions of annexin V-positive and PI-positive cells were 12% and 34%, respectively. In contrast,
the number of annexin V-negative and PI-positive necrotic cells was not increased at concen-
trations tested (Fig 2B, S1A Table). When the effects of safingol on the cell death of Ca9-22 and
HSC-3 cells were examined using flow cytometry at concentrations of 10 μM and 25 μM,
increases were observed in the number of early and late apoptotic cells (Fig 2C, S1B Table).

Induction of autophagy by safingol

During the activation of autophagy, LC3-I was changed to LC3-II and the proportion of LC3-II
increased [8]. SAS cells were treated with safingol at a concentration of 10 μM. After being
treated for 24 h, the expression of LC3-I and LC3-II was determined by an immunoblot analysis.
LC3-II levels were higher after the treatment with safingol than in untreated controls. The level
of beclin-1 was slightly elevated by the treatment with safingol, while there was no apparent
increase in the expression of Atg5 as compared with untreated controls (Fig 3A and S1 Fig).
Immunofluorescence staining using an anti-LC3 antibody and 4’,6-diamidino-2-phenylindole
(DAPI) revealed the intense accumulation of LC3 in the cytoplasm of treated cells, whereas
weak and diffuse cytoplasmic staining was observed in untreated cells (Fig 3B). The enhanced
expression of LC3 was also demonstrated in the cytoplasm of Ca9-22 and HSC-3 cells (Fig 3C).
Autophagosomes are fused to lysosomes, resulting in the production of autolysosomes, which
digest the incorporatedmolecules. The lysosome-tropic agent, acridine orange, is a weak base
that can move freely across biologicalmembranes in an unchanged state and is characterized by
green fluorescence. The protonated form of acridine orange was previously shown to accumu-
late in acidic compartments and formed aggregates that were characterized by red fluorescence
[27, 28]. After the treatment of cells with 10 μM or 25 μM safingol for 24 h, red fluorescencewas
more intense in treated cells than in untreated controls, which were mostly stained green (Fig
3D). The emission of red (564–627 nm) fluorescencewas quantified using flow cytometry and
was found to be 20% higher in safingol-treated cells than in untreated cells (Fig 3E).

The presence of autophagic vesicles was further confirmed at the ultrastructural level through
a transmission electronmicroscope.Most SAS cells contained intact mitochondria distributing
throughout the homogeneous cytoplasm in untreated cells.When cells were treated with 10 μM
safingol for 24 h, intracellular space was occupied by large vascular structures. They contained
degradedmitochondria and high-density structures,which were considered to be autophagosomes
and/or autolysosomes. Degradedmitochondria were also observed in the cytoplasm (Fig 3F).

Augmentation of cell death by autophagy inhibitors

3-metyladenine (3-MA) is a known inhibitor of autophagosome formation while bafilomycin
A1 inhibits the formation of autophagosomes and autolysosomes [29, 30]. 3-MA and
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Fig 2. Induction of apoptosis by safingol. (A) SAS cells were treated with safingol at various

concentrations for 24 h, stained with FITC-annexin V and PI, and then subjected to flow cytometry. (B) The

percentages of annexin V-negative and PI-negative viable cells, annexin V- positive and PI-negative early

apoptotic cells, annexin V-positive and PI-positive late apoptotic cells, and annexin V-negative and PI-

positive necrotic cells were determined. (C) Ca9-22 and HSC-3 cells were also treated with safingol, stained

with FITC annexin V and PI, and analyzed using flow cytometry. Data were means±SD (n = 3).

doi:10.1371/journal.pone.0162786.g002
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Fig 3. Induction of autophagy by safingol. (A) SAS cells were treated with 10 μM safingol for 24 h and the

expression of LC3-I, LC3-II, Atg5 and beclin-1 were examined by immunoblotting. (B) SAS cells were treated

with 10 μM or 25 μM safingol for 24 h. The expression of LC3 was examined by immunofluorescent antibody

staining using an anti-LC3 antibody and DAPI. (C) Ca9-22 and HSC-3 cells were treated with 10 μM safingol for

24 h and the expression of LC3 was examined by immunofluorescent antibody staining. (D) SAS cells were

treated with 10 μM or 25 μM safingol and stained with acridine orange. Green and red fluorescence was

observed under a confocal laser microscope. SAS cells were also treated in combination with 10 μM safingol

and 1 mM 3-MA for 24 h. (E) The emission intensity of red (564–627 nm) fluorescence in safingol-treated cells

was measured by flow cytometry. (F) Representative transmission electron micrographs of SAS cells treated
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bafilomycin A1 were used at concentrations that did not suppress cell viability. Although
10 μM safingol decreased cell viability to 84% of the control, the addition of 1 mM 3-MA or 5
nM bafilomycin A1 further decreased cell viability; cell viability became 72% and 70% of the
control, respectively. A significant difference (P<0.01) was observedbetween safingol alone
and the combination with 3-MA or bafilomycin A1 (Fig 4A). The effect of autophagy inhibitors
was observed in Ca9-22 and HSC-3 cells, though the difference was not significant in Ca9-22
cells (S2 Fig). Since the effect of autophagy inhibitors was clear in SAS cells, the following anal-
yses were performed using this cell lines.

To determine whether decreases in cell viability were due to apoptosis, SAS cells were
treated with a combination of safingol and 3-MA or bafilomycin A1 and were subjected to flow
cytometry. In combination with 3-MA, the proportion of annexin V-positive and PI-positive
cells increased from 16 to 24%, indicating an increase in the number of apoptotic cells (Fig 4B).
Bafilomycin A1 also increased the proportion of apoptotic cells. Nuclear staining with Hoechst
33342 revealed the occurrence of nuclear fragmentation in SAS cells treated with safingol and
3-MA for 24 h (S3 Fig). The inhibitory effects of 3-MA on the formation of autolysosomes
were examined using acridine orange staining. In the presence of 3-MA, red fluorescence in
safingol-treated cells becameweak and the intensity of red fluorescencewas reduced from 44%
to 17%, indicating a decrease in autophagy by 3-MA (Fig 3D).

Nuclear translocation of endoG by safingol and 3-MA

Safingol was previously shown to induce the translocation of endoG frommitochondria as
well as the apoptosis of oral SCC cells at concentrations of 25 μM and 50 μM [23, 24]. When
SAS cells were treated with 10 μM safingol for 24 h and examined by immunofluorescent
antibody staining, endoG was observed in the cytoplasm diffusely and nuclear accumulation
was not observed. The treatment with 3-MA alone did not induce the nuclear translocation
of endoG; however, nuclear localization was detected after the treatment with safingol and
3-MA for 24 h (Fig 5A).

Nuclear fractionwas prepared to clarify the translocation of endoG frommitochondria to
the nucleus and the expression of endoGwas examined by an immunoblot analysis. The treat-
ment with safingol was insufficient to induce the translocation of endoG at this concentration;
however, in the presence of 3-MA, endoG was increased in the nuclear fraction (Fig 5B and S4
Fig). Histone was used as a nuclear marker.

Involvement of endoG in safingol and 3-MA-induced cell death

The effects of the knockdown of endoG on cell death were examined. SAS cells were transfected
with endoG siRNA or nonsense siRNA and examined by an immunoblot analysis and immu-
nofluorescent antibody staining. The expression of endoGwas markedly decreased in endoG
siRNA-transfected cells (Fig 6A and 6B and S5 Fig). When nonsense siRNA-transfected cells
were treated with safingol or a combination of safingol and 3-MA, a suppressive effect was
observed, but the combined effect on cell viability was diminished in endoG siRNA-transfected
cells (Fig 6C); a significant difference (P<0.01) was observedbetween nonsense-siRNA-trans-
fected cells and siRNA-transfected cells.

with 10 μM safingol for 24 h. Many vacuoles are detectable in the cytoplasm of treated cells. Higher

magnification of vacuoles reveals mitochondria entrapped inside. Most cells contained intact mitochondria in

untreated cells. Scale bar: 2 μm. M: mitochondria, AP: autophagosome, AL: autolysosomes.

doi:10.1371/journal.pone.0162786.g003
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Fig 4. Augmentation of cell death by autophagy inhibitors. (A) SAS cells were treated with 10 μM safingol and 1 mM

3-MA or 5 nM bafilomycin A1 for 24 h and cell viability was measured by the MTT assay. Data were means±SD (n = 3),

*P<0.05. (B) SAS treated with safingol and 3-MA or bafilomycin A1 for 24 h were analyzed using flow cytometry and the

proportion of viable cells, early apoptotic cells, late apoptotic cells, and necrotic cells were determined.

doi:10.1371/journal.pone.0162786.g004
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Fig 5. Translocation of endoG by safingol and 3-MA. (A) SAS cells were treated with 10 μM safingol and 1 mM

3-MA for 24 h and the localization of endoG was examined by immunofluorescent antibody staining. (B) SAS cells

were treated with safingol with or without 3-MA for 24 h and proteins in nuclear fraction was examined for the

expression of endoG using an immunoblot analysis.

doi:10.1371/journal.pone.0162786.g005
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Fig 6. Involvement of endoG in safingol and 3-MA-induced cell death. (A) SAS cells were transfected by

either endoG-siRNA or nonsense siRNA. Twenty-four hours after transfection, the expression of endoG was

examined in the cells by an immunoblot analysis. (B) The expression of endoG in si-RNA-transfected cells was

examined by immunofluorescent antibody staining. (C) si-RNA-transfected cells were treated with 10 μM

safingol with or without 3-MA for 24 h and cell viability was measured by the MTT assay. Data were means±SD

(n = 6), **P<0.01.

doi:10.1371/journal.pone.0162786.g006
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Absence of pan-caspase inhibitory effects

The role of caspase-dependent cell death was examined. SAS cells were pretreated with the
pan-caspase inhibitor z-VAD-fmk and then treated with 10 μM safingol and 1 mM 3-MA in
the absence of z-VAD-fmk for 24 h. The caspase inhibitor did not have a suppressive effect on
the cytotoxicity of the combined treatment with 3-MA. There was no significant difference
between each control and z-VAD-fmk-treated group (Fig 7).

Suppression of cell death by the ROS scavenger NAC

We previously reported that the treatment of SAS cells with 15 μM safingol produced ROS and
also that the ROS scavenger, N-acetyl-L-cysteine (NAC), could prevent apoptosis, suggesting
ROS as an upstream factor in the endoG-mediated pathway [25]. SAS cells were treated with
safingol and 3-MA in the presence of NAC for 24 h and analyzed using flow cytometry. The
increase induced in the number of late apoptotic cells by the combined treatment was markedly
reduced (Fig 8), indicating the important role of ROS in cell death.

Discussion

Apoptosis and necrosis are well-knownmechanisms underlying cell death induced by antican-
cer therapies. However, emerging studies have demonstrated the existence of a non-apoptotic
form of programmed cell death called autophagic cell death [31]. Autophagic cell death and
apoptosis are different in their morphology and biochemical characters. Caspases are not acti-
vated in autophagic cell death, unlike apoptotic cell death and neither DNA degradation nor
nuclear fragmentation is apparent. Caspase-independent cell death, with an increase in the
number of autophagic vacuoles may be specific in autophagic cell death [32].

Fig 7. Absence of the effect of a caspase inhibitor on the cytotoxic effect of safingol and 3-MA. SAS cells were pretreated

with the pan-caspase inhibitor, z-VAD-fmk for 2 h, and then treated with safingol and 3-MA in the absence of z-VAD-fmk for 24 h.

Cell viability was determined by the MTT assay. There was no significant difference between control and z-VAD-fmk-treated group.

Data were means±SD (n = 3).

doi:10.1371/journal.pone.0162786.g007
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Response to many anticancer drugs, autophagic cell death occurred in cancer cells derived
from the breast, colon, prostate, and brain [9, 32]. Tamoxifen, targets the estrogen receptor and
induces cell death of breast cancer with autophagy by down-regulating the expression of pro-
tein kinase B/Akt [32–34]. Rapamycin, an inhibitor of mTOR, induces autophagy and also sup-
presses the proliferation of malignant glioma cells [35]. The inhibition of anti-autophagic
proteins, such as Bcl2, PKCδ, and tissue transglutaminase 2 (TG2), may lead to autophagic cell
death in some apoptosis-resistant cancers [36].

A number of sphingolipids including safingol have been implicated in the induction of
autophagy [37]. Coward et al. [6] treated colon cancer cells with 12 μM safingol and found that
safingol inhibited PKCβ1, PKCδ, and PKCε, and also inhibited the phosphorylation of the
PI3k/Akt/mTOR pathway and mitogen-activated protein kinase (MAPK) pathway. Cell death
caused by safingol had a distinctly autophagic morphology and biochemical signature. Ling
et al. [26] reported that a long-term treatment with 5 μM safingol induced accidental necrotic
cell death, but not apoptosis in human colon cancer and breast cancer cells.

We previously reported that safingol at concentrations of 25 μM and 50 μM induced apo-
ptosis in oral SCC cells in which endoGwas released frommitochondria and translocated to
the nucleus to fragment chromosome DNA [23, 24]. In the present study, we tested the cyto-
toxic ability of safingol at different concentrations in oral SCC cell lines including SAS, Ca9-22,

Fig 8. Suppression of cell death by the ROS scavenger, NAC. SAS cells were pretreated with NAC for 2 h and then treated with

safingol and 3-MA in the presence of NAC for 24 h. Cell viability was determined by the MTT assay. Data were means±SD (n = 3),

**P<0.01.

doi:10.1371/journal.pone.0162786.g008
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and HSC-3 cells. Consistent with previous findings, we demonstrated that the effects of safingol
on cell viability were concentration-dependent. Cell viability was markedly decreased at a safin-
gol concentration of 25 μM in all of the cell lines tested, whereas cell death was marginal at
10 μM safingol in oral SCC cells. Using flow cytometry, we found that the numbers of annexin
V- and PI-positive cells as well as annexinV-positive and PI-negative cells were increased at
10 μM and 25 μM, whereas the number of annexin V-negative and PI- positive necrotic cells
was not, indicating that safingol could induce apoptotic cell death.

We found that LC3-II was expressed after the treatment of SAS cells with safingol and LC3
was observed in the cytoplasm by immunofluorescent antibody staining. Furthermore, the
safingol treatment increasedAVOs that were produced by fusing autophagosomes with lyso-
somes and emitted red fluorescence after acridine orange staining. Furthermore, transmission
electronmicroscopy revealed autophagic vacuoles containing degradedmitochondria in the
cytoplasm of treated cells, indicating that safingol induced autophagy at the concentration of
10 μM.

To study the role of autophagy in response to therapy, autophagy inhibitors have been
developed. The PI3K class-III inhibitor 3-MA can inhibit pre-autophagosome formation and
prevent the cell death by tamoxifen, indicating that autophagy may be responsible for the anti-
tumor action of this drug [32, 33]. Bafilomycin A1 and hydroxychloroquine inhibit autophagy
by preventing the fusion of autophagosomes and lysosomes. [2] Miki et al. [38] reported that
the inhibition of autophagy by 3-MA lowered resveratrol-induced cytotoxicity by decreasing
caspase-8 and caspase-3 levels, indicating the function of autophagy as a cell death mechanism.
Similarly, both pharmacological and genetic inhibition of autophagy enhanced the resveratrol-
induced cytotoxicity to the human esophageal SCC cells [39]. On the other hand, the inhibition
of autophagy in cancer cells may be therapeutically beneficial under certain conditions because
it can sensitize cancer cells to different therapeutics, including DNA-damaging agents, anti-
hormone therapies, and radiation therapy [28, 40, 41]. Zhu et al. [42] showed that salinomycin
induced both apoptosis and autophagy in osteoblastoma cells. The inhibition of autophagy by
3-MA or the RNA interference of LC3B enhanced salinomycin-induced cytotoxicity and cas-
pase-dependent apoptosis. Ling et al. [26] indicated that autophagy protected cells from safin-
gol-induced and reactive oxygen species (ROS)-mediated necrosis using human breast cancer
and colorectal cancer cells, as the suppression of autophagy by 3-MA or bafilomycin A1 signifi-
cantly augmented cell death caused by safingol, but the involvement of endoG-mediated apo-
ptosis was not investigated.

The role of autophagy in endoG-mediated cell death had not yet been investigated. We
found that the cytotoxic effects of safingol were further enhanced by 3-MA, even if the inhibi-
tor itself did not affect cell viability. The decrease observed in cell viability was attributed to an
increase in the number of apoptotic cells based on the finding of a flow cytometric analysis and
nuclear staining with Hoechst 33342. We also demonstrated that endoG was essential for cell
death when safingol and 3-MA were combined, because endoG translocated frommitochon-
dria to the nucleus during cell death, and cytotoxic effects were abolished by the down-regula-
tion of endoG by siRNA transfection. Even if the caspase signal pathway was blocked using a
pan-caspase inhibitor, the cytotoxic effects of safingol and 3-MA were not affected. Thus, cell
death induced by safingol and the inhibition of autophagy was considered to be mediated
through a caspase-independent and endoG-dependent pathway. ROS may mediate the induc-
tion of apoptosis and/or autophagy in several types of cancer cells [26, 38, 43]. A previous
study showed that ROS production was involved in the safingol induced-apoptosis of oral SCC
cells [25]. In the present study, the ROS scavenger NAC prevented the induction of cell death
caused by the combination of safingol and 3-MA. This result indicated that ROS production
was essential as an upstream effector in the endoG-mediated apoptosis of SCC cells.
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We concluded that safingol induced apoptosis and autophagy in human oral SCC cells, in
which autophagy played a protective role in endoG-mediated apoptosis, but did not induce
autophagic cell death. To our knowledge, this is the first report that indicated the protective
role of autophagy in safingol-induced and endoG-mediated apoptosis of oral SCC cells. Several
in vitro and in vivo studies demonstrated that safingol augmented the efficacy of other chemo-
therapeutic agents, including fenretinide, irinotecan,mitomycin-C, and cisplatin in various
tumors [16, 20, 44]. The inhibitory effects of other anticancer agents on autophagy must be
considered when they are used in combination with safingol in clinical trials.
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