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Abstract

Gaucher’s disease is a common genetic disease caused by mutations in the β-glucocerebrosidase 

(GBA1) gene that have been also linked to increased risk of Parkinson’s disease and Lewy Body 

Dementia. Stabilization of misfolded mutant β-glucocerebrosidase (GCase) represents an 

important therapeutic strategy in synucleinopathies. Here we report a novel class of GCase 

quinazoline inhibitors, obtained in a high throughput screening, with moderate potency against 

wild-type GCase. Rational design and a SAR study of this class of compounds led to a new series 

of quinazoline derivatives with single digit nanomolar potency. These compounds were shown to 

selectively stabilize GCase when compared to other lysosomal enzymes and to increase N370S 

mutant GCase protein concentration and activity in cell assays. To the best of our knowledge, 

these molecules are the most potent non-iminosugar GCase inhibitors to date that may prove 

useful for future mechanistic studies and therapeutic approaches in Gaucher’s and Parkinson’s 

diseases.
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INTRODUCTION

Gaucher’s disease (GD), the most common lysosomal storage disease, is caused by a 

recessively inherited deficiency in β-glucocerebrosidase (GCase) and subsequent 

accumulation of glucoceramides, toxic lipid substrates1,2. Substrate accumulation leads to 

hepatosplenomegaly, bone marrow suppression, and bone lesions1–3. Many of the GCase 

mutations are missense mutations4 that result in single amino acid substitutions of the 

enzyme. Most of these mutations, including the prevalent N370S mutation, are still 

functional, although with very low residual GCase activity5 due to enzyme misfolding, and 

proteasome-mediated breakdown5. Current treatments for GD include enzyme replacement 

therapy (ERT) and substrate reduction therapy (SRT) 2,6. In recent years, mutations in GBA1 

were also found to be a major risk factor for Parkinson’s disease (PD) and dementia with 

Lewy bodies (DLB)7–11. Accumulation of β-glucosylceramide, the substrate of GCase, in 

neurons promotes the formation of α-synuclein oligomers, which are considered toxic in 

PD12. Enhancement of GCase activity is thought to be a potential therapeutic strategy for 

GCase-associated synucleinopathies, including PD13,14.

An emerging therapeutic approach involves the restoration of proper folding and lysosome 

delivery of degradation-prone mutant enzymes using small molecules as pharmacological 

chaperones (PCs)5. Previous studies have shown that iminosugars increase the cellular 

activity of the N370S mutant form of GCase15,16, as well as of the wild-type enzyme5,17. 

Isofagomine (IFG, 1) attracted the most attention in the iminosugar class of compounds 

(Figure 1)18. However, iminosugars tend to have poor selectivity and relatively short half-

lives in cells19. Several different scaffolds of non-iminosugar inhibitors (2 and 3 are 

examples in Figure 1) have been reported as GCase PCs since 200720–24; however, the 

binding site and the interaction with GCase of these non-iminosugar PCs remain unknown.

In our high throughput screening effort to discover potent GCase modulators, compound 4 
(Figure 1) was identified as a potent GCase inhibitor (IC50 0.177 µM) in a 4-

methylumbelliferyl β-D-glucopyranoside (4MU-β-Glc) enzyme activity based high 

throughput screen. The activity was confirmed with additional synthesized compounds. To 

further develop potent GCase modulators and use them to explore the properties of the 

binding site, we carried out a structure activity relationship (SAR) study of a series of 

quinazoline derivatives, leading to the discovery of single digit nanomolar potency GCase 

inhibitory modulators.

CHEMISTRY

The synthesis of compound 4 and its analogues for SAR exploration is straightforward and 

is detailed in Scheme 1 and 2. As showed in Scheme 1, 5 was prepared from 2-amino-

benzonitrile and nicotinoyl chloride according to a known method25. The reaction of 5 and 
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appropriate amines in the presence of potassium carbonate as a base afforded 4, 6a-6i, 7a-7i, 
8a-8g, and 9a-9f.

Additional analogues having modifications at position 2 of the quinazoline ring were 

synthesized, employing alkylation of 2,3-dihydro-1H-inden-2-amine with 2,4-

dichloroquinazoline, followed by Suzuki coupling with appropriate boronic acids to afford 

11a-11h (Scheme 2). The structure and purity of all the prepared compounds were 

confirmed by spectroscopic and analytical techniques.

RESULTS AND DISCUSSION

In our high throughput screening efforts to discover potent GCase inhibitors/activators, we 

used recombinant wild-type GCase and 4MU-β-Glc as substrate in an optimized pH 5.9 

buffer26. In previous studies, high concentrations of taurocholate (4–10 mM) were used to 

improve the signal in GCase enzyme activity assays16,27,28. We found that taurocholate can 

interfere with our assay results, which was also reported recently by Berger et al.29; 

therefore, we excluded taurocholate in our screening assay. Using this approach, we 

discovered several different scaffolds of GCase inhibitors and activators with moderate 

activity. Among these, we identified a quinazoline compound (4, Figure 1) as a potent 

GCase inhibitor. The quinazoline ring had previously been found as the best scaffold for 

GCase inhibitors among several ring systems assayed21. Here we describe our modifications 

of the substituents on the quinazoline ring.

To examine the SAR at the amino group, a series of substituents was introduced at the 4-

position of the N-cyclohexyl ring of 4 (Table 1). A 4-methyl substituent (6a, cis/trans = 3/2 

mixture) resulted in 3-fold higher activity (IC50 56 nM), while 4-ethyl substitution (6b, cis/

trans = 3/2 mixture) did not show a significant change of activity, suggesting that a smaller 

hydrophobic group at this position may be beneficial. Then, a trans-4-methyl compound (6c) 

was synthesized, which exhibited great improvement of inhibitory activity (IC50 20 nM). 

Further modification by installation of 4-methoxyl (6d), 4,4-dimethyl (6e), or 4,4-difluoro 

(6f) groups at the same position decreased the potency; amino substituents were detrimental 

to activity. Replacement of the cyclohexyl group by tetrahydro-2H-pyran-3-yl (6h), or N-

substituted piperidine (6i-6k) afforded weak or inactive compounds, supporting the 

importance of the lipophilic cyclohexyl ring.

To further expand the SAR of the amino group, the cyclohexyl ring of 4 was replaced by a 

series of saturated carbon rings of different sizes. A dramatic SAR was observed with 

different carbon rings (7a-7e). As shown in Table 2, the larger cycloalkyl rings were more 

potent; the compound with a cyclooctyl group (7a, IC50 27 nM) was the most potent. 

However, when bulk was introduced to the cycloalkyl ring, the potency of the compounds 

(7f and 7g) decreased, suggesting that the hydrophobic binding pocket may be compact. 

Introduction of one or two carbons between the cyclohexyl and NH groups (7h and 7i) in 4 
decreased the inhibitory activity, again indicating a hydrophobic pocket with limited volume.

To understand the nature of the binding site, a phenyl ring with different length linkers was 

introduced into the molecules (8a-e, Table 3). Compound 8a, by replacement of the 
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cyclohexyl ring in 4 with a phenyl ring, lost activity. Insertion of a 1–4 carbon linker 

between the phenyl and quinazoline rings gave 8b-8e. Interestingly, 8c, with a phenylethyl 

group, was slightly more potent than 4. Extension of the linker did not benefit activity, 

suggesting that a two carbon length linker between the phenyl ring and secondary amino 

group of 8c may allow optimal binding of the phenyl group. Substitution of the phenyl group 

in 8 with a 2- or 3-pyridine ring (8f or 8g) sharply diminished potency, indicating a repulsive 

effect of the pyridine nitrogen atom.

To enhance the binding affinity of the compounds with GCase, a new series of compounds 

was designed to integrate both the hydrophobic interaction of the A ring and the π-π 
interaction of the B ring by fusing the cyclohexyl ring (4) with a phenyl ring (Figure 2 and 

Table 4). These derivatives (9a-c) exhibited single digit nanomolar inhibitory activity against 

GCase. Stereochemistry did not seem to be important (9a and 9b). The compound with an 

indane ring (9c) gave comparable activity to that of the tetralin ring (9a). Attachment of the 

quinazoline ring to the tetralin ring (9d) and indane ring (9e) at position 1 instead of position 

2 (9a and 9c) dramatically increased the IC50 values to the low micromolar range, indicating 

the importance of the orientation of this substituent for binding activity of these inhibitors. 

The introduction of an oxygen atom to give a chromane (9f) did not significantly affect the 

potency. These results suggest important hydrophobic and π-π interactions in the binding of 

this series of compounds to GCase.

Finally, we examined the substituent effect on the pyridine ring. A methyl group was 

introduced at different positions of the 3-pyridinyl ring of 9c to give 11a-c (Table 5). 

Methylation of the pyridine ring decreased the potency. Whereas the compound with a 

methyl group at position 4 of the pyridinyl ring (11a) showed only moderate potency, the 

other two compounds (11b and 11c) with a methyl group at positions 5- and 6 were much 

more potent, comparable to that when a 2-furanyl group replaced the pyridine ring, but still 

not as potent as 9c. The replacement of the 3-pyridinyl ring in 9c with either phenyl or 3-

thienyl groups, however, gave compounds that retained the same potency as 9c, suggesting 

that more groups could be introduced at position 2 of the quinazoline ring.

We also evaluated the activity of these selected compounds at various pH values (Table 6). 

Interestingly, compared to the inhibitory activity at pH 5.9, the activity of 9a, 9b, and 9c 
with a 3-pyridinyl ring decreased by 3 fold at pH 5.0, while the activity of 11d, 11f, and 11g 
only dropped slightly at both pH conditions. Although the cause for the change in IC50 

values is not clear, an explanation may involve the protonation state of the compounds or the 

variability of the enzyme efficacy at different pH values.

Compounds shown to act as pharmacological chaperones for GCase (or other lysosomal 

enzymes) also stabilize the enzyme against thermal denaturation. A fluorescent thermal shift 

assay was developed to evaluate the binding affinity of ligands with protein30. To evaluate 

their abilities to stabilize GCase, the most potent compounds, 9a, 9b, 11d, 11g and 11f were 

accessed in a wild-type GCase fluorescent thermal shift assay with a negative control (8a) 

and a positive control (IFG) at pH 5.0. The selected compounds increased the GCase melting 

point in a dose-dependent manner (Figure 3), while inactive compound 8a did not change 

the melting points significantly. Most compounds exhibited greater ability to stabilize GCase 
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than IFG at lower concentrations, and 11g showed the maximum thermal shift up to around 

11 °C. It should be noted that the increment in melting point has a direct correlation with the 

compound’s binding affinity31. The maximum thermal shift of our compounds corresponded 

to their inhibitory activity at pH 5.0, suggesting a close correlation of the binding affinity 

and the inhibitory activity for these compounds.

The selected compounds (9a, 9b, 11d, 11g, and 11f) were further evaluated against two 

other lysosomal hydrolases, acid α-glucosidase (GAA) and α-galactosidase A (GLA). The 

activities of tested enzymes were not significantly changed by compound treatments up to 

100 µM (representative results shown for 11g in Figure 4).

We further tested compounds 4 and 11g by measuring GCase activity at various substrate 

concentrations (30–150 µM) and in the absence or presence of increasing concentrations of 

GCase inhibitors. Similarly to reported non-iminosugar inhibitors20, both of our inhibitors 

exhibited linear mixed inhibition, with an increase in Km and decrease in Vmax values upon 

increasing inhibitor concentrations (Figure 5A and 5B)

Finally, we tested 11g in patient-derived N370S fibroblasts. The fibroblasts were treated 

with 11g and IFG for 3 days, and levels of GCase protein were determined by Western blot. 

We found that 11g treatments (2, 5, and 10 µM) significantly increased the concentration of 

GCase, while IFG showed a similar effect only at the higher concentrations (20 and 50 µM) 

(Figure 6, top). We also used endoH and PNGase F to digest the cell lysates to determine 

whether 11g treatment affected ER maturation. The Western blot (Figure 6, middle) showed 

that most of the GCase bands were resistant to endoH digestion, indicating that the major 

GCase signal after treatment is a post-ER form. PNGase F digestion gave a single band with 

increased GCase concentration after 11g treatment (Figure 6, bottom). In addition to this 

finding, we also found that a 3-day treatment of compound 11g (2 µM) increased 50% of 

GCase activity in a separate enzyme activity assay, suggesting that 11g increased both 

GCase levels and the activity of patient-derived N370S fibroblasts.

CONCLUSIONS

In this paper, we describe the design and SAR of a series of quinazoline GCase inhibitors 

having single digit nanomolar potency. The SAR suggested that a hydrophobic interaction 

and a π-π interaction may be involved in compound binding to GCase. These quinazoline 

derivatives also stabilized GCase, as indicated by thermal shift assays, and exhibited high 

selectivity against other lysosomal hydrolases. Furthermore, the most potent compound 

(11g) increased the mature post-ER form of GCase and the enzyme activity in patient-

derived N370S fibroblasts. It will be of interest to further test these compounds in other 

biological assays and models of Gaucher’s and Parkinson’s disease.

EXPERIMENTAL SECTION

Materials and Methods

Chemistry—Commercially available reagents and solvents were used without further 

purification. All reactions were monitored by thin-layer chromatography (TLC) using 0.25 
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mm Silicycle extra hard 250 µM TLC plates (60 F254). Purification of reaction products was 

carried out by flash chromatography using an Agilent 971-FP flash purification system with 

Silicycle silica gel columns. The yields are not optimized. The purity of all compounds was 

over 95% as analyzed with an Agilent 1260 Infinity HPLC system and an Agilent Poroshell 

120 EC-C18 (4.6 × 50 mm, 2.7 µm) reverse phase column, detecting with UV absorbance 

(254 nm). 1H NMR and 13C NMR spectra were obtained using a Bruker Avance III 500 

MHz system (500 MHz for 1H NMR and 125 MHz for 13C NMR) spectrometer. Chemical 

shifts are reported relative to chloroform (δ = 7.26 for 1H NMR and δ = 77.16 for 13C NMR 

spectra) or dimethyl sulfoxide (δ = 2.50 for 1H and δ = 39.52 for 13C NMR spectra). Data 

are reported as br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. 

Mass spectra were obtained using a Bruker AmaZon SL system. High resolution mass 

spectra (HRMS) were performed using an Agilent 6210A LC-TOF instrument with a dual 

spray ESI source, with a high resolution Time of Flight (TOF) Mass analyzer and collecting 

in a 2GigHz detector mode, coupled with an Agilent 1200 HPLC.

Preparation of 4-chloro-2-(pyridin-3-yl)quinazoline (5)25—To a solution of 2-

aminobenzonitrile (5.90 g, 50 mmol) in sulfolane (20 mL) was added nicotinoyl chloride 

hydrochloride (12.0 g, 67.4 mmol), and the mixture was stirred at 100°C for 16 h. PCl5 (18.2 

g, 87.5 mmol) was added in one portion and stirred at 100 °C for 10 h. The mixture was 

cooled to room temperature, and carefully poured into 400 mL of saturated sodium 

bicarbonate solution cooling in an ice bath. The solid was filtered, washed with water, dried, 

and purified by flash chromatography to give 5 as a pale-yellow solid (5.50 g, 46%); mp 

160–163 °C. 1H NMR (400 MHz, CDCl3) δ 9.76 (d, J = 1.3 Hz, 1H), 8.82 (dt, J = 8.0, 1.9 

Hz, 1H), 8.73 (dd, J = 4.7, 1.4 Hz, 1H), 8.26 (dd, J = 8.4, 0.8 Hz, 1H), 8.10 (d, J = 8.4 Hz, 

1H), 7.95 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.69 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.44 (dd, J = 

7.5, 4.8 Hz, 1H). 13C NMR: (100 MHz, CDCl3) δ 162.9, 158.3, 151.8, 151.7, 150.3, 136.1, 

135.2, 132.4, 129.1, 128.9, 126.0, 123.5, 122.8. ESI-MS m/z: 242 (M+H)+.

General Procedure for Compound 4, 6a-6i, 7a-7i, 8a-8g and 9a-9f—A mixture of 

4-chloro-2-(pyridin-3-yl)quinazoline 5 (72 mg, 0.3 mmol), amine (0.3 mmol), and potassium 

carbonate (69 mg, 0.3 mmol) in DMF (3 mL) was stirred at room temperature or 60 °C 

overnight. Water (20 mL) was added, and the formed solid was filtered, washed with water, 

and dried in vacuo to give product. The products were usually pure (>95% purity). Those 

products without sufficient purity were purified by flash chromatography.

Analytical Data for Compounds

N-Cyclohexyl-2-(pyridin-3-yl)quinazolin-4-amine (4)—Off-white solid (64 mg, 

70%); mp 108–111 °C. 1H NMR (500 MHz, CDCl3) δ 9.74 (s, 1H), 8.84 (d, J = 6.6 Hz, 

1H), 8.70 (s, 1H), 7.95 (d, J = 7.1 Hz, 1H), 7.74 (t, J = 7.7 Hz, 2H), 7.49 – 7.35 (m, 2H), 

5.77 (s, 1H), 4.48 – 4.32 (m, 1H), 2.28 – 2.20 (m, 2H), 1.93 – 1.79 (m, 2H), 1.79 – 1.67 (m, 

1H), 1.61 – 1.46 (m, 2H), 1.46 – 1.23 (m, 3H). 13C NMR (125 MHz, CDCl3) δ 158.9, 158.8, 

150.7, 150.5, 150.3, 135.7, 134.6, 132.7, 129.0, 125.8, 123.2, 120.5, 113.9, 50.1, 33.0, 25.9, 

25.1. HRMS (ESI): calcd for C19H21N4 [M+H]+, 305.1761; found, 305.1764.
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N-(4-Methylcyclohexyl)-2-(pyridin-3-yl)quinazolin-4-amine (cis/trans = 3/2) (6a)
—White solid (54 mg, 43%); mp 130–134 °C.

Cis isomer: 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.80 (d, J = 7.8 Hz, 1H), 8.69 (s, 

1H), 7.92 (d, J = 8.3 Hz, 1H), 7.77 – 7.71 (m, 2H), 7.48 – 7.39 (m, 2H), 5.87 (d, J = 5.8 Hz, 

1H), 4.65 – 4.58 (m, 1H), 2.02–1.94 (m, 2H), 1.86–1.81 (m, 2H), 1.76 – 1.62 (m, 3H), 1.36 

– 1.21 (m, 2H), 1.00 (d, J = 6.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 159.0, 158.8, 

150.8, 150.4, 150.3, 135.8, 134.5, 132.8, 128.8, 125.9, 123.3, 120.5, 113.9, 47.2, 30.8, 30.4, 

29.2, 21.3.

Trans isomer: 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.80 (d, J = 7.8 Hz, 1H), 8.69 (s, 

1H), 7.92 (d, J = 8.3 Hz, 1H), 7.77 – 7.70 (m, 2H), 7.48 – 7.39 (m, 2H), 5.63 (d, J = 5.3 Hz, 

1H), 4.38 – 4.26 (m, 1H), 2.28 (d, J = 9.9 Hz, 2H), 1.86–1.81 (m, 2H), 1.54 – 1.40 (m, 1H), 

1.40 – 1.30 (m, 2H), 1.30 – 1.14 (m, 2H), 0.98 (d, J = 6.5 Hz, 3H). 13C NMR (125 MHz, 

CDCl3) δ 159.1, 158.8, 150.8, 150.5, 150.4, 135.8, 134.5, 132.8, 129.0, 125.9, 123.3, 120.7, 

114.0, 50.5, 34.1, 33.1, 32.3, 22.4. HRMS (ESI): calcd for C20H23N4 [M+H]+, 319.1917; 

found, 319.1921.

N-(4-Ethylcyclohexyl)-2-(pyridin-3-yl)quinazolin-4-amine (cis/trans = 3/2) (6b)—
Pale-yellow solid (38 mg, 30%); mp 62–65 °C.

Cis isomer: 1H NMR (500 MHz, CDCl3) δ 9.74 (s, 1H), 8.81 (d, J = 7.7 Hz, 1H), 8.68 (s, 

1H), 7.92 (d, J = 8.2 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.48 – 7.39 (m, 2H), 5.85 (d, J = 5.8 Hz, 

1H), 4.67 – 4.61 (m, 1H), 2.02–1.70 (m, 5H), 1.38 – 1.15 (m, 4H), 0.93 (t, J = 7.4 Hz, 

3H). 13C NMR (125 MHz, CDCl3) δ 159.0, 158.8, 150.8, 150.4, 135.8, 134.5, 132.8, 128.9, 

125.9, 123.3, 120.5, 113.9, 47.5, 39.0, 30.8, 29.7, 29.3, 28.1, 11.8.

Trans isomer: 1H NMR (500 MHz, CDCl3) δ 9.74 (s, 1H), 8.81 (d, J = 7.7 Hz, 1H), 8.68 (s, 

1H), 7.92 (d, J = 8.2 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.48 – 7.39 (m, 2H), 5.63 (brs, 1H), 4.38 

– 4.30 (m, 1H), 2.28 (d, J = 9.9 Hz, 2H), 1.99–1.70 (m, 2H), 1.54 – 1.40 (m, 1H), 1.40 – 

1.30 (m, 2H), 1.30 – 1.15 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 
159.1, 158.8, 150.8, 150.4, 135.8, 134.5, 132.8, 129.0, 125.9, 123.3, 120.7, 114.0, 50.8, 

37.7, 33.1, 31.7, 28.3, 11.8. HRMS (ESI): calcd for C21H25N4 [M+H]+, 333.2074; found, 

333.2080.

Trans-N-(4-Methylcyclohexyl)-2-(pyridin-3-yl)quinazolin-4-amine (6c)—White 

solid (52 mg, 55%); mp 173–175 °C. 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.80 (d, J 
= 7.8 Hz, 1H), 8.69 (s, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.70 (d, J = 8.2 

Hz, 1H), 7.53 – 7.33 (m, 2H), 5.63 (d, J = 5.3 Hz, 1H), 4.38 – 4.26 (m, 1H), 2.28 (d, J = 9.9 

Hz, 2H), 1.84 (d, J = 12.6 Hz, 2H), 1.54 – 1.40 (m, 1H), 1.40 – 1.30 (m, 2H), 1.30 – 1.14 (m, 

2H), 0.98 (d, J = 6.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 159.0, 158.8, 150.8, 150.5, 

150.4, 135.7, 134.6, 132.7, 129.0, 125.7, 123.2, 120.5, 113.9, 50.4, 34.1, 33.1, 32.3, 22.3. 

HRMS (ESI): calcd for C20H23N4 [M+H]+, 319.1917; found, 319.1921.

N-(4-Methoxycyclohexyl)-2-(pyridin-3-yl)quinazolin-4-amine (6d)—White solid 

(50 mg, 50%); mp 163–165 °C. 1H NMR (500 MHz, CDCl3) δ 9.73 (s, 1H), 8.81 (d, J = 7.7 
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Hz, 1H), 8.70 (d, J = 3.4 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.81 – 7.57 (m, 2H), 7.52 – 7.32 

(m, 2H), 5.69 (d, J = 0.8 Hz, 1H), 4.52 – 4.27 (m, 1H), 3.40 (s, 3H), 3.31 – 3.13 (m, 1H), 

2.35 (d, J = 12.5 Hz, 2H), 2.18 (d, J = 11.3 Hz, 2H), 1.61 – 1.22 (m, 4H). 13C NMR (125 

MHz, CDCl3) δ 159.1, 158.7, 150.8, 150.3, 135.8, 134.3, 132.8, 128.9, 125.9, 123.3, 120.6, 

113.8, 78.4, 56.0, 49.7, 30.6, 30.4. HRMS (ESI): calcd for C20H23N4O [M+H]+, 335.1866; 

found, 335.1866.

N-(4,4-Dimethylcyclohexyl)-2-(pyridin-3-yl)quinazolin-4-amine (6e)—White solid 

(65 mg, 65%); mp 171–172 °C. 1H NMR (500 MHz, CDCl3) δ 9.74 (s, 1H), 8.80 (d, J = 7.9 

Hz, 1H), 8.69 (d, J = 3.7 Hz, 1H), 7.90 (s, 1H), 7.79 – 7.63 (m, 2H), 7.45 (s, 1H), 7.41 (d, J 
= 3.1 Hz, 1H), 5.66 (d, J = 5.5 Hz, 1H), 4.43 – 4.25 (m, 1H), 2.16 – 2.00 (m, 2H), 1.64 – 

1.38 (m, 6H), 1.01 (d, J = 3.0 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 159.0, 158.8, 150.8, 

150.4, 135.7, 134.5, 132.7, 129.0, 125.8, 123.2, 120.6, 113.9, 50.3, 37.9, 31.8, 29.9, 28.7, 

25.2. HRMS (ESI): calcd for C21H25N4 [M+H]+, 333.2074; found, 333.2076.

N-(4,4-Difluorocyclohexyl)-2-(pyridin-3-yl)quinazolin-4-amine (6f)—White solid 

(52 mg, 51%); mp 196–197 °C. 1H NMR (500 MHz, CDCl3) δ 9.72 (s, 1H), 8.80 (d, J = 7.8 

Hz, 1H), 8.70 (d, J = 2.6 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.80 – 7.75 (m, 1H), 7.73 (d, J = 

8.1 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.43 (dd, J = 7.7, 4.8 Hz, 1H), 5.70 (d, J = 6.2 Hz, 1H), 

4.60 – 4.45 (m, 1H), 2.32 (d, J = 12.6 Hz, 2H), 2.28 – 2.12 (m, 2H), 2.12 – 1.93 (m, 2H), 

1.85 – 1.70 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 159.1, 158.5, 150.8, 150.3, 150.1, 

135.8, 134.3, 133.1, 129.0, 126.2, 123.6 (q, JC-F = 241 Hz), 123.4, 120.5, 113.8, 48.1, 32.5 

(t, JC-F = 24.7 Hz), 28.6 (d, JC-F = 9.2 Hz). HRMS (ESI): calcd for C19H19F2N4 [M+H]+, 

341.1572; found, 341.1577.

N-(4-Dimethylaminocyclohexyl)-2-(pyridin-3-yl)quinazolin-4-amine (6g)—Pale-

yellow solid (63 mg, 60%); mp 231–235°C. 1H NMR (500 MHz, CDCl3) δ 9.70 (s, 1H), 

8.76 (d, J = 7.8 Hz, 1H), 8.65 (d, J = 3.6 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.1 

Hz, 1H), 7.75 – 7.66 (m, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.37 (dd, J = 7.5, 4.9 Hz, 1H), 6.02 

(d, J = 6.7 Hz, 1H), 4.64 (s, 1H), 2.38 (s, 6H), 2.30 (s, 1H), 2.05 (s, 2H), 1.83 (s, 6H). 13C 

NMR (125 MHz, CDCl3) δ 159.0, 158.6, 150.6, 150.3, 150.2, 135.7, 134.6, 132.7, 128.8, 

125.9, 123.2, 120.8, 114.0, 62.2, 46.0, 42.5, 27.9, 25.6. HRMS (ESI): calcd for C21H26N5 

[M+H]+, 348.2183; found, 348.2184.

N-(Tetrahydro-2H-pyran-3-yl)-2-(pyridin-3-yl) quinazolin-4-amine (6h)—White 

solid (48 mg, 53%); mp 112–113 °C. 1H NMR (500 MHz, CDCl3) δ 9.72 (s, 1H), 8.80 (dt, J 
= 7.9, 1.9 Hz, 1H), 8.68 (d, J = 3.7 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 8.2 Hz, 

1H), 7.78 – 7.73 (m, 1H), 7.50 – 7.44 (m, 1H), 7.41 (dd, J = 7.8, 4.8 Hz, 1H), 6.18 (d, J = 7.1 

Hz, 1H), 4.68 – 4.59 (m, 1H), 4.01 (dd, J = 11.5, 2.7 Hz, 1H), 3.89 – 3.80 (m, 1H), 3.80 – 

3.66 (m, 2H), 2.08 – 2.00 (m, 3H), 1.95 – 1.83 (m, 1H), 1.73 – 1.61 (m, 1H). 13C NMR (125 

MHz, CDCl3) δ 159.0, 158.6, 150.7, 150.3, 150.2, 135.9, 134.4, 133.0, 128.9, 126.1, 123.3, 

120.7, 113.9, 71.5, 68.6, 46.5, 27.8, 23.0. HRMS (ESI): calcd for C18H19N4O [M+H]+, 

307.1553; found, 307.1556.

N-(1-Methylpiperidin-4-yl)-2-(pyridin-3-yl)quinazolin-4-amine (6i)—Pale-yellow 

solid (34 mg, 35%); mp 132–133 °C. 1H NMR (500 MHz, CDCl3) δ 9.72 (s, 1H), 8.78 (d, J 
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= 7.5 Hz, 1H), 8.68 (d, J = 3.4 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 

7.49 – 7.34 (m, 3H), 5.73 (d, J = 6.1 Hz, 1H), 4.48 – 4.30 (m, 1H), 2.91 (d, J = 9.1 Hz, 2H), 

2.36 (s, 3H), 2.32 – 2.17 (m, 4H), 1.72 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 159.0, 

158.7, 150.8, 150.4, 150.3, 135.6, 134.5, 132.8, 129.0, 125.9, 123.2, 120.7, 113.9, 54.7, 

48.0, 46.3, 32.1. HRMS (ESI): calcd for C19H22N5 [M+H]+, 320.1870; found, 320.1872.

N-(1-Isopropylpiperidin-4-yl)-2-(pyridin-3-yl)quinazolin-4-amine (6j)—Yellow 

solid (49 mg, 47%); mp 191–192 °C. 1H NMR (500 MHz, CDCl3) δ 9.73 (d, J = 1.2 Hz, 

1H), 8.79 (dt, J = 7.8, 1.5 Hz, 1H), 8.68 (dd, J = 4.6, 1.2 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 

7.77 – 7.73 (m, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.41 (dd, J = 7.8, 4.8 Hz, 

1H), 5.68 (d, J = 7.1 Hz, 1H), 4.49 – 4.35 (m, 1H), 2.99 (d, J = 11.1 Hz, 2H), 2.90 – 2.79 (m, 

1H), 2.47 (t, J = 11.6 Hz, 2H), 2.28 (d, J = 11.5 Hz, 2H), 1.80 – 1.66 (m, 2H), 1.13 (d, J = 

6.4 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 159.0, 158.7, 150.8, 150.5, 150.4, 135.7, 134.5, 

132.8, 129.0, 125.9, 123.3, 120.6, 113.9, 54.9, 48.7, 47.8, 32.3, 18.4. HRMS (ESI): calcd for 

C21H26N5 [M+H]+, 348.2183; found, 348.2184.

N-(1-Benzylpiperidin-4-yl)-2-(pyridin-3-yl)quinazolin-4-amine (6k)—Yellow solid 

(67 mg, 57%); mp 180–182 °C. 1H NMR (500 MHz, CDCl3) δ 9.72 (d, J = 1.6 Hz, 1H), 

8.78 (dt, J = 7.9, 1.9 Hz, 1H), 8.69 (dd, J = 4.8, 1.6 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.77 – 

7.72 (m, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.41 (dd, J = 7.8, 5.0 Hz, 1H), 

7.39 – 7.27 (m, 5H), 5.66 (d, J = 7.1 Hz, 1H), 4.49 – 4.37 (m, 1H), 3.62 (s, 2H), 2.98 (d, J = 

10.6 Hz, 2H), 2.38 – 2.29 (m, 2H), 2.24 (d, J = 11.4 Hz, 2H), 1.81 – 1.69 (m, 2H). 13C NMR 

(125 MHz, CDCl3) δ 159.0, 158.7, 150.8, 150.5, 150.3, 135.6, 134.5, 132.8, 129.4, 129.0, 

128.4, 127.4, 125.9, 123.2, 120.6, 113.9, 63.2, 52.5, 48.4, 32.0. HRMS (ESI): calcd for 

C25H26N5 [M+H]+, 396.2183; found, 396.2184.

N-Cyclooctyl-2-(pyridin-3-yl)quinazolin-4-amine (7a)—White solid (65 mg, 66%); 

mp 140–142 °C. 1H NMR (500 MHz, CDCl3) δ 9.75 (d, J = 1.4 Hz, 1H), 8.82 (d, J = 7.9 

Hz, 1H), 8.69 (dd, J = 4.7, 1.4 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.76 – 7.72 (m, 1H), 7.70 

(d, J = 8.1 Hz, 1H), 7.51 – 7.35 (m, 2H), 5.73 (d, J = 6.2 Hz, 1H), 4.73 – 4.56 (m, 1H), 2.18 

– 2.00 (m, 2H), 2.00 – 1.43 (m, 12H). 13C NMR (125 MHz, CDCl3) δ 158.8, 158.6, 150.7, 

150.3, 150.2, 135.8, 134.5, 132.7, 128.9, 125.8, 123.3, 120.5, 114.0, 51.0, 32.7, 27.2, 26.1, 

24.2. HRMS (ESI): calcd for C21H25N4 [M+H]+, 333.2074; found, 333.2076.

N-Cycloheptyl-2-(pyridin-3-yl)quinazolin-4-amine (7b)—Off-white solid (70 mg, 

74%); mp 158–159°C. 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.82 (d, J = 7.9 Hz, 1H), 

8.68 (s, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.78 – 7.65 (m, 2H), 7.50 – 7.37 (m, 2H), 5.76 (d, J = 

5.6 Hz, 1H), 4.64 – 4.46 (m, 1H), 2.25 – 2.12 (m, 2H), 1.83 – 1.52 (m, 10H). 13C NMR (125 

MHz, CDCl3) δ 158.7, 158.6, 150.7, 150.3, 150.2, 135.8, 134.5, 132.7, 128.8, 125.9, 123.3, 

120.6, 113.9, 52.3, 34.9, 28.3, 24.6. HRMS (ESI): calcd for C20H23N4 [M+H]+, 319.1917; 

found, 319.1918.

N-Cyclopentyl-2-(pyridin-3-yl)quinazolin-4-amine (7c)—Off-white solid (52 mg, 

60%); mp 147–148°C. 1H NMR (500 MHz, CDCl3) δ 9.76 (d, J = 1.5 Hz, 1H), 8.81 (dt, J = 

7.9, 1.9 Hz, 1H), 8.68 (dd, J = 4.8, 1.7 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.76 – 7.71 (m, 

1H), 7.70 (d, J = 8.2 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.40 (dd, J = 7.9, 4.8 Hz, 1H), 5.73 (d, J 
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= 6.1 Hz, 1H), 4.80 – 4.72 (m, 1H), 2.34 – 2.25 (m, 2H), 1.86 – 1.71 (m, 4H), 1.67 – 1.59 

(m, 2H). 13C NMR (125 MHz, CDCl3) δ 159.4, 158.8, 150.7, 150.4, 150.3, 135.7, 134.6, 

132.7, 129.0, 125.8, 123.2, 120.6, 113.9, 53.2, 33.4, 24.1. HRMS (ESI): calcd for C18H19N4 

[M+H]+, 291.1604; found, 291.1604.

N-Cyclobutyl-2-(pyridin-3-yl)quinazolin-4-amine (7d)—Off-white solid (47 mg, 

57%); mp 173–174°C. 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.87 – 8.79 (m, 1H), 

8.69 (d, J = 4.2 Hz, 1H), 7.93 (dd, J = 8.0, 4.1 Hz, 1H), 7.74 (t, J = 8.2 Hz, 2H), 7.47 – 7.43 

(m, 1H), 7.43 – 7.39 (m, 1H), 6.03 (s, 1H), 4.96 – 4.97 (m, 1H), 2.66 – 2.54 (m, 2H), 2.16 – 

2.03 (m, 2H), 1.96 – 1.85 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 158.8, 150.7, 150.5, 

150.4, 135.7, 134.5, 132.8, 129.0, 125.9, 123.2, 120.6, 113.7, 46.8, 31.4, 15.6. HRMS (ESI): 

calcd for C17H17N4 [M+H]+, 277.1448; found, 277.1449.

N-Cyclopropyl-2-(pyridin-3-yl)quinazolin-4-amine (7e)—Pale-yellow solid (30 mg, 

38%); mp 180–181°C. 1H NMR (500 MHz, CDCl3) δ 9.81 (s, 1H), 8.89 (d, J = 7.9 Hz, 1H), 

8.70 (d, J = 3.7 Hz, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.77 – 7.73 (m, 1H), 7.71 (d, J = 8.2 Hz, 

1H), 7.47 – 7.36 (m, 2H), 6.14 (s, 1H), 3.17 (td, J = 6.9, 3.1 Hz, 1H), 1.07 – 0.95 (m, 2H), 

0.79 – 0.67 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 160.9, 158.9, 150.8, 150.5, 150.4, 

135.8, 134.5, 132.8, 129.0, 126.0, 123.2, 120.6, 113.9, 24.5, 7.5. HRMS (ESI): calcd for 

C16H15N4 [M+H]+, 263.1291; found, 263.1291.

N-(Adamantan-1-yl)-2-(pyridin-3-yl)quinazolin-4-amine (7f)—White solid (37 mg, 

35%); mp 114–116°C. 1H NMR (500 MHz, CDCl3) δ 9.73 (d, J = 1.6 Hz, 1H), 8.83 (d, J = 

7.8 Hz, 1H), 8.69 (dd, J = 4.7, 1.5 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.80 – 7.69 (m, 1H), 

7.66 (d, J = 8.1 Hz, 1H), 7.51 – 7.32 (m, 2H), 5.58 (s, 1H), 2.38 (d, J = 2.3 Hz, 6H), 2.25 – 

2.18 (m, 3H), 1.88 – 1.74 (m, 6H). 13C NMR (125 MHz, CDCl3) δ 159.0, 158.1, 150.7, 

150.3, 135.8, 134.5, 132.6, 128.9, 125.9, 123.3, 120.6, 114.2, 53.6, 41.7, 36.7, 29.7. HRMS 

(ESI): calcd for C23H25N4 [M+H]+, 357.2074; found, 357.2074.

N-(Bicyclo[2.2.1]heptan-2-yl)-2-(pyridin-3-yl)quinazolin-4-amine (7g)—White 

solid (47 mg, 50%); mp 145–146°C. 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.82 (dt, J 
= 7.9, 1.8 Hz, 1H), 8.68 (d, J = 3.9 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.75 – 7.71 (m, 1H), 

7.69 (d, J = 8.2 Hz, 1H), 7.49 – 7.35 (m, 2H), 5.64 (d, J = 5.5 Hz, 1H), 4.27 – 4.16 (m, 1H), 

2.51 (d, J = 4.1 Hz, 1H), 2.39 (s, 1H), 2.05 (ddd, J = 13.2, 7.9, 2.2 Hz, 1H), 1.73 – 1.61 (m, 

1H), 1.61 – 1.53 (m, 1H), 1.51 (d, J = 10.1 Hz, 1H), 1.48 – 1.36 (m, 2H), 1.34 – 1.20 (m, 

2H). 13C NMR (125 MHz, CDCl3) δ 158.9, 158.7, 150.7, 150.3, 150.2, 135.8, 134.5, 132.7, 

128.9, 125.8, 123.3, 120.5, 113.9, 55.1, 42.1, 41.0, 36.0, 35.9, 28.3, 26.7. HRMS (ESI): 

calcd for C20H21N4 [M+H]+, 317.1761; found, 317.1763.

N-(Cyclohexylmethyl)-2-(pyridin-3-yl)quinazolin-4-amine (7h)—Pale-yellow solid 

(67 mg, 71%); mp 121–123°C. 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.81 (d, J = 7.8 

Hz, 1H), 8.68 (d, J = 3.8 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.79 – 7.65 (m, 2H), 7.50 – 7.34 

(m, 2H), 5.98 (s, 1H), 3.65 (t, J = 6.1 Hz, 2H), 1.87 (d, J = 12.6 Hz, 2H), 1.82 – 1.61 (m, 

4H), 1.32 – 1.18 (m, 3H), 1.14 – 1.04 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 159.9, 158.8, 

150.7, 150.3, 135.7, 134.6, 132.7, 128.9, 125.8, 123.2, 120.5, 114.0, 47.6, 38.0, 31.3, 26.5, 

26.0. HRMS (ESI): calcd for C20H23N4 [M+H]+, 319.1917; found, 319.1920.
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N-(2-Cyclohexylethyl)-2-(pyridin-3-yl)quinazolin-4-amine (7i)—White solid (48 

mg, 48%); mp 153–154°C. 1H NMR (500 MHz, CDCl3) δ 9.76 (s, 1H), 8.86 – 8.78 (m, 

1H), 8.69 (d, J = 4.1 Hz, 1H), 7.92 (dd, J = 7.9, 5.4 Hz, 1H), 7.79 – 7.67 (m, 2H), 7.48 – 

7.37 (m, 2H), 5.84 (s, 1H), 3.86 – 3.75 (m, 2H), 1.83 (d, J = 12.3 Hz, 2H), 1.76 – 1.60 (m, 

5H), 1.50 – 1.38 (m, 1H), 1.33 – 1.12 (m, 3H), 1.08 – 0.96 (m, 2H). 13C NMR (125 MHz, 

CDCl3) δ 159.7, 158.8, 150.7, 150.4, 150.3, 135.8, 135.7, 134.5, 132.8, 132.7, 128.9, 128.9, 

125.9, 123.2, 120.6, 114.0, 39.4, 37.0, 35.7, 33.4, 26.6, 26.3. HRMS (ESI): calcd for 

C21H25N4 [M+H]+, 333.2074; found, 333.2074.

N-Phenyl-2-(pyridin-3-yl)quinazolin-4-amine (8a)—Off-white solid (55 mg, 62%); 

mp 179–180°C. 1H NMR (500 MHz, CDCl3) δ 9.73 (d, J = 1.8 Hz, 1H), 8.82 (dt, J = 7.9, 

1.9 Hz, 1H), 8.70 (dd, J = 4.8, 1.6 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.1 Hz, 

1H), 7.86 (d, J = 7.6 Hz, 2H), 7.84 – 7.80 (m, 1H), 7.69 (brs, 1H), 7.61 – 7.52 (m, 1H), 7.50 

– 7.45 (m, 2H), 7.43 (dd, J = 7.9, 4.8 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H). 13C NMR (125 MHz, 

CDCl3) δ 158.4, 157.6, 150.8, 150.7, 150.2, 138.4, 136.1, 134.2, 133.3, 129.3, 129.2, 126.8, 

124.6, 123.4, 121.6, 120.5, 114.1. HRMS (ESI): calcd for C19H15N4 [M+H]+, 299.1291; 

found, 299.1292.

N-Benzyl-2-(pyridin-3-yl)quinazolin-4-amine (8b)—Off-white solid (65 mg, 70%); 

mp 140–141°C. 1H NMR (500 MHz, CDCl3) δ 9.56 (s, 1H), 8.61 (d, J = 7.9 Hz, 1H), 8.47 

(d, J = 3.6 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.58 – 7.44 (m, 1H), 

7.28 – 7.18 (m, 4H), 7.18 – 7.13 (m, 2H), 7.13 – 7.07 (m, 1H), 6.39 (s, 1H), 4.78 (d, J = 5.4 

Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 159.6, 158.7, 150.6, 150.4, 150.2, 138.5, 135.8, 

134.5, 132.8, 128.8, 128.0, 127.7, 126.0, 123.2, 120.9, 113.9, 45.4. HRMS (ESI): calcd for 

C20H17N4 [M+H]+, 313.1448; found, 313.1453.

N-Phenethyl-2-(pyridin-3-yl)quinazolin-4-amine (8c)—White solid (43 mg, 44%); 

mp 140–141°C. 1H NMR (500 MHz, CDCl3) δ 9.79 (s, 1H), 8.85 (d, J = 7.1 Hz, 1H), 8.70 

(s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.78 – 7.69 (m, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.46 – 7.39 

(m, 2H), 7.38 – 7.31 (m, 2H), 7.30 – 7.25 (m, 3H), 5.98 (s, 1H), 4.11 – 3.99 (m, 2H), 3.11 (t, 

J = 6.9 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 159.6, 158.7, 150.8, 150.3, 150.2, 139.0, 

135.8, 134.4, 132.9, 129.0, 128.9, 126.8, 126.0, 123.3, 120.5, 113.9, 42.6, 35.4. HRMS 

(ESI): calcd for C21H19N4 [M+H]+, 327.1604; found, 327.1603.

N-(3-Phenylpropyl)-2-(pyridin-3-yl)quinazolin-4-amine (8d)—Off-white sticky oil 

(60 mg, 59%). 1H NMR (500 MHz, CDCl3) δ 9.74 (s, 1H), 8.76 (dt, J = 7.9, 1.8 Hz, 1H), 

8.68 (d, J = 3.6 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.78 – 7.66 (m, 1H), 7.53 (d, J = 7.8 Hz, 

1H), 7.45 – 7.34 (m, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.19 (m, 3H), 5.94 (s, 1H), 3.89 – 3.75 

(m, 2H), 2.81 (t, J = 7.4 Hz, 2H), 2.13 (p, J = 7.2 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 
159.7, 158.7, 150.7, 150.3, 150.2, 141.6, 135.8, 134.5, 132.7, 128.8, 128.7, 128.5, 126.2, 

125.8, 123.2, 120.6, 113.9, 41.2, 33.7, 30.7. HRMS (ESI): calcd for C22H21N4 [M+H]+, 

341.1761; found, 341.1758.

N-(4-Phenylbutyl)-2-(pyridin-3-yl)quinazolin-4-amine (8e)—Pale-yellow solid (73 

mg, 69%); mp 108–109°C. 1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 8.81 (d, J = 7.9 Hz, 

1H), 8.69 (d, J = 3.7 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.77 – 7.71 (m, 1H), 7.70 (d, J = 8.1 
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Hz, 1H), 7.51 – 7.35 (m, 2H), 7.28 (d, J = 7.7 Hz, 2H), 7.23 – 7.10 (m, 3H), 5.90 (s, 1H), 

3.89 – 3.70 (m, 2H), 2.72 (t, J = 6.7 Hz, 2H), 1.90 – 1.75 (m, 4H). 13C NMR (125 MHz, 

CDCl3) δ 159.7, 158.7, 150.8, 150.3, 150.1, 142.1, 135.8, 134.4, 132.8, 128.8, 128.5, 128.5, 

126.0, 125.9, 123.3, 120.6, 113.9, 41.4, 35.7, 29.0, 28.9. HRMS (ESI): calcd for C23H23N4 

[M+H]+, 355.1917; found, 355.1919.

N-(2-(Pyridin-2-yl)ethyl)-2-(pyridin-3-yl)quinazolin-4-amine (8f)—White solid (57 

mg, 58%); mp 138–139°C. 1H NMR (500 MHz, CDCl3) δ 9.75 (d, J = 1.2 Hz, 1H), 8.82 

(dt, J = 7.9, 1.9 Hz, 1H), 8.70 – 8.66 (m, 1H), 8.51 (s, 1H), 8.47 (d, J = 4.1 Hz, 1H), 7.93 (d, 

J = 8.2 Hz, 1H), 7.77 – 7.72 (m, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.46 

– 7.38 (m, 2H), 7.24 (dd, J = 7.7, 4.9 Hz, 1H), 6.28 (t, J = 5.3 Hz, 1H), 4.10 – 3.96 (m, 2H), 

3.13 (t, J = 7.0 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 159.7, 158.6, 150.7, 150.2, 150.1, 

148.1, 136.6, 135.8, 134.7, 134.4, 133.0, 128.9, 126.2, 123.8, 123.4, 120.7, 113.9, 42.4, 

32.6. HRMS (ESI): calcd for C20H18N5 [M+H]+, 328.1557; found, 328.1561.

N-(2-(Pyridin-3-yl)ethyl)-2-(pyridin-3-yl)quinazolin-4-amine (8g)—Off-white solid 

(67 mg, 68%); mp 102–104°C. 1H NMR (500 MHz, CDCl3) δ 9.77 (d, J = 1.4 Hz, 1H), 8.83 

(dt, J = 7.9, 1.9 Hz, 1H), 8.68 (dd, J = 4.8, 1.7 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.73 (ddd, J 
= 8.3, 7.0, 1.3 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.07 (d, J = 8.3 Hz, 

2H), 6.72 – 6.62 (m, 2H), 5.96 – 5.87 (m, 1H), 4.03 – 3.94 (m, 2H), 2.98 (t, J = 6.9 Hz, 

2H). 13C NMR (125 MHz, CDCl3) δ 159.6, 158.8, 150.7, 150.3, 145.1, 135.8, 134.5, 132.8, 

129.8, 128.9, 128.8, 125.9, 123.3, 120.6, 115.6, 114.0, 42.8, 34.5. HRMS (ESI): calcd for 

C20H18N5 [M+H]+, 328.1557; found, 328.1560.

(S)-2-(Pyridin-3-yl)-N-(1,2,3,4-tetrahydronaphthalen-2-yl)quinazolin-4-amine 
(9a)—Off-white solid (74 mg, 70%); mp 150–152°C. 1H NMR (500 MHz, CDCl3) δ 9.75 

(s, 1H), 8.82 (d, J = 7.9 Hz, 1H), 8.68 (d, J = 3.7 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.75 (t, J 
= 7.7 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.41 (dd, J = 7.9, 4.8 Hz, 1H), 

7.24 – 7.11 (m, 4H), 5.87 (d, J = 5.2 Hz, 1H), 5.00 – 4.87 (m, 1H), 3.43 (dd, J = 16.2, 5.0 

Hz, 1H), 3.12 – 2.88 (m, 3H), 2.40 – 2.30 (m, 1H), 2.13 – 2.01 (m, 1H). 13C NMR (125 

MHz, CDCl3) δ 159.2, 158.7, 150.8, 150.2, 135.8, 135.7, 134.3, 134.1, 132.9, 129.7, 129.1, 

128.9, 126.4, 126.2, 126.0, 123.3, 120.7, 113.9, 47.1, 35.8, 28.5, 27.5. HRMS (ESI): calcd 

for C23H21N4 [M+H]+, 353.1761; found, 328.1762.

(R)-2-(Pyridin-3-yl)-N-(1,2,3,4-tetrahydronaphthalen-2-yl)quinazolin-4-amine 
(9b)—Off-white solid (65 mg, 62%); mp 153–156°C. 1H NMR (500 MHz, CDCl3) δ 9.75 

(s, 1H), 8.82 (d, J = 7.9 Hz, 1H), 8.68 (d, J = 3.7 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.75 (t, J 
= 7.7 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.41 (dd, J = 7.9, 4.8 Hz, 1H), 

7.24 – 7.11 (m, 4H), 5.87 (d, J = 5.2 Hz, 1H), 5.00 – 4.87 (m, 1H), 3.43 (dd, J = 16.2, 5.0 

Hz, 1H), 3.12 – 2.88 (m, 3H), 2.40 – 2.30 (m, 1H), 2.13 – 2.01 (m, 1H). 13C NMR (125 

MHz, CDCl3) δ 159.2, 158.7, 150.8, 150.2, 135.8, 135.7, 134.3, 134.1, 132.9, 129.7, 129.1, 

128.9, 126.4, 126.2, 126.0, 123.3, 120.7, 113.9, 47.1, 35.8, 28.5, 27.5. HRMS (ESI): calcd 

for C23H21N4 [M+H]+, 353.1761; found, 328.1764.

N-(2,3-Dihydro-1H-inden-2-yl)-2-(pyridin-3-yl)quinazolin-4-amine (9c)—Grey 

solid (75 mg, 74%); mp 167–168°C. 1H NMR (500 MHz, CDCl3) δ 9.78 (d, J = 1.7 Hz, 
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1H), 8.84 (dd, J = 7.9, 1.7 Hz, 1H), 8.69 (d, J = 4.7 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.77 – 

7.70 (m, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.32 – 7.27 (m, 2H), 7.25 – 7.20 

(m, 2H), 6.04 (s, 1H), 5.37 – 5.29 (m, 1H), 3.60 (dd, J = 16.2, 7.2 Hz, 2H), 3.08 (dd, J = 

16.2, 4.8 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 159.4, 158.6, 150.7, 150.3, 141.1, 135.8, 

134.4, 132.9, 128.9, 127.0, 126.0, 125.1, 123.3, 120.7, 113.9, 52.6, 40.3. HRMS (ESI): calcd 

for C24H21NO [M+H]+, 339.1618; found, 339.1612.

N-(1,2,3,4-Tetrahydronaphthalen-1-yl)-2-(pyridin-3-yl) quinazolin-4-amine (9d)
—Pale-yellow sticky oil (35 mg, 33%). 1H NMR (500 MHz, CDCl3) δ 9.78 (d, J = 0.9 Hz, 

1H), 8.89 (d, J = 7.8 Hz, 1H), 8.69 (d, J = 3.5 Hz, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.83 – 7.73 

(m, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.39 (d, J = 7.6 Hz, 1H), 7.25 – 7.22 

(m, 1H), 7.22 – 7.15 (m, 2H), 6.02 (s, 1H), 5.94 – 5.86 (m, 1H), 3.00 – 2.80 (m, 2H), 2.34 – 

2.23 (m, 1H), 2.20 – 2.12 (m, 1H), 2.00 – 1.93 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 
159.0, 158.7, 150.6, 150.2, 138.1, 136.8, 136.1, 133.0, 129.5, 129.1, 128.8, 127.7, 126.6, 

126.1, 123.4, 120.7, 113.8, 49.2, 29.6, 29.5, 20.2. HRMS (ESI): calcd for C23H21N4 [M

+H]+, 353.1761; found, 353.1767.

N-(2,3-Dihydro-1H-inden-1-yl)-2-(pyridin-3-yl)quinazolin-4-amine (9e)—Brown 

solid (57 mg, 56%); mp 128–130°C. 1H NMR (500 MHz, CDCl3) δ 9.78 (d, J = 1.5 Hz, 

1H), 8.84 (dt, J = 7.9, 1.9 Hz, 1H), 8.67 (dd, J = 4.8, 1.6 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 

7.80 – 7.73 (m, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.50 – 7.37 (m, 3H), 7.35 (d, J = 7.5 Hz, 1H), 

7.33 – 7.28 (m, 1H), 7.26 – 7.20 (m, 2H), 6.17 (q, J = 7.4 Hz, 1H), 6.02 (d, J = 7.5 Hz, 1H), 

3.12 (ddd, J = 15.8, 8.7, 4.0 Hz, 1H), 3.04 (dt, J = 16.0, 8.0 Hz, 1H), 2.92 – 2.83 (m, 1H), 

2.16 – 2.01 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 159.5, 158.8, 150.8, 150.5, 150.3, 

143.9, 143.4, 135.8, 134.5, 132.9, 129.0, 128.4, 127.0, 126.0, 125.2, 124.3, 123.3, 120.7, 

113.8, 56.5, 34.1, 30.5. HRMS (ESI): calcd for C22H19N4 [M+H]+, 339.1604; found, 

339.1610.

N-(Chroman-3-yl)-2-(pyridin-3-yl)quinazolin-4-amine (9f)—White solid (67 mg, 

63%); mp 145–148°C. 1H NMR (500 MHz, CDCl3) δ 9.74 (s, 1H), 8.80 (dt, J = 7.9, 1.9 Hz, 

1H), 8.68 (d, J = 3.6 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.72 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 

7.63 (d, J = 7.7 Hz, 1H), 7.45 – 7.34 (m, 2H), 7.19 – 7.12 (m, 1H), 7.07 (d, J = 6.6 Hz, 1H), 

6.95 – 6.88 (m, 2H), 6.09 (d, J = 7.3 Hz, 1H), 5.11 (ddt, J = 7.3, 3.6, 1.7 Hz, 1H), 4.43 (ddd, 

J = 11.0, 3.8, 2.2 Hz, 1H), 4.35 (dd, J = 11.0, 1.7 Hz, 1H), 3.34 (dd, J = 16.8, 5.2 Hz, 1H), 

3.10 (d, J = 16.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 159.0, 158.4, 153.9, 150.7, 150.3, 

150.1, 135.6, 134.2, 132.9, 130.6, 128.9, 127.8, 126.0, 123.2, 121.5, 120.7, 119.5, 117.0, 

113.7, 68.0, 44.0, 30.4. HRMS (ESI): calcd for C22H19N4O [M+H]+, 355.1553; found, 

355.1551.

Preparation of 2-chloro-N-(2,3-dihydro-1H-inden-2-yl)quinazolin-4-amine (10)—
A mixture of 2,4-dichloroquinazoline (398 mg, 2.0 mmol), 2,3-dihydro-1H-inden-2-amine 

(266 mg, 2.0 mmol), and potassium carbonate (276 mg, 2.0 mmol) in DMF (5 mL) was 

stirred at room temperature for 5 h. Water (20 mL) was added, and the formed solid was 

filtered, washed with water, and solid was dried to give 10 as an off-white solid (390 mg, 

66 %); mp 239–240°C.
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1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 8.2 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.60 (d, J = 

8.2 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.24 – 7.19 (m, 2H), 6.08 (d, J = 

6.7 Hz, 1H), 5.27 – 5.15 (m, 1H), 3.53 (dd, J = 16.2, 7.0 Hz, 2H), 3.00 (dd, J = 16.2, 4.0 Hz, 

2H). 13C NMR (125 MHz, CDCl3) δ 160.6, 157.8, 151.0, 140.7, 133.6, 128.0, 127.1, 126.2, 

125.1, 120.8, 113.3, 52.6, 40.2. MS (ESI) m/z [M + H]+: calcd, 296.09; found, 296.13.

General Procedure for 11a-11h—A mixture of 2-chloro-N-(2,3-dihydro-1H-inden-2-

yl)quinazolin-4-amine 10 (148 mg, 0.5 mmol), boronic acid (0.5 mmol), Pd(PPh3)4 (58 mg, 

0.05 mmol), potassium carbonate (276 mg, 2.0 mmol) in dioxane (10 mL) and water (1.5 

mL) was heated at 85 °C under an argon atmosphere for 16 h. Water (5 mL) was added, and 

the mixture was extracted with EtOAc (25 mL × 3). The combined organic phase was 

washed with brine (15 mL), dried (Na2SO4), filtered, evaporated, and purified by flash 

chromatography to give product.

Analytical Data for Compounds 11a-11h

N-(2,3-Dihydro-1H-inden-2-yl)-2-(4-methylpyridin-3-yl)quinazolin-4-amine (11a)
—White solid (125 mg, 71%); mp 170–172°C. 1H NMR (500 MHz, CDCl3) δ 9.16 (s, 1H), 

8.50 (d, J = 5.0 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.75 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.67 

(d, J = 7.8 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.29 (dd, J = 5.3, 3.4 Hz, 2H), 7.25 – 7.19 (m, 3H), 

5.94 (d, J = 7.0 Hz, 1H), 5.26 (tdd, J = 7.1, 4.4, 2.6 Hz, 1H), 3.54 (dd, J = 16.2, 7.1 Hz, 2H), 

3.04 (dd, J = 16.2, 4.4 Hz, 2H), 2.72 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 161.1, 159.1, 

151.3, 150.1, 149.2, 146.6, 140.9, 135.4, 132.7, 128.8, 126.8, 125.9, 124.9, 120.7, 113.2, 

52.3, 40.2, 21.0. HRMS (ESI): calcd for C23H21N4 [M+H]+, 353.1761; found, 353.1765.

N-(2,3-Dihydro-1H-inden-2-yl)-2-(5-methylpyridin-3-yl)quinazolin-4-amine (11b)
—Yellow solid (134 mg, 76%); mp 200–201°C. 1H NMR (500 MHz, CDCl3) δ 9.59 (d, J = 

1.6 Hz, 1H), 8.63 (s, 1H), 8.53 (d, J = 1.6 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.77 – 7.71 (m, 

1H), 7.66 (d, J = 7.8 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.30 (dd, J = 5.3, 3.4 Hz, 2H), 7.23 (dd, J 
= 5.5, 3.2 Hz, 2H), 5.95 (d, J = 6.8 Hz, 1H), 5.40 – 5.29 (m, 1H), 3.61 (dd, J = 16.2, 7.2 Hz, 

2H), 3.08 (dd, J = 16.2, 4.8 Hz, 2H), 2.45 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 159.3, 

158.8, 151.2, 150.3, 147.6, 141.1, 136.0, 134.0, 132.7, 132.6, 128.7, 126.8, 125.7, 124.9, 

120.8, 113.9, 52.4, 40.1, 18.5. HRMS (ESI): calcd for C23H21N4 [M+H]+, 353.1761; found, 

353.1757.

N-(2,3-Dihydro-1H-inden-2-yl)-2-(6-methylpyridin-3-yl)quinazolin-4-amine (11c)
—Yellow solid (129 mg, 73%); mp 175–176°C. 1H NMR (500 MHz, CDCl3) δ 9.66 (d, J = 

1.9 Hz, 1H), 8.69 (dd, J = 8.1, 2.2 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.73 – 7.68 (m, 1H), 

7.63 (d, J = 7.9 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.29 – 7.25 (m, 2H), 7.23 – 7.19 (m, 3H), 5.91 

(d, J = 6.6 Hz, 1H), 5.33 – 5.23 (m, 1H), 3.58 (dd, J = 16.2, 7.2 Hz, 2H), 3.06 (dd, J = 16.1, 

4.8 Hz, 2H), 2.62 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 159.8, 159.2, 158.8, 150.4, 149.7, 

141.0, 136.0, 132.6, 131.6, 128.8, 126.9, 125.6, 124.9, 122.7, 120.5, 113.7, 52.5, 40.2, 24.5. 

HRMS (ESI): calcd for C23H21N4 [M+H]+, 353.1761; found, 353.1767.

N-(2,3-Dihydro-1H-inden-2-yl)-2-phenylquinazolin-4-amine (11d)—White solid 

(84 mg, 50%); mp 221–223°C. 1H NMR (500 MHz, CDCl3) δ 8.64 – 8.56 (m, 2H), 7.93 (d, 

Zheng et al. Page 14

J Med Chem. Author manuscript; available in PMC 2017 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



J = 8.3 Hz, 1H), 7.72 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.53 – 7.46 

(m, 3H), 7.39 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.31 (dd, J = 5.3, 3.3 Hz, 2H), 7.24 (dd, J = 

5.5, 3.2 Hz, 2H), 5.86 (d, J = 6.6 Hz, 1H), 5.38 (tdd, J = 7.1, 5.1, 2.1 Hz, 1H), 3.61 (dd, J = 

16.1, 7.2 Hz, 2H), 3.08 (dd, J = 16.1, 5.0 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 160.4, 

159.2, 150.5, 141.1, 138.9, 132.5, 130.1, 128.9, 128.4, 128.2, 126.8, 125.3, 125.0, 120.4, 

113.6, 52.4, 40.2. HRMS (ESI): calcd for C23H20N3 [M+H]+, 338.1652; found, 338.1647.

N-(2,3-Dihydro-1H-inden-2-yl)-2-(pyridin-4-yl)quinazolin-4-amine (11e)—Brown 

solid (59 mg, 35%); mp 246–247°C. 1H NMR (500 MHz, CDCl3) δ 8.74 (d, J = 5.5 Hz, 

2H), 8.40 (d, J = 5.9 Hz, 2H), 7.93 (d, J = 8.2 Hz, 1H), 7.78 – 7.70 (m, 1H), 7.67 (d, J = 8.1 

Hz, 1H), 7.48 – 7.39 (m, 1H), 7.29 (dd, J = 5.2, 3.4 Hz, 2H), 7.22 (dd, J = 5.4, 3.3 Hz, 2H), 

5.99 (d, J = 6.7 Hz, 1H), 5.37 – 5.29 (m, 1H), 3.59 (dd, J = 16.2, 7.2 Hz, 2H), 3.07 (dd, J = 

16.1, 4.8 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 159.4, 158.4, 150.2, 150.2, 146.4, 141.0, 

132.8, 129.2, 126.9, 126.3, 125.0, 122.3, 120.6, 114.1, 77.2, 77.0, 76.7, 52.5, 40.1. HRMS 

(ESI): calcd for C22H19N4 [M+H]+, 339.1604; found, 339.1608.

N-(2,3-Dihydro-1H-inden-2-yl)-2-(thiophen-2-yl)quinazolin-4-amine (11f)—Off-

white solid (68 mg, 40%); mp 243–246°C. 1H NMR (500 MHz, CDCl3) δ 8.08 (d, J = 3.1 

Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.45 (d, 

J = 4.9 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.32 – 7.27 (m, 2H), 7.23 (dd, J = 5.3, 3.3 Hz, 2H), 

7.18 – 7.13 (m, 1H), 5.88 (d, J = 6.3 Hz, 1H), 5.31 – 5.24 (m, 1H), 3.60 (dd, J = 16.2, 7.2 

Hz, 2H), 3.06 (dd, J = 16.2, 5.0 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 159.0, 157.3, 

150.4, 145.2, 141.1, 132.6, 129.0, 128.5, 128.2, 127.9, 126.8, 125.1, 124.9, 120.5, 113.5, 

52.5, 40.1. HRMS (ESI): calcd for C21H18N3S [M+H]+, 344.1216; found, 344.1218.

N-(2,3-Dihydro-1H-inden-2-yl)-2-(thiophen-3-yl)quinazolin-4-amine (11g)—
Yellow solid (75 mg, 44%); mp 232–233°C. 1H NMR (500 MHz, CDCl3) δ 8.34 (d, J = 3.0 

Hz, 1H), 8.02 (dd, J = 5.0, 0.9 Hz, 1H), 7.87 (d, J = 8.3 Hz, 1H), 7.74 – 7.65 (m, 1H), 7.62 

(d, J = 8.0 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.30 (dd, J = 5.2, 3.4 Hz, 2H), 7.25 – 7.21 (m, 2H), 

5.85 (d, J = 6.5 Hz, 1H), 5.36 – 5.25 (m, 1H), 3.58 (dd, J = 16.2, 7.2 Hz, 2H), 3.07 (dd, J = 

16.1, 5.0 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 159.1, 157.8, 150.5, 143.1, 141.1, 132.5, 

128.6, 127.9, 127.4, 126.8, 125.4, 125.1, 124.9, 120.5, 113.5, 52.3, 40.2. HRMS (ESI): calcd 

for C21H18N3S [M+H]+, 344.1216; found, 344.1215.

N-(2,3-Dihydro-1H-inden-2-yl)-2-(furan-2-yl)quinazolin-4-amine (11h)—Pale-

yellow solid (80 mg, 49%); mp 231–232°C.1H NMR (500 MHz, CDCl3) δ 7.96 (d, J = 8.4 

Hz, 1H), 7.73 – 7.67 (m, 1H), 7.67 – 7.61 (m, 2H), 7.41 – 7.32 (m, 2H), 7.32 – 7.26 (m, 2H), 

7.25 – 7.21 (m, 2H), 6.57 (dd, J = 3.3, 1.7 Hz, 1H), 5.98 (d, J = 6.8 Hz, 1H), 5.34 – 5.20 (m, 

1H), 3.57 (dd, J = 16.1, 7.2 Hz, 2H), 3.05 (dd, J = 16.1, 5.0 Hz, 2H). 13C NMR (125 MHz, 

CDCl3) δ 159.1, 153.7, 153.4, 150.1, 144.6, 141.0, 132.7, 128.8, 126.8, 125.3, 124.9, 120.5, 

113.7, 113.1, 111.8, 52.3, 40.1. HRMS (ESI): calcd for C21H18N3O [M+H]+, 328.1444; 

found, 328.1448.
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Enzymatic Assays

4-Methylumbelliferyl β-D-glucopyranoside (4MU-β-Glc), 4- methylumbelliferyl α-D-

glucopyranoside,4-methylumbelliferyl α-D- galactopyranoside, and buffer components were 

purchased from Sigma-Aldrich (St. Louis, MO). The recombinant wild-type GCase enzyme 

velaglucerase alfa (Vpriv®, Shire Human Genetic Therapies, Inc.), acid α-glucosidase 

enzyme alglucosidase alfa (Lumizyme®, Genzyme Corporation), α-galactosidase A enzyme 

agalsidase beta (Fabrazyme®, Genzyme Corporation) were used in activity assays. The 

GCase activity assay buffer was composed of 50 mM citric acid, 176 mM K2HPO4, and 

0.01% Tween-20 at pH5.0, pH 5.9 and pH7.0. A solution of 1 M sodium hydroxide and 1 M 

glycine (pH 10) was used as the stop solution for all three enzyme activity assays.

GCase Enzyme Activity Assay

The compounds in DMSO solution (0.5 µL/well) were transferred to a black 96-well plate 

(the final titration started from 100 µM, a 12 or 24-point 2-fold dilution series). Enzyme 

solution (33.5 µL, 7.5 nM final concentration, in pH 5.9 buffer) was transferred to the wells. 

After 5 min of incubation at room temperature, the enzyme reaction was initiated by the 

addition of blue substrate (4MU-β-Glc) (33 µL/well). The final concentration of the blue 

substrate was 1.5 mM. The blue substrate reaction was terminated by the addition of 33 µL/

well stop solution (1 M NaOH and 1 M glycine mixture, pH 10) after 30 min of incubation 

at 37 °C. The fluorescence was then measured in a Biotek Synergy H1 multi-mode plate 

reader with Ex = 365 nm and Em = 440 nm. The selected compounds were further assayed 

under pH 5.0 and pH 7.0 to evaluate their selectivity under various pH conditions.

Enzyme Kinetic Assay20—The substrate resorufin β-D-glucopyranoside was diluted to 

five concentrations, ranging from 30 to 150 µM. Seven concentrations of inhibitors (between 

0.5- and 5-fold of IC50 value) and a DMSO control were added to the enzyme solution. The 

final enzyme concentration was 10 nM to give a linear reaction over 10 min. Enzyme 

kinetics were measured by the addition of 66 µL of substrate to a 96-well assay plate, 

followed by 33 µL of enzyme solution (with or without inhibitor) using a dispense module 

on a Biotek Synergy H1 multi-mode plate reader. The increase in product fluorescence was 

measured at 1 min intervals for 10 min in the plate reader. The rate of product formation was 

calculated by converting the fluorescence units to nanomoles of product per minute using a 

standard curve of the free fluorophore, resorufin.

Enzyme Selectivity Assays

The acid α-glucosidase and α-galactosidase A enzyme activity assay methods were similar 

to the GCase enzyme activity assay above with slight modifications. The buffer for the two 

enzyme assays consisted of 50 mM citric acid, 176 mM K2HPO4, and 0.01% Tween-20 at 

pH 4.8. The final enzyme concentrations for acid α-glucosidase and α-galactosidase A were 

8 and 1 nM, respectively. The substrate concentrations for these related enzymes were at 

0.16 and 0.4 mM, respectively.
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Fluorescence Thermal Shift Analysis32

A robotic pipeline in the High Throughput Analysis Laboratory (HTAL) was used for 

protein ligand screening by fluorescence thermal shift (FTS) analysis. The pipeline used a 

Mosquito robot (TTP Labtech) for protein dispensing and an Echo 550 (Labcyte) to add 

compounds. Thermal scanning coupled with fluorescence detection was performed on a 

real-time PCR machine CFX384 (Bio-Rad Laboratories). The assay was run in 384-well 

PCR plates, using 10 µL citric acid/ K2HPO4 buffer (50 mM citric acid, 150 mM K2HPO4, 

pH 5.0) per well. The assay concentration for protein was 1 µM and that for Sypro Orange 

(Invitrogen) was 5X. Protein was premixed with Sypro Orange and dispensed to a plate first, 

and compounds were added. Final concentrations of compounds ranged from 0.5 to 200 µM. 

Then the plate was sealed with an optical seal, shaken, and centrifuged. The thermal scan 

was from 10 to 95 °C with a temperature ramp rate of 1.5 °C/min. The fluorescence was 

recorded every 10 sec. Data analysis and report generation were performed using the in-

house software excelFTS. The Tm of wild-type GCase was found to follow a logarithmic 

dose-dependent trend when denaturation was performed in the presence of isofagomine or 

selected compounds.

N370S Cell Culture and Compound Treatment

The N370S fibroblast cell line was obtained from Coriell, GM00372, cultured in DMEM 

medium (Life Tech) including 1% v/v L-glutamine 200 mM (Life Tech), 1% v/v pen strep 

(Life Tech), 10% FBS (Life Tech) at 37 °C and 5% CO2 and treated with different 

compounds at indicated concentrations. The same volume of DMSO (0.1% v/v) was used as 

a control. After a 3-day treatment, cells were washed with inhibitor free media three times 

and followed by 1% Triton X-100 lysis buffer to lyse cells. Protein concentrations were 

measured with a Bradford kit (Thermo), and the GCase activity was determined at pH 5.5.

Deglycosylation of Proteins/Molecular Shift Assay 33

To study the subcellular localization and transport of the various GC mutants (ER and post-

ER localization), EndoH and PNGaseF digestions were performed. For both reactions 20 µg 

of protein was used, and the experimental procedure was performed according to the 

manufacturer’s handbook (New England Biolabs). A positive digestion resulted in a shift in 

molecular size after the protein was subjected to SDS/PAGE. Anti-hGC (From Johannes 

Aerts, Leiden University, Leiden, The Netherlands) was used to detect the different forms of 

GC.

Western Blot

Proteins were denatured in 20% SDS sample buffer at 100 °C for 10 min; 10% Bis-Tris gel 

(Life Tech) was used for gels; Trans-Blot Turbo PVDF kit (Bio-Rad) was used for 

membrane transfer. GCase antibody (Sigma-Aldrich) and GAPDH primary antibodies 

(EMD Millipore) were incubated with the membranes overnight, then the incubated 

membranes were treated with the secondary antibody (Peroxidase-AffiniPure Goat Anti-

Rabbit/Mouse IgG (H+L), Jackson Immunoresearch Lab) for 30 min. Chemidoc MP system 

(Bio-Rad) was used to scan the membranes and analyze the imaging.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

GD Gaucher’s disease

GCase β-glucocerebrosidase

ER endoplasmic reticulum

ERT’ enzyme replacement therapy

SRT substrate reduction therapy

PC pharmacological chaperone

IFG Isofagomine

PD Parkinson’s Disease

DLB dementia with Lewy bodies

SAR structure activity relationship

GAA acid α-glucosidase

GLA α-galactosidase A
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Figure 1. 
Structures of GCase inhibitors
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Figure 2. 
Rational design of a new series of potent quinazoline inhibitors
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Figure 3. 
Fluorescent thermal shift analysis of selected compounds. Compound 9a, 9b, 11d, 11f, 11g, 

and IFG showed their ability to stabilize wild-type GCase in a dose-dependent manner. Data 

represent the results of three independent experiments performed with three replicates per 

sample.
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Figure 4. 
Selectivity of inhibitor 11g with related hydrolases. 11g was tested on GCase, acid α-

glucosidase (GAA), and α-galactosidase A (GLA). Data represent the results of three 

independent experiments performed with three replicates per sample.
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Figure 5. 
Lineweaver–Burk plots of the enzyme kinetics of GCase inhibitors (A) 4 and (B) 11g. Each 

inhibitor was tested in triplicate in two independent assays at the concentrations shown in 

the legend box of each graph, with (○) indicating the absence of inhibitor. (A) Compounds 4 
and (B) Compound 11g showed an increase in Km and a decrease in Vmax, indicating linear 

mixed inhibition.
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Figure 6. 
Modulator 11g increases GCase protein levels in patient-derived Gaucher’s disease 

fibroblasts. Top: Western blot of N370S fibroblast treated with 11g or IFG for 3 days. 

Middle: Western blot of endoH digestion of N370S fibroblast after a 3-day treatment of 11g, 

IFG, or DMSO; endoH resistance of proteins indicates their post-ER localization; Bottom: 

Western blot of PNGase F digestion of N370S fibroblast after a 3-day treatment of 11g, IFG, 

or DMSO. The GAPDH signal was used for the loading control, n = 3.
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Scheme 1. 
Synthesis of 4, 6a-6i, 7a-7i, 8a-8g, and 9a-9f with substituents on the secondary amine

Reagents and conditions: (a) (i) sulfolane (ii) PCl5; (b) RNH2, K2CO3, DMF
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Scheme 2. 
Synthesis of 11a-11h with modifications at the 2-position of the quinazoline ring

Reagents and conditions: (a) 2,3-dihydro-1H-inden-2-amine, K2CO3, DMF; (b) RB(OH)2, 

Pd(PPh3)4, K2CO3, 1,4-dioxane, H2O
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Table 6

GCase inhibitory activity of 9a, 9b, 9c, 11d, 11g, and 11f at pH 5.0, pH 5.9, and pH 7.0a

Comp Structure
IC50 (nM)

pH 5.0 pH 5.9 pH 7.0

9a 22.4 ± 3.4 8.7 ± 1.1 16.9 ± 2.7

9b 30.1 ± 4.5 9.9 ± 1.3 18.8 ± 2.5

9c 25.9 ± 3.9 8.3 ± 1.0 12.7 ± 1.4

11d 10.5 ± 1.5 6.5 ± 0.7 9.4 ± 1.4

11f 13.9 ± 1.9 8.2 ± 1.0 12.9 ± 2.0

11g 8.9 ± 1.3 5.2 ± 0.6 6.6 ± 1.0

a
Experiments were performed in triplicate, and the mean ± SD is shown.
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