
RESEARCH HIGHLIGHT

Mitochondrial fusion fuels T cell memory
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Differences in mitochondrial struc-
tures determine the metabolic land-
scape of effector and memory T cell 
populations in vivo.

Proliferating lymphocytes and cancer 
cells use the ‘Warburg effect’ in which 
cells switch from more energy-efficient 
oxidative phosphorylation (i.e., the 
mitochondrial break-up of nutrients) to 
aerobic glycolysis (i.e., the cytoplasmic 
oxidation of glucose into pyruvate) to 
generate building blocks for growth. 
Immunological memory following 
the proliferative expansion of antigen-
specific clones, in contrast, requires a 
switch back to mitochondrial oxidative 
phosphorylation to gain the capacity for 
long-term survival. However, mecha-
nisms underlying this intrinsic meta-
bolic plasticity had remained elusive. 
Pearce and colleagues show that fission 
and fusion forces regulate mitochondrial 
function in T lymphocytes, thereby link-
ing mitochondrial reprogramming and 
determination of fate in lymphocytes 
[1]. These new findings extend previous 
work on multiple specialized roles of 
mitochondria in different stages of the 
immune response [2].

Buck et al. [1] show that effector T 
cells with fissed mitochondria display 
disorganized cristae, while memory 
T cell populations have fused mito-
chondria and better-organized cristae. 
Importantly, enforcing mitochondrial 
fusion in effector T cells (by genetic 
or pharmacologic manipulation) led 
to metabolic reprogramming, with en-
hanced oxidative metabolism, increased 
T cell survival and improved anti-cancer 
activity in vivo. These data allocate 
metabolic dynamics downstream of T 
cell activation (needed to establish an 

effector phenotype), but upstream of 
metabolic commitment. That is, effector 
T cell populations require mitochondrial 
re-arrangements (fission) to engage in 
aerobic glycolysis. Thus, inhibition 
of fission enforces memory-like T cell 
properties even in the presence of an up-
stream activation trigger. This approach 
may have important consequences to 
improve the generation of immunologi-
cal memory.

Nevertheless, enforcing immuno-
logical memory by means of the newly-
discovered fusion program may not be 
always ideal. Primary immunizations, 
i.e., influenza vaccination, may be 
reduced by excessive oxidative me-
tabolism while strongly dependent on 
effector T cell priming of B cells. Taken 
together, these findings enhance our un-
derstanding of how metabolic switches 
and T cell activities are linked, and il-
luminate mitochondrial reprogramming 
as a strategy to modulate T cell function.

There have been a number of other 
roles for mitochondrial dynamics in T 
cell activation and most of this infor-
mation fits well with the new paradigm 
introduced by Buck et al. [1]. It is well 
established that mitochondria play an 
important role in Ca2+ homeostasis. The 
electromotive force of the energized in-
ner membrane can move large amount 
of Ca2+ into the matrix, but only when 
cytoplasmic Ca2+ reaches a high local 
concentration [2]. An important func-
tion of this Ca2+ buffering is to keep 
plasma membrane Orai channels open 
longer by avoiding Ca2+-dependent 
closure [2]. The mitofusin-2-dependent 
adhesion of the endoplasmic reticulum 
to mitochondria, which is also part of 
the mitochondrial fusion apparatus, also 

contributes to Ca2+ flux, by positioning 
mitochondria near inositol-3-phosphate 
receptors [3]. Thus, completely de-ener-
gizing mitochondria tends to shut down 
or lead to oscillations in the sustained 
cytoplasmic Ca2+ in response to activa-
tion [2]. The phenotype of stomatin-like 
protein 2 (SLP-2) knockout mice also 
supports an important role of mitochon-
drial integrity for T cell activation [4]. 
In addition to Ca2+ buffering, mitochon-
dria have been implicated in polarized 
release of extracellular ATP [5], which 
provides another way for mitochondria 
to contribute to Ca2+ flux.

The impact of manipulating mi-
tochondrial fission and fusion on T 
cell migration and the immunological 
synapse has also been investigated. T 
cell migration is related to the immu-
nological synapse in that they share a 
similar actinomyosin machinery to drive 
directed motility and the T cell receptor/
adhesion bull’s eye [6]. T cell migra-
tion and mitochondrial polarization are 
promoted by mitochondrial fission [7]. 
A similar relationship has been observed 
in the immunological synapse, where 
dynamin-related protein-1 (Drp1) is 
concentrated in the synapse and medi-
ates fission [8]. These studies struck 
a similar cord by suggesting that an 
important local function of polarized 
mitochondria is to provide ATP for the 
myosin motors. Some aspects of immu-
nological synapse formation are actually 
involved in turning off TCR signaling, 
such that suppressing Drp1-mediated 
fission actually enhanced T cell activa-
tion [8]. A caveat of these studies is that 
they made extensive use of the Jurkat T 
cell line, and these issues will need to 
be further explored with primary T cells. 
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Figure 1 shows the accumulation of mi-
tochondria near the secretory domain of 
the immunological synapse formed by 
non-transformed mouse effector T cells 
as revealed by electron tomography [9].  

Asymmetric partition of proteins 
has been recently shown to shape the 
distinct metabolic landscape of effector 
and memory T cell populations during 
antigen presentation [10]. Mitochondria 
can also be inherited during cell divi-
sion [11]. It remains to be determined 
whether any distribution of differently 
structured mitochondria with tighter or 
looser cristae, may also have an impact 
on T cell differentiation or whether dif-
ferences in mitochondrial structure are 
actively acquired in response to the re-
cently described asymmetric programs. 

Several questions still remain. Above 
all, how mitochondrial fusion, oxida-
tive metabolism and immunological 
memory are exactly linked? Pearce and 
colleagues show that enforcing fusion 
can enhance oxidative phosphorylation 
with consequent activation of fatty acid 
oxidation in T cells (FAO; the mitochon-
drial breakdown of lipids thought to fuel 
long-term memory survival). However, 
T cells with a genetic defect in fusion 
(missing the key fusion protein OPA1) 
could still activate FAO, suggesting 
the involvement of additional mecha-
nisms. Second, how the predominant 
role of fusion in memory T cell gen-
eration and fatty acid metabolism can 
be re-conciliated with the metabolism 
of highly differentiated (memory) T 
cells (also known as senescent T cells) 
that spontaneously activate AMPK (a 
key activator of FAO) but that present 
poor mitochondrial metabolism [12]? 
Third, how changes in fusion/fission 
(and hence in T cell metabolism) may 

help to differentiate responses of naïve, 
memory and senescent T cells? While 
the loss of Drp1 from the Jurkat T cells 
enhanced IL-2 production, the fusion 
proteins have not been similarly ma-
nipulated and little work has been done 
on these aspects in primary T cells. In 
addition, AMPK activation also inhibits 
TCR sensitivity. Thus, understanding 
how metabolic processes feed into the 
immunological synapse may unveil 
unrecognized strategies for intervention 
during aging, chronic viral infections 
and cancer.
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Figure 1 Accumulation of mitochondria at the immunological synapse. Electron 
tomography of immunological synapse formed on suppored lipid bilayers (SLB) 
containing ICAM-1 and agonist MHC peptide complexes [9]. M, mitochondria; C, 
centriole; E, endosome; L, lysosome; S, secretory domain; RER, rough endoplas-
mic reticulum.




