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Objective. To develop and validate a model of incident type 2 diabetes based solely
on administrative data.
Data Sources/Study Setting. Optum Labs Data Warehouse (OLDW), a national
commercial administrative dataset.
Study Design. HealthImpact model was developed and internally validated using
nested case–control study design; n = 473,049 in training cohort and n = 303,025 in
internal validation cohort. HealthImpact was externally validated in 2,000,000 adults
followed prospectively for 3 years. Only adults ≥18 years were included.
Data Collection/Extraction Methods. Patients with incident diabetes were identi-
fied using HEDIS rules. Control subjects were sampled from patients without diabetes.
Medical and pharmacy claims data collected over 3 years prior to index date were used
to build the model variables.
Principal Findings. HealthImpact, scored 0–100, has 48 variables with c-statistic
0.80815. We identified HealthImpact threshold of 90 as identifying patients at high risk
of incident diabetes. HealthImpact had excellent discrimination in external validation
cohort (c-statistic 0.8171). The sensitivity, specificity, positive predictive value, and neg-
ative predictive value of HealthImpact >90 for new diagnosis of diabetes within 3 years
were 32.35, 94.92, 22.25, and 96.90 percent, respectively.
Conclusions. HealthImpact is an efficient and effective method of risk stratification
for incident diabetes that is not predicated on patient-provided information or labora-
tory tests.
Key Words. Diabetes mellitus type 2, risk assessment/methods, theoretical
models, decision support techniques

In the United States, more than 1.5 million adults are newly diagnosed with
diabetes each year (CDC 2012). An additional 79 million adults, or 37 percent
of U.S. adults, are estimated to be at risk for developing diabetes (CDC 2011),
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historically defined by fasting blood glucose values just below the diagnostic
threshold for diabetes (e.g., prediabetes) (Tamez-Perez, Proskauer-Pena, and
Hernandez-Coria 2013; ADA 2015). Randomized controlled trials demon-
strated that lifestyle modifications and pharmacotherapies can be effective in
delaying or reversing the progression of hyperglycemia, reducing the personal
and societal burdens of prediabetes and diabetes (Pan et al. 1997; Tuomilehto
et al. 2001; Chiasson et al. 2002; Knowler et al. 2002, 2009; Nichols and
Brown 2005; Herman et al. 2012). A major barrier to implementation of dia-
betes risk reduction programs is the difficulty of identifying individuals at risk.
Many public health efforts to screen patients for diabetes have been hindered
by low turnout, high cost incurred by testing a large number of people, and
lack of opportunities to provide counseling or referral (Engelgau, Narayan,
and Herman 2000; Tabaei et al. 2003). As a result, only 11 percent of people
with prediabetes are estimated to be aware of their condition (CDC 2013).

Current clinical practice guidelines recommend using laboratory crite-
ria to diagnose prediabetes: fasting glucose (FPG) 100–125 mg/dL, 2-hour
glucose 140–199 mg/dL after an oral glucose tolerance test (OGTT), or glyco-
sylated hemoglobin (HbA1c) 5.7–6.4 percent (ADA 2015). In an effort to bet-
ter identify high-risk individuals, more than 145 risk models for type 2
diabetes have been proposed over the past decade (Noble et al. 2011; Abbasi
et al. 2012; Kengne et al. 2014), but they have not been incorporated into rou-
tine clinical practice in part due to the prohibitive effort of obtaining necessary
clinical, laboratory, and/or patient-provided information such as anthropo-
metric measurements, lifestyle information, smoking, family history, educa-
tion, income, and/or laboratory data (Noble et al. 2011; Abbasi et al. 2012;
Kengne et al. 2014). This information cannot be obtained without direct
patient contact, manual data processing, or invasive and resource-intensive
laboratory tests, making currently available models inadequate to fully meet
broader public health needs.

Our goal was to develop and both internally and externally validate an
efficient risk prediction model for incident type 2 diabetes (HealthImpact) that
is based entirely on administrative data, thereby reducing reliance on direct
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patient contact and obviating need for patient-provided information and
laboratory tests. Importantly, our objective was not to identify patients with
undiagnosed diabetes or to estimate the probability that a specific individual
will develop diabetes, but rather to identify people whose risk of diabetes is
sufficiently high to warrant further evaluation (Box S1). Such a model may be
used by health systems or accountable care organizations (ACOs) as part of
population health management efforts to identify and reach out to at-risk
patients or to facilitate resource allocation based on anticipated need; it may
also be used by payers seeking to facilitate risk-adjustment across health plans.
In addition, as primary care groups are held increasingly responsible for pop-
ulation health management, a tool like HealthImpact can be useful, though it
may need to be operated andmaintained by a contracted external entity.

While a risk model that utilizes only claims data would be limited to
insured individuals with at least a minimal interaction with the health care
system, 79 percent of American adults between ages 19–64 years now report
having health insurance coverage and more are expected to gain coverage as
a result of the Affordable Care Act (Collins et al. 2013). Moreover, because
HealthImpact relies on the near-universally used International Classification
of Diseases (ICD) diagnostic codes and National Drug Codes (NDC), its
algorithm is generalizable to any insurance type and health system, including
other private payers, public payers (e.g., Medicare, Medicaid, Veterans
Administration), and international health systems. Similarly, ongoing efforts
to standardize and extend Health Information Exchanges (HIEs) in accor-
dance with Meaningful Use (2013a), and the upcoming implementation of
the ICD-10 format, could also be leveraged for HealthImpact adaptation for
future use.

METHODS

Dataset

This study utilizes data between 1994 and 2012 from the Optum Labs Data
Warehouse (OLDW) (Wallace et al. 2014), a national deidentified dataset of
more than 100 million privately insured individuals that is geographically and
racially diverse, including individuals of all ages (including Medicare Advan-
tage beneficiaries ≥65 years old) and from all 50 states, with greatest represen-
tation in the Midwest and South U.S. Census Regions (2014). OLDW
provides full access to professional, facility, and outpatient prescription medi-
cation claims. Patient-identifying information was encrypted or removed from
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the study database prior to its release to the study investigators, such that it is
compliant with HIPAA and exempt from Institutional Review Board review.

Definition of Outcome

The study outcome was a binary variable indicating a new diagnosis of dia-
betes mellitus (e.g., incident diabetes on the next day); diabetes was defined by
Healthcare Effectiveness Data and Information Set (HEDIS) diagnosis and
medications criteria (NCQA 2009). We required that individuals meet at least
two HEDIS criteria within 180 days to exclude diabetes rule-out cases, but
diagnosis date was the date of the first HEDIS-qualifying claim. Finally, to
ensure that identified individuals have incident rather than prevalent diabetes,
we required a 36-month period of continuous enrollment without diabetes-
related claims or medications before the first HEDIS-qualifying event.

Development and Internal Validation

TheHealthImpact model was developed and internally validated using nested
case–control study design, utilizing stratified random sampling as described in
Figure 1 and online-only Supplement. This enriched the target population for
diabetes cases and thereby optimized model development (Box S2).

First, we identified adults, aged 18–89 years, with ≥36 months of contin-
uous enrollment, and ≥3 claims within a qualifying health plan between Jan-
uary 1, 2008, and November 30, 2012. We performed complete-case analysis,
including only individuals with uninterrupted enrollment for ≥36 months. A
qualifying health plan was defined as a plan having ≥1,000 total medical and
≥1,000 total drug claims, and claims available during ≥9 distinct months over
a 3-year period. The rationale for excluding health plans with insufficient
medical and/or drug claims was to exclude outlier health plans that are not
representative of the health insurance marketplace.

Step-wise demonstration of how the study population was assembled is
depicted in Figure 1. There were 29,850,176 individuals with ≥36 months of
uninterrupted enrollment between January 1, 2008, and November 30, 2012.
We excluded 6,673,690 individuals aged <18 or ≥90 years; 49,864 individuals
with invalid zip codes (recorded zip code did not match list of possible zip
codes available from the U.S. Postal Service); and 24,993 individuals with
diagnoses of secondary diabetes (ICD-9 codes 249.x), disorders of pancreatic
internal secretion (ICD-9 code 251.8), and poisoning by adrenal cortical ster-
oids (ICD-9 code 962.0) during the 36-month enrollment period. This
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resulted in 23,101,629 eligible individuals, of whom 2,101,322 had a diagnosis
of diabetes (“incident diabetes cases”) during the 36-month enrollment
period.

In the incident diabetes cohort, we excluded 1,129,067 people who did
not have a confirmatory diagnosis of diabetes within 180 days of the first diag-
nosis code or medication claim meeting HEDIS criteria (NCQA 2009) to
exclude diabetes rule-out cases. To ensure identification of incident rather than

Figure 1: Study Design. HealthImpact Development and Internal
Validation
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prevalent diabetes cases, we then excluded 1,129,077 individuals who had one
or more diabetes diagnosis claims meeting HEDIS criteria during ≥3 years
prior to the date of first diabetes diagnosis. Finally, to minimize bias from
inclusion of individuals who had no encounters with the health care system,
we excluded 1,438 people with no claims or with routine care only (ICD-9
codes v20 [well-child visit], v25 [contraception], v70-82 [general health and
screenings]) (King and Zeng 2001). Ultimately, there were 67,888 people in
the incident diabetes cohort. Index date for the cases was the date of the first
HEDIS-qualifying claim, and all cases had at least 36 months of observation
prior to that date. However, variables from only the 36 months immediately
preceding the index date were considered in all analyses.

We applied the same inclusion/exclusion criteria to eligible individuals
without diabetes (“controls”), resulting in 942,280 people. The control cohort
was designed to match the case cohort on the distributions of enrollment dura-
tion, as described in Box S3, tominimize risk of sampling and selection biases.
Controls were matched without replacement. For the controls, as for the cases,
only variables from the 36 months immediately preceding the index date
were considered in the analyses.

Drawing from the incident diabetes and control cohorts, we first assem-
bled the internal validation population by stratified random sampling to allo-
cate 30 percent of the incident diabetes and control cohorts to the internal
validation dataset; this yielded a population of 20,352 cases and 282,673 con-
trols (total n = 303,025). We stratified the internal validation cohort by sex
and age group (5-year increments from 25–29 to 75–79 years, and wider end
groups for 18–24 and 80–89 years). In the internal validation population, the
cases and controls were matched solely on enrollment duration.

All of the remaining 47,536 people within the incident diabetes cohort
were assigned to the HealthImpact training (development) population. The
remaining 559,607 controls were stratified matched to these 47,536 cases
on index year (2008, 2009, 2010, 2011) and tercile of encounter density
(<20, 20–48, 48–86, ≥86) as described in Box S3; 282,673 could not be
matched and were excluded. Each case with incident diabetes could have
up to 10 matched controls, matched not only on enrollment duration (as in
the internal validation dataset) but also on encounter density and index
year. Encounter density was measured as the fraction of unique dates with a
claim, and it was included to minimize bias from diagnostic access. Addi-
tional matching on index year accounted for potential changes in secular
trends and clinical practices. The training dataset included 473,049 people
(47,536 cases and 425,513 controls).
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External Validation

We identified a random cohort of 2,000,000 adults (18–79 years) from a popu-
lation of 7,908,918 people in the OLDWenrolled on April 1, 2009, who had
continuous enrollment for ≥12 months (April 1, 2008, to April 1, 2009) and
had no documentation of diabetes mellitus, secondary diabetes, disorders of
pancreatic internal secretion, or poisoning by adrenal cortical steroids during
that ≥12-month period. All individuals were followed prospectively until dis-
enrollment or March 30, 2012, whichever came first. To maximize generaliz-
ability of HealthImpact, there were no exclusions based on type of health
plan, or number and type of encounters. HealthImpact scores were calculated
using data available as of April 1, 2009. Patients were followed prospectively,
and point prevalence of diabetes was calculated at 12, 24, and 36 months of
continuous enrollment, with the denominator being all people with uninter-
rupted enrollment to that date. Individuals were censored upon disenrollment
from the health plan, defined as the absence of medical or pharmacy coverage
for ≥31 consecutive days. Censored patients were included prior to the time of
censure, such that there was nomissing information at the time of analysis.

Comparison of HealthImpact to Laboratory Methods: A Sensitivity Analysis

There were 426,746 individuals in the external validation cohort who had
available laboratory data; laboratory data availability within OLDWis contin-
gent on data sharing agreements between Optum Labs and clinical laborato-
ries. Of them, 15,595 were excluded because they had laboratory evidence of
diabetes at baseline, defined by FPG ≥126 mg/dL, 2-hour glucose after an
OGTT ≥200 mg/dL, or HbA1c ≥6.5 percent (ADA 2015). Individuals with
prediabetes were identified on the basis of FPG 100–125 mg/dL, 2-hour glu-
cose after OGTT 140–199 mg/dL, or HbA1c 5.7–6.4 percent (ADA 2015).
The sensitivity, specificity, PPV, and NPVof each incident diabetes prediction
method were calculated using point prevalence of diabetes at 1, 2, and 3 years
among those individuals who had no diabetes at baseline.

Independent Variables

For HealthImpact development and internal validation, we collected
claim and enrollment data for matched individuals from 3 years prior to
the date of cohort entry; and for external validation, for 1 year prior to
cohort entry. These included diagnoses (ICD-9 codes), generic drug
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names (NDC codes), zip code of residence, age, and sex (Box S4).
Race/ethnicity and income were derived by proxy by linking residential
addresses to a U.S. Census zip code tabulation area (ZCTA) group (Krie-
ger et al. 2003). Each ZCTA group was assigned a race tercile for low-
est, middle, and highest percentage of non-white population with tercile
cut-offs of 9 and 24 percent non-white population to reflect the higher
prevalence of diabetes in the minority population. Age was modeled as
bands of 5-year increments from 25–29 to 75–79 years, and wider end
groups for 18–24 and 80–89 years. These parameters were used to maxi-
mize generalizability of the HealthImpact model, taking into considera-
tion different capabilities and compositions of other administrative
datasets.

Logical Observation Identifiers Names and Codes (LOINC) codes were
used to identify laboratory study results in the external validation subpopula-
tion: OGTT (1504-0, 1518-0, 20437-0), fasting glucose (1558-6), random glu-
cose (2339-0, 32016-8, 41653-7, 2345-7), and HbA1c (4548-4, 17856-6).

Analytic Methods

There were 12,482 clinical, pharmaceutical, and enrollment variables that
could be included in the HealthImpact model (Box S4). Because many of
these variables were likely to be correlated, we first grouped them using the
Agglomerative Single-Link Clustering Algorithm ( Jain, Murty, and Flynn
1999), which uses a series of decreasing correlation thresholds to determine all
sets of predictors that have pair-wise correlations greater than a prespecified
threshold of 0.70. After clustering 113 variables into 34 groups (Table 1),
remaining 12,405 variables were passed to GLMNET to solve with a pure
lasso logistic regression model as described in Box S5 (Friedman, Hastie, and
Tibshirani 2010). The distribution of the number of available nondemo-
graphic variables for each person in the training and internal validation
cohorts is shown in Figure S1; 90 percent had ≥4 variables and 10 percent had
>52 variables.

Model analysis and accuracy measures used the caret, GLMNET and
RMS packages from the R statistical library, v3.1.1 (2013b; Harrell 2014).
GLMNET implements lasso and regularized regression methods that allow
for variable selection in large datasets. GLMNET’s optimization path allows it
to find the best fit for each unique number of variables, 1 to N. Specifically,
due to concern for overfitting of the data when working with very large popu-
lations and a large number of variables, variable selection was performed with
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Table 1: HealthImpact Model: Demographic, Clinical Diagnosis,
Pharmacy, and Clinical Group Variables Included in the Final HealthImpact
Model

Type Variable Description Coefficient

Constant Baseline (female, 35–39 years, mediumminority) �1.251
demographic Age: 18–24 �1.323

Age: 25–29 �0.592
Age: 30–34 �0.231
Age: 40–44 0.130
Age: 45–49 0.311
Age: 50–54 0.494
Age: 55–59 0.571
Age: 60–64 0.639
Age: 65–69 0.686
Age: 70–74 0.853
Age: 75–79 0.809
Age: 80–89 0.617
Gender: male 0.317
Lowminority �0.154
Highminority 0.454

ICD-9-CM Intestinal disaccharidase deficiencies and disaccharide
malabsorption (271.3)

1.247

Dysmetabolic syndromeX (277.7) 1.415
Obstructive sleep apnea (327.23) 0.135
Benign hypertensive heart disease without heart failure (402.10) 0.417
Coronary atherosclerosis of native coronary artery (414.01) 0.120
Congestive heart failure, unspecified (428.0) 0.262
Acute respiratory failure (518.81) 0.809
Other chronic nonalcoholic liver disease (571.8) 0.633
Other acne (706.1) �0.244
Hypersomnia with sleep apnea, unspecified (780.53) 0.210
Unspecified sleep apnea (780.57) 0.187
Polydipsia (783.5) 1.742
Shortness of breath (786.05) 0.154
Other dyspnea and respiratory abnormalities (786.09) 0.115
Other abnormal blood chemistry (790.6) 0.983
Polycystic ovaries (256.4) 1.599
Glycosuria (791.5) 2.464
Diphtheria–tetanus–pertussis, combined (v06.1) �0.388

Medication Amlodipine besylate 0.165
Furosemide 0.439
Teriparatide 2.790

Merged groups Benign neoplasm of skin (216.5, 216.9) �0.434
Delivery (650, v270) �1.224
Abnormal glucose (790.2, 790.29) 1.992

Continued
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eight-way cross-validation (CV) so that each fit with n variables was evaluated
against seven overlapping datasets. For each fit, the c-statistic is measured on
the held out CV-sample (Friedman, Hastie, and Tibshirani 2010). Details of
model fitting are discussed in the Online-only Supplement.

Internal validity of the model was established through both cross-
validation during variable selection and analysis of the model fit using
bootstrapping. The 47 variable model had a mean AUC (area under the
receiver operating characteristic curve) of 79.43 within [79.3, 79.5] for
eight-fold cross-validation, and 80.8 percent when refit to the entire
training population. The training data fit was also evaluated using the
RMS package validate function, which performed 100 bootstrap fits of
the data to compute bias-corrected estimates of the c-statistic. The origi-
nal c-statistic was 0.8082, and the bias-corrected c-statistic was 0.80815.
The Brier statistic, the average mean square error between the predicted
and actual values for training data, was 0.1748 (bias-corrected, 0.1747).
The training data R2 value was 0.3604 (bias-corrected, 0.3600). The
Yates slope, the difference in mean predicted values for the incident and
control populations, for the training data was 0.2780; this statistic is not
part of the model validation suite of measures and therefore is not bias-
corrected. Finally, each variable was tested for colinearity (Harrell 2001),
and the final model had maximum variance inflation factor 2.59.

Because the training and internal validation sets were built retrospec-
tively without the ability to compute a true population prevalence, we did not
compute the calibration of the fits. This calibration would show a fit to a preva-
lence in the data that cannot reflect a true prevalence. In place of this calibra-
tion, the external dataset was validated by examining 1, 2, and 3 year
incidence of diabetes as predicted by the HealthImpact score.

Table 1: Continued

Type Variable Description Coefficient

Ethinyl estradiol (multiple agents) �0.310
Fenofibrate (multiple agents) 0.532
Abnormal maternal glucose tolerance (648.8) 3.671
Hyperlipidemia (272.2, 272.4) �0.023
Hypertension (401.0, 40.1.1, 401.9) 0.594
Nonallopathic lesion (739.0–739.4) �0.422
Overweight/obesity (278.0, 278.00–278.02) 0.760
Impaired glucose (790.21, 790.22) 1.659

Note. In parentheses are shown the specific ICD-9 codes used to identify these variables.
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RESULTS

HealthImpact model Development and Internal Validation

There were 473,049 individuals in the HealthImpact training dataset (47,536
cases and 425,513 controls) and 303,025 individuals in the internal validation
dataset (20,352 cases and 282,673 controls); see Figure 1. Baseline clinical and
demographic characteristics of the training and internal validation study
populations are summarized in Table 2. The training population was, on aver-

Table 2: Study Cohorts: Baseline Characteristics of People Included in the
HealthImpact Training (Development), Internal Validation, and External
Validation Cohorts

Training (N = 473,049)
Internal Validation
(N = 303,025)

External Validation
(N = 2,000,000)

Age, years, mean (SD) 45.76 (13.65) 44.21 (13.67) 44.12 (12.66)
Gender, male,N (%) 211,638 (44.74) 145,148 (47.90) 967,243 (48.36)
Enrollment, years,
mean (SD)
Prior to diagnosis 5.56 (2.06) 5.51 (2.03) 3.65 (2.56)
Following diagnosis 1.84 (1.20) 1.83 (1.22) 2.11 (1.26)

Race/ethnicity,N (%)
High (>24%) minority 168,124 (35.54) 110,110 (36.34) 761,026 (38.05)
Medium (9–24%)
minority

175,568 (37.11) 111,461 (36.78) 718,080 (35.90)

Low (<9%) minority 168,124 (35.54) 110,110 (36.34) 520,894 (26.04)
Comorbidities,N (%)
Ischemic heart disease 29,678 (6.27) 14,343 (4.73) 85,142 (4.26)
Cerebrovascular disease 16,189 (3.42) 7,967 (2.63) 43,496 (2.17)
Peripheral vascular
disease

10,225 (2.16) 4,921 (1.62) 27,334 (1.37)

Hypertension 140,297 (29.66) 72,234 (23.84) 427,801 (21.39)
Hyperlipidemia 172,103 (36.38) 93,438 (30.84) 563,822 (28.19)
Obesity 34,036 (7.20) 18,238 (6.02) 92,694 (4.63)
Elevated blood glucose 16,441 (3.48) 7,883 (2.60) 28,572 (1.43)
Gestational diabetes 3,522 (0.74) 1,847 (0.61) 10,001 (0.50)
Polycystic ovarian
syndrome

3,413 (0.72) 1,761 (0.58) 10,750 (0.54)

Medication number,
mean (SD)

1.32 (1.83) 1.00 (1.62) 0.85 (1.49)

Clinical encounters per year, mean (SD)
Prior to diagnosis 4.88 (6.16) 3.97 (5.31) 3.72 (4.98)
Following diagnosis 10.26 (14.27) 8.58 (12.47) 9.50 (13.19)

Observation duration,
months, median (IQR)

62.8 (47.6, 86.8) 62.8 (47.6, 86.8) 38.3 (21.1, 53.6)

1906 HSR: Health Services Research 51:5 (October 2016)



age, 45.76 years old (SD, 13.65), 44.74 percent male, and with a relatively high
prevalence of hypertension (29.66 percent) and hyperlipidemia (36.38 per-
cent). The internal validation population was slightly younger at 44.21 years
(SD, 13.67) and had lower prevalence of both hypertension (23.84 percent)
and hyperlipidemia (30.84 percent); 47.90 percent were male. The relative
proportion of patients from high minority zip codes was comparable in the
training (35.54 percent) and internal validation (36.34 percent) cohorts.

Characteristics of the incident diabetes and control cohorts prior to strat-
ified random allocation to the training and internal validation datasets are
shown in Table S1. Patients in the control group were selected to match
patients in the incident diabetes group only on their enrollment duration,
while other characteristics were permitted to vary to make all potentially pre-
dictive characteristics eligible for consideration of inclusion in the HealthIm-
pact model. Patients in the incident diabetes cohort were older (52.35 years
vs. 44.47 years) with higher proportion of men (52.40 percent vs. 45.36 per-
cent) and patients from high minority zip codes (44.50 percent vs. 35.02 per-
cent). They also had greater prevalence of comorbid metabolic and
atherosclerotic diseases.

The HealthImpact model included 48 terms (a constant and 47 vari-
ables; Table 1), and it had bias-corrected c-statistic 0.80815 (Figure S2). We
proposed three HealthImpact score thresholds to signify high, medium, and
low risk of incident diabetes based on achieving sensitivity and specificity
approaching 80 percent: 50, 75, and 90 (Table 3). Complete listing of sensitivi-
ties and specificities at each score threshold in the training dataset is available
in Table S2. Clinical vignettes describing individuals with varying HealthIm-
pact scores are included in Box S6.

We internally validated HealthImpact among 303,025 individuals
(Table 2). In this population, the c-statistic was 0.8270 (Figure S2). The sensi-
tivity of HealthImpact in the internal validation cohort was comparable to that
in the training cohort: 69.18, 37.74, and 18.01 percent for HealthImpact >50,
>75, and >90, respectively. The specificity was slightly better, particularly at
lower HealthImpact scores: 80.11, 95.68, and 98.80 percent for HealthImpact
>50, >75, and >90, respectively. The higher rate of false positives (e.g., lower
specificity) in the training population is likely due to matching of cases and
controls on their encounter density, which enriched the control group for indi-
viduals with comparable number of claims as people with incident diabetes.
This makes it more difficult for the model to differentiate between the incident
diabetes cases and the controls than in the unmatched internal validation pop-
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ulation, where the controls tend to have fewer clinical encounters (Table 2).
This is discussed further in Box S8.

HealthImpact External Validation

The HealthImpact model was externally validated in a population of
2,000,000 adults with no diagnosis of diabetes (Table 2). At the time of cohort
entry, mean age was 44.12 years (SD, 12.66) and 48.36 percent were male.
They were healthier than the training and internal validation populations with
fewer comorbidities, medications, and clinical encounters. This was expected,

Table 3: HealthImpact Accuracy in the Training, Internal Validation, and
External Validation Populations. HealthImpact Thresholds Were Chosen to
Signify Low (50), Intermediate (75), and High (90) Risk of Incident Diabetes
at Three Years

HealthImpact Threshold >50 >75 >90

Training dataset (n = 473,049)
Sample size 132,819 41,782 15,213
Sensitivity 69.23 38.10 17.86
Specificity 76.49 94.42 98.42

Internal validation dataset (n = 303,025)
Sample size 69,945 19,813 7,042
Sensitivity 69.18 37.74 18.01
Specificity 80.11 95.68 98.80

External validation datasets
Year 1 (n = 1,383,743)
Sample size 424,294 167,124 71,309
Sensitivity 80.54 53.70 31.07
Specificity 69.91 88.40 95.15
Positive predictive value 2.99 5.05 6.85
Negative predictive value 99.68 99.40 99.17

Year 2 (n = 1,054,142)
Sample size 342,925 139,977 61,203
Sensitivity 80.90 54.45 32.13
Specificity 68.73 87.79 94.88
Positive predictive value 6.30 10.40 14.03
Negative predictive value 99.28 98.67 98.17

Year 3 (n = 827,969)
Sample size 278,043 116,235 51,758
Sensitivity 80.88 54.52 32.35
Specificity 68.54 87.78 94.92
Positive predictive value 10.35 16.70 22.25
Negative predictive value 98.76 97.73 96.90
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Figure 2: (a) Distribution of Baseline HealthImpact Scores in the External
Validation Dataset among People without Diagnosed Diabetes
(n = 2,000,000). (b) Cumulative Incidence of Diabetes at 3 years as a Function
of Baseline HealthImpact Score.

Note. Black lines correspond to HealthImpact scores 50, 75, and 90. The cumulative incidence of
diabetes at 3 years was 1.24 percent with HealthImpact score ≤50, 5.80 percent with HealthImpact
score 50–75, 12.24 percent with HealthImpact score 75–90, and 22.25 percent with HealthImpact
score >90.
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as the HealthImpact training/internal validation population was enriched for
people with higher health care utilization by requiring ≥3 years of enrollment
with ≥1 nonroutine care clinical encounter. Moreover, the training/internal
validation dataset was assembled to have 10 percent incidence of type 2 dia-
betes, but no such restriction was placed on the external validation dataset that
was designed to mimic the general commercially insured population.

Distribution of HealthImpact scores at cohort entry and the corre-
sponding 3-year incidence rates of type 2 diabetes are shown in Figure 2.
HealthImpact had good discrimination for incident diabetes at 1, 2, and
3 years with c-statistic 0.8200, 0.8171, and 0.8171, respectively. The Brier
scores at the same intervals are 0.177, 0.179, and 0.180; Yates slopes are
0.3163, 0.3130, and 0.3122, respectively. The higher c-statistics in the external
validation dataset compared to the training and internal validation datasets
are not unexpected (Steyerberg 2009), and they may be due to more noncon-
tributory data (“noise”) in the latter datasets that had longer periods of pre-
ceding enrollment. The sensitivity of HealthImpact for predicting incident
diabetes at 1, 2, and 3 years was also markedly higher in the external valida-
tion dataset, ranging 80.54–80.90 percent for HealthImpact >50; 53.70–
54.52 percent for HealthImpact >75; and 31.07–32.35 percent for HealthIm-
pact >90. Specificity was mildly decreased in the external validation dataset,
ranging 68.54–69.91 percent for HealthImpact >50; 87.78–88.40 percent for
HealthImpact >75; and 94.92–95.15 percent for HealthImpact >90. The PPV
approached 10.35 percent at year 3 for HealthImpact >50, 16.70 percent for
HealthImpact >75, and 22.25 percent for HealthImpact >90. NPV was 97
percent or higher at all score thresholds and time periods (Table 3).

We also examined the time to diabetes diagnosis based on baseline
HealthImpact score, as sufficient lead time to diagnosis is important to ensure
timeliness of patient identification and potential for disease-modifying inter-
vention. Details and results of this analysis are presented in Box S7, Table S3,
and Figure S3. Among patients with HealthImpact score 90–100, 6.1, 11.7,
and 17.1 percent developed diabetes by 1, 2, and 3 years, respectively. Among
patients with baseline HealthImpact 75–90, the cumulative incidence of dia-
betes was 3.2, 5.9, and 8.7 percent by 1, 2, and 3 years, respectively. Among
patients with baseline HealthImpact 50–75, the cumulative incidence of dia-
betes was 1.3, 2.6, and 3.8 percent by 1, 2, and 3 years, respectively. Almost
no patients (<1 percent) with baseline HealthImpact score <50 developed dia-
betes by 3 years.

We conducted a sensitivity analysis comparing HealthImpact to labora-
tory measurements of glycemic control (e.g., fasting glucose, HbA1c, and

1910 HSR: Health Services Research 51:5 (October 2016)



OGTT), described in detail in Box S9. There were 421,520 people among the
2,000,000 people included in the external validation dataset who had labora-
tory studies performed and available at baseline (Table S4). Comparison of
sensitivities, specificities, PPVs, and NPVs of HealthImpact and the labora-
tory definition of prediabetes are presented in Table S4. Overall, HealthIm-
pact had lower sensitivity and higher specificity than laboratory testing at
higher thresholds (HealthImpact >75), with similar NPVand better PPV.

DISCUSSION

The increasing burden of diabetes and diabetes-related complications on indi-
viduals, society, and the health care system has spurred multifaceted preven-
tion programs aimed at people at highest risk for developing diabetes. These
efforts have been hindered by the challenges of identifying high-risk patients
in a reliable and cost-effective manner that could be implemented on both the
clinic and population levels. Current clinical practice guidelines use labora-
tory criteria of prediabetes to identify individuals at increased risk for develop-
ing diabetes (Tamez-Perez, Proskauer-Pena, and Hernandez-Coria 2013;
ADA 2015), but these can be time-consuming, inconvenient, costly, or altered
by factors other than glycemia (Sacks 2011). Noninvasive diabetes risk predic-
tion models have required clinical and patient-provided information that
necessitate patient contact or electronic documentation that exceeds the ana-
lytic capabilities of many current EMR systems (Noble et al. 2011). We there-
fore developed and validated a novel diabetes risk prediction algorithm based
entirely on administrative data, whichmay be implemented by any health sys-
tem that uses billing data or electronic health records.

HealthImpact has good discrimination for incident diabetes, with c-sta-
tistic >0.8 when validated in the general population of commercially insured
adults in the United States. HealthImpact therefore performed better than, or
comparable to, previously published invasive and noninvasive diabetes pre-
diction models (Abbasi et al. 2012; Kengne et al. 2014). However, in contrast
to previously available models, HealthImpact is not predicated on informa-
tion that could only be obtained through direct patient contact such as family
history, anthropomorphic measurements (BMI, height, weight, waist circum-
ference), or risk factor information (smoking status, dietary habits, patterns of
physical activity). The HealthImpact PPV with just 3 years of follow-up is
higher than that of alternative models with 5 to 10 years of follow-up, despite
lacking patient-provided or anthropomorphic variables that were included to

Development and Validation of HealthImpact 1911



improve the other models. HealthImpact has 3-year PPVs 10, 16, and 22 per-
cent at score thresholds 50, 75, and 90, respectively. The Finish Diabetes Risk
score had a 5-year PPV of 10 percent at the proposed threshold value of 9,
which has comparable sensitivity and specificity to HealthImpact threshold
value of 90 (Lindstr€om and Tuomilehto 2003). The Australian AUSDRISK
score had a 5-year PPV of 13 percent (Chen et al. 2010). The Canadian
DPoRT score had a 5-year PPV 4 percent for men and 3 percent for women
(Balkau et al. 2008). The German Diabetes Risk score had 5-year PPV
between 6 and 11 percent for their proposed score thresholds (Schulze et al.
2007). Moreover, while previously published models have predicted risk of
incident diabetes at 5–10 years of follow-up, HealthImpact can be used to
identify patients at more proximal risk—as short as 1 year—and therefore be
more timely and relevant to ongoing clinical practice, payer risk management,
and patient behavior. Its ability to predict risk with sufficient lead time to
potentially intervene also makes it clinically relevant.

TheOLDWdataset is unique due to its size, representation of a large seg-
ment of the U.S. population spanning all ages and demographics, and inclu-
sion of multiple payers and health systems (Wallace et al. 2014). The observed
rates of incident diabetes in risk strata predicted byHealthImpact are compara-
ble to those using laboratory-based criteria (Zhang et al. 2010; Ackermann
et al. 2011). An important limitation is the fact that HealthImpact was devel-
oped and first validated among commercially insured adults in the United
States, but not the general U.S. population, as OLDW does not include indi-
viduals insured by government payers (Medicare, Medicaid, VA, or Indian
Health Service) or the uninsured. Nonetheless, while it may not be immedi-
ately generalizable to populations with different demographic and socioeco-
nomic compositions, HealthImpact may be adapted to different environments
because the requisite demographic, socioeconomic, geographic, and ethnic/
racial information is incorporated into the model. Diabetes risk also varies
throughout the world, and HealthImpact is one of few models developed
and validated in theUnited States (Noble et al. 2011; Kengne et al. 2014).

The main limitation of the HealthImpact model is its reliance on claims
data, such that to be subject to in silico screening, individuals must either be
insured or have had some contact with the health care system to generate
enrollment and billing information. This is not unique to models using admin-
istrative data, and current laboratory-based methods require even greater
access to and utilization of health care resources.

We could not directly compare the HealthImpact model with labora-
tory-based prediabetes diagnostic criteria, as only a subset of our population
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had laboratory studies performed and available during the study period. Peo-
ple with laboratory data were different from the general population, as evi-
denced by their higher age, greater inclusion of minorities, and higher level of
comorbidity. These characteristics also suggest greater risk for diabetes and
morbidity than the general population, reinforcing the fact that laboratory
studies are not equally likely to be obtained by all people at risk, and relying
on them for screening purposes may miss a substantial number of people. In
contrast, the HealthImpact model can simultaneously and without extra
resource utilization screen large populations to identify those at risk.

Claims-based screening strategies can be efficiently integrated into clini-
cal practice. Different score thresholds can be used depending on the clinical
context and goal of HealthImpact use. Specifically, higher score thresholds
(>90) can be used to identify patients at very high risk who may not be cur-
rently in contact with the health care system, and proactively reach out to
them to schedule a clinical encounter and diagnostic testing. A high PPV is
necessary for cost-effective outreach efforts and HealthImpact score >90 has
PPVof 22 percent. Intermediate thresholds (>75) can identify patients who are
already receiving ongoing but unrelated clinical care, but would also benefit
from diabetes screening. In this case, a lower PPVof 17 percent may be cost-
effective. Finally, low thresholds (>50) could be used to flag patients as being
at risk for diabetes and in whom the diagnosis of diabetes should be enter-
tained if presenting with a constellation of clinically related symptoms or con-
ditions. These patients may not be sought out proactively, justifying an even
lower PPV of 10 percent. Health care providers, public health systems, and
payers may have different objectives and available resources for identifying
high-risk patients (Linnan et al. 2008; Kottke et al. 2009; Duru et al. 2013;
CDC 2015), and each could use a different HealthImpact score threshold that
is specific to the population and task at hand. Moreover, personalized risk
information can be directly transmitted to the patient and the health care team,
facilitating not only identification and contact but also informed and shared
decision making.

HealthImpact can be adapted to all health plans and systems that bill for
or codify their services. While many health systems may initially lack the tech-
nological capacity or commitment to run the HealthImpact model, private/
public health policy can be informed bymonitoring deidentified patient popu-
lations for those at risk for diabetes. And with additional efforts, similar
HealthImpact models could be developed for other conditions or constella-
tions of conditions, including cardiovascular disease, hypertension, hyperlipi-
demia, and obesity.
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