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Abstract

The biological processes governing brain development and maturation depend on complex 

patterns of gene and protein expression, which can be influenced by many factors. One of the most 

overlooked is the long noncoding class of RNAs (lncRNAs), which are known to play important 

regulatory roles in an array of biological processes. Little is known about the distribution of 

lncRNAs in the sensory systems of the brain, and how lncRNAs interact with other mechanisms to 

guide the development of these systems. In this study, we profiled lncRNA expression in the 

mouse auditory forebrain during postnatal development at time points before and after the onset of 

hearing (P7, P14, P21, adult). First, we generated lncRNA profiles of the primary auditory cortex 

(A1) and medial geniculate body (MG) at each age. Then, we determined the differential patterns 

of expression by brain region and age. These analyses revealed that the lncRNA expression profile 

was distinct between both brain regions and between each postnatal age, indicating spatial and 

temporal specificity during maturation of the auditory forebrain. Next, we explored potential 

interactions between functionally-related lncRNAs, protein coding RNAs (pcRNAs), and 

associated proteins. The maturational trajectories (P7 to adult) of many lncRNA – pcRNA pairs 

were highly correlated, and predictive analyses revealed that lncRNA-protein interactions tended 

to be strong. A user-friendly database was constructed to facilitate inspection of the expression 

levels and maturational trajectories for any lncRNA or pcRNA in the database. Overall, this study 

provides an in-depth summary of lncRNA expression in the developing auditory forebrain and a 

broad-based foundation for future exploration of lncRNA function during brain development.
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1. INTRODUCTION

The biological processes governing the development and maturation of the brain depend on 

a complex network of gene and protein expression, which can be influenced by many 

factors. These expression patterns are incompletely understood and represent many 

interesting avenues of study in terms of temporospatial expression and regulation.

Especially in the sensory systems of the brain, the onset of sensory experience represents a 

dramatic shift in activity that could affect the mechanisms guiding their development and 

maturation. In altricial animals, for example, the marked increase of neuronal activity in the 

central auditory pathways upon opening of the ear canals in early postnatal life stimulates 

maturation of the brain’s auditory circuitry. This window provides an opportunity to study 

the impact of hearing onset on neurophysiological response properties (Bao, 2015; Barkat et 

al., 2011; Chang et al., 2003; Chun et al., 2013; de Villers-Sidani and Merzenich, 2011; 

Froemke and Jones, 2011b; Hensch, 2005; Kral, 2013; Oswald and Reyes, 2011; Sanes and 

Bao, 2009; Sanes and Woolley, 2011; Yang et al., 2012) and critical periods for sound 

processing (Bao et al., 2001; Brown and Kaczmarek, 2011; Dorrn et al., 2010; Edeline et al., 

2011; Froemke et al., 2013; Froemke and Jones, 2011a; Hurley and Sullivan, 2012; Kilgard 

and Merzenich, 1998; Metherate and Hsieh, 2003; O'Neil et al., 2011; Schachtele et al., 

2011; Sun et al., 2010; Sutor and Hagerty, 2005; Venkataraman and Bartlett, 2013). 

Undoubtedly, these maturational events are supported by alterations in neuronal circuitry at 

the cellular and molecular levels, including changes in gene and protein expression; 

however, documentation of these properties is incomplete. To advance inquiry along these 

lines, we recently sequenced the transcriptome in divisions of the auditory forebrain of 

C57bl/6J mice from postnatal day 7 (P7) through adulthood, which spans the onset of 

hearing (~P11-P13) in this species (Hackett et al., 2015). In addition to generating a 

database of the entire transcriptome, approximately 5,000 protein-coding RNAs (pcRNAs) 

were profiled in detail. Maturational changes in expression were observed in scores of gene 

families with important roles in brain structure and function.

In addition to pcRNAs, non-coding RNA (ncRNA) expression is also essential to develop a 

complete understanding of the genomic landscape during brain development. Among the 

many ncRNA subtypes that could be explored, interest in long non-coding RNAs (lncRNAs) 

has increased considerably as awareness of their functional importance has grown. There are 

roughly 10,000 lncRNAs in mammalian genomes (Cabili et al., 2011; Harrow et al., 2012; 

Ilott and Ponting, 2013; Rinn and Chang, 2012). Traditionally believed to be non-functional, 

lncRNAs have recently been shown to possess functional roles(Dinger et al., 2009; Mercer 

et al., 2009), including roles in high-order chromosomal dynamics (Amaral and Mattick, 

2008), embryonic stem cell differentiation (Dinger et al., 2008), telomere biology 

(Schoeftner and Blasco, 2008), subcellular structural organization (Mercer et al., 2008), and 

breast cancer (Bhan et al., 2014; Bhan et al., 2013). LncRNAs are usually defined as non-

coding RNA with length more than 200 base pairs (Mercer et al., 2009; Perkel, 2013). 

Structurally, lncRNAs and mRNAs are very similar, as both can exhibit poly-adenylation 

(poly(A)). The number of definable lncRNAs varies by study. An early study in 2007 

estimated that there are four times more lncRNAs than pcRNAs (Kapranov et al., 2007). 

Another study claims to have identified 35,000 lncRNAs (Carninci et al., 2005), and many 
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of them have characteristics similar to mRNA, such as 5’ capping, splicing, and poly-

adenylation, with the exception of open reading frames. In the latest effort to quantify 

human lncRNA, the Encyclopedia of DNA Elements (ENCODE) (Djebali et al., 2012) 

project identified 13,333 lncRNAs and further categorized them into four sub-classes: 1) 

antisense, 2) large intergenic non-coding RNAs (lincRNA), 3) sense intronic, and 4) 

processed transcripts. Compared to pcRNAs, lncRNAs tend to have much lower expression 

levels, often due to cell-type specific expression (Cabili et al., 2011; Guttman et al., 2010; 

Liu et al., 2016), but transcript abundance is not known to be related to function (Ulitsky and 

Bartel, 2013).

As a group, lncRNAs are relatively highly expressed the adult and developing brain (Derrien 

et al., 2012; Lin et al., 2011; Lipovich et al., 2012; Mercer et al., 2008; Ng et al., 2012; 

Smalheiser et al., 2008; Washietl et al., 2014). The functions of most are unknown, but many 

are now known to have regulatory influence over the expression of other genes and proteins 

(Carninci et al., 2005; Carrieri et al., 2012; Guttman et al., 2011; Guttman and Rinn, 2012; 

Halley et al., 2014; Katayama et al., 2005; Khalil et al., 2009; Kornienko et al., 2013; 

Kurokawa, 2011; Magistri et al., 2012; Mattick, 2007; Meng et al., 2012; Onoguchi et al., 

2012; St Laurent and Wahlestedt, 2007; Tsai et al., 2010; Vance et al., 2014; Wu et al., 2013; 

Zhang et al., 2012; Zhao et al., 2013). With respect to nervous system development, 

lncRNAs may also influence maturational processes such as neurogenesis, synaptogenesis, 

cell migration, cell type specification, neurite outgrowth, and synaptic plasticity (Aprea et 

al., 2013; Berghoff et al., 2013; Bernard et al., 2010; Bond et al., 2009; Feng et al., 2006; 

Kraus et al., 2013; Lin et al., 2014a; Ling et al., 2011; Lipovich et al., 2012; Liu et al., 2016; 

Modarresi et al., 2012; Ng et al., 2012; Onoguchi et al., 2012; Tarabykin et al., 2001; Ulitsky 

et al., 2011; Vance et al., 2014).

As observed for protein coding genes, lncRNA expression patterns in the brain tend to be 

spatially and temporally restricted. Spatially, expression levels may vary substantially 

between major brain regions (e.g., hippocampus versus cerebral cortex) (Amaral et al., 2009; 

Kadakkuzha et al., 2015; Ling et al., 2009; Ling et al., 2011; Lv et al., 2013; Mercer et al., 

2008; Ponjavic et al., 2009; Sauvageau et al., 2013; Spigoni et al., 2010; Ziats and Rennert, 

2013), and also by subdivision or compartment within a region (e.g., cortical layer) (Aprea 

et al., 2013; Belgard et al., 2011; Kadakkuzha et al., 2015; Mercer et al., 2008; Sasaki et al., 

2008; Sauvageau et al., 2013; Spigoni et al., 2010). Spatial specificity is also apparent at the 

cellular level, where expression may be restricted to subpopulations of neurons, glia, or even 

subcellular compartments (e.g., nuclei, cytoplasm)(Aprea et al., 2013; Kadakkuzha et al., 

2015; Korneev et al., 2008; Liu et al., 2016; Mercer et al., 2008; Mercer et al., 2010; Pollard 

et al., 2006; Sasaki et al., 2008; Sauvageau et al., 2013; Sone et al., 2007; Tochitani and 

Hayashizaki, 2008). Temporally, lncRNA expression in a given locus (e.g., region, 

subregion, cell type) often changes over the long course of nervous system development, 

most notably between key developmental stages or significant events (e.g., the onset of 

sensory experience) (Amaral et al., 2009; Aprea et al., 2013; Lin et al., 2011; Ling et al., 

2009; Ling et al., 2011; Lipovich et al., 2012; Liu et al., 2016; Mercer et al., 2010; Ponjavic 

et al., 2009; Spigoni et al., 2010; Tarabykin et al., 2001). Accordingly, the roles played by 

lncRNAs in brain development may well depend on the precise timing and location of a 

given event. A number of outstanding reviews of this rapidly growing literature are available 
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(Aprea and Calegari, 2015; Clark and Blackshaw, 2014; Geisler and Coller, 2013; Guttman 

and Rinn, 2012; Knauss and Sun, 2013; Mattick, 2007; Mehler and Mattick, 2007; Ng et al., 

2013; Qureshi et al., 2010; Qureshi and Mehler, 2012; St Laurent and Wahlestedt, 2007; Wu 

et al., 2013).

The specificity in temporal and spatial expression patterns among lncRNAs suggest that 

profiles differ between brain region and cellular subtype, as well as developmental stage. 

Informed by knowledge of those patterns, subsequent studies may be implemented to 

identify regulatory relationships, interactions, and functional pathways greater specificity.

In the present study, we used high throughput sequencing of total RNA (RNAseq) to profile 

lncRNA expression patterns in two different divisions of the auditory forebrain at key 

postnatal ages relative to the onset of hearing. RNAseq has been traditionally used as a 

replacement for microarray technology to profile pcRNAs (Asmann et al., 2009; Cloonan et 

al., 2008; Guo et al., 2013b; Marioni et al., 2008; Wang et al., 2009c). While the majority of 

studies focus solely on pcRNAs, high throughput sequencing allows us to perform advanced 

data mining (Han et al., 2014; Samuels et al., 2013; Vickers et al., 2015; Ye et al., 2014). 

One of the primary minable yet underutilized products of RNAseq data is lncRNA. Based on 

previous findings (Guo, 2015), total RNAseq produces data better suited for studying 

lncRNA than RNAseq data produced from a poly(A) RNA library. Taking advantage of the 

unique properties of total RNAseq, we profiled lncRNA expression in the mouse auditory 

forebrain at four postnatal time points (postnatal days P7, P14, P21, and adult), spanning the 

period before and after the onset of hearing (i.e., ~P11). The primary goal was to 

characterize the development of lncRNA over time by employing differential expression 

analyses of the transcriptome between time points and brain regions. The findings augment 

our previous characterization of pcRNA in the auditory forebrain acquired from the same 

animal subjects (Hackett et al., 2015).

2. MATERIALS AND METHODS

2.1 Tissue acquisition

All procedures were approved by the Animal Care and Use Committee at Massachusetts Eye 

and Ear Infirmary and adhered to the guidelines established by the National Institutes of 

Health for the care and use of laboratory animals. The morning that a new litter of pups was 

first observed was designated P0. Brains were collected from 24 adult (8 – 10 weeks) and 

juvenile (P7, P14, and P21) male and female C57BL/6J mice (Jackson Labs 000664) (N = 6 

per age, equal numbers of males and females, total = 24). Animals were euthanized 

intraperitoneally with a lethal dose of ketamine and xylazine (200/50 mg/kg, respectively). 

Brains were removed immediately, flash frozen on dry ice, and stored at −80° C.

2.2 Sample acquisition

Frozen brains from 6 animals in each age group (3 male, 3 female) were sectioned in the 

coronal plane (rostral to caudal) on a sliding microtome and viewed through a surgical 

microscope. As areas targeted for sampling became visible (A1, primary auditory cortex; 

MG, medial geniculate body), they were extracted using a sterile tissue punch or curette of a 
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size appropriate to the brain region. A1 samples were obtained using a 0.5 mm diameter 

punch, with the ventral edge beginning approximately 1 mm dorsal to the rhinal fissure. MG 

samples were harvested with a curette after using a micro-dissecting scalpel to circumscribe 

its perimeter. Auditory cortex samples were centered on A1 but potentially included some 

tissue in the adjacent auditory field dorsal to A1. For the MG, the microdissection procedure 

was intended to exclude the lateral geniculate nucleus (LGN) and adjoining nuclei dorsal, 

medial, and ventral to the MG. The extreme rostral and caudal poles of the MG were largely 

excluded from these samples. Punches from homologous areas of both hemispheres were 

combined in a sterile tube containing 400 ul of Trizol, homogenized for 45 seconds using a 

mechanized sterile pestle, flash frozen on dry ice, then stored at −80° C.

2.3 RNA extraction and sequencing

For each Trizol lysate, 100μl of Reagent Grade Chloroform (Fisher Scientific, S25248) was 

added. The samples were centrifuged for 3 minutes on a desktop centrifuge to fractionate the 

aqueous and organic layers. After centrifugation, the resulting aqueous layer was carefully 

removed and transferred to 2.0ml Sarstedt tubes (Sarstedt, 72.694), which were run on the 

QIAsymphony using the QIAsymphony RNA Kit (Qiagen, 931636) and protocol 

RNA_CT_400_V7, which incorporates DNAse treatment. Prior to each run, the desk was 

uv-irradiated using the programmed cycle. The resulting RNA was eluted to 100μl of RNase 

free water and stored at −80°C in 2.0ml Sarstedt tubes until use. Samples were initially 

quantitated using a Qubit RNA assay. Additional analyses of purity and the quantitation of 

total RNA were performed using a NanoDrop spectrophotometer (Thermo Scientific) and 

Agilent RNA 6000 Pico chip (Agilent) using the protocol, reagents, chips, and ladder 

provided in the kit. RNA Quality control data for the 48 samples sequenced are contained in 

Supplementary Table S1.

RNAseq was performed by the Vanderbilt Technologies for Advanced Genomics core 

(VANTAGE). Total RNA was isolated with the Aurum Total RNA Mini Kit. All samples 

were quantified on the QuBit RNA assay. RNA quality was verified using an Agilent 

Bioanalyzer. RNAseq data was obtained by first using the Ribo-Zero Magnetic Gold Kit 

(Human/Mouse/Rat) (Epicentre) to perform ribosomal reduction on 1μg total RNA 

following the manufacturer’s protocol. After ribosomal RNA (rRNA) depletion, samples 

were then purified using the Agencourt RNAClean XP Kit (Beckman Coulter) according to 

Epicentre protocol specifications. After purification, samples were eluted in 11μl RNase-free 

water. Next, 1μl ribosomal depleted samples were run on the Agilent RNA 6000 Pico Chip 

to confirm rRNA removal. After confirmation of rRNA removal, 8.5μl rRNA-depleted 

samples were put into the Illumina TruSeq Stranded RNA Sample Preparation kit (Illumina) 

for library preparation. Libraries were multiplexed six per lane and sequenced on the HiSeq 

2500 to obtain at least 30 million paired end (2x50 bp) reads per sample.

The complete set of raw sequencing files is available from the National Center for 

Biotechnology Information (NCBI) database under accession number SRP053237 (http://

www.ncbi.nlm.nih.gov/projects/geo/). All other supporting data are included in the 

Supplementary files.
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2.4 RNAseq data processing

The RNAseq data went through multiple stages of thorough quality control as recommended 

by Guo et al (Guo et al., 2013c). Raw data and alignment quality control were performed 

using QC3 (Guo et al., 2014a), and gene quantification quality control was conducted using 

MultiRankSeq (Guo et al., 2014b). Raw data were aligned with TopHat2 (Kim et al., 2013) 

against the mm10 mouse reference genome, and read counts per gene were obtained using 

HTSeq (Anders et al., 2014). Normalized read counts (used in all plots) were obtained by 

normalizing each gene’s read count against the sample’s total read count, then multiplied by 

a constant (1 × 106). pcRNA and lncRNA were annotated using references file MM10 

v38.82 downloaded from Ensembl. Hierarchical clustering analysis and heatmaps were 

produced using the Heatmap3 (Zhao et al., 2014) package from R. For all samples, quality 

control data are contained in Table S2.

Differential expression analyses between all postnatal ages and brain regions were 

performed using MultiRankSeq (Guo et al., 2014b) with three methods for RNAseq 

analysis: DESeq (Anders and Huber, 2010); edgeR (Robinson et al., 2010); baySeq 

(Hardcastle and Kelly, 2010). These three methods were chosen based on results of several 

previous studies in which multiple RNAseq differential analysis methods were compared for 

accuracy and sensitivity of read count-based data (Dillies et al., 2013; Guo et al., 2013a; 

Kvam et al., 2012; Robles et al., 2012; Soneson and Delorenzi, 2013). In analyses of the 

same dataset, the methods typically differ in numbers of differentially expressed genes 

identified in a comparison of any two samples and also in the direction of expression (up- or 

down-regulation). False discovery rate (FDR < 0.05) was used to correct multiple testing. 

The differential expression datasets associated with each pairwise comparison (4 ages × 2 

brain areas) are contained in supplementary Tables S5 – S10. Trend analysis of lncRNA 

expression across the four age points (P7 → P14 → P21 → Adult) was conducted using 

the Mann-Kendall trend test (Hirsch et al., 1982).

Potential interactions between lncRNAs and pcRNAs were identified using Spearman 

correlation analysis. To evaluate lncRNA coding potential, we employed the Coding-

Potential Assessment Tool (CPAT) (Wang et al., 2013b) (Table S11). BEDTools (Quinlan 

and Hall, 2010) was used to extract the genomic sequences of lncRNA as input for CPAT. 

We also performed network analysis using Cytoscape (Saito et al., 2012) and function 

analysis using WebGestalt (Wang et al., 2013a) based on the correlation results (Table S12). 

To ensure high correlations were not due to static low expression values across all samples, 

we filtered out the lowest 25% of all RNAs based on standard deviation. For a subset of 

genes, lncPro (Lu et al., 2013) was applied to obtain interaction scores between lncRNAs 

and selected protein targets.

2.5 Database and Look-Up tool for generating lncRNA maturational profiles

Table S4 contains the raw read counts, differential analyses, and pcRNA correlations for all 

lncRNAs. Tables S5 – 10 contain the differential expression analyses for comparisons of 

postnatal age and brain region. To facilitate screening and extraction of maturational profiles 

from the database, a Look-Up tool was developed (Table S13). The tool automatically plots 

the maturational profiles and correlation matrices for any single lncRNA gene or list of 
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genes (up to 25 at a time) by brain region. It also generates a listing of the normalized counts 

for all samples by age and brain region for custom applications.

3. RESULTS

3.1 Data quality

RNAseq data were obtained from 48 samples and quality controlled. Sample information 

(sample ID, brain region, age, sex, and quality assessments) is contained in Table S1. On 

average, each sample was sequenced with 33.8 million reads (range: 27.6-45.1 million). 

Sample 10 failed sequencing with less than half million reads produced, and thus was 

removed from subsequent analyses. No other quality issue was observed. The raw data 

statistics are contained in Table S2. Alignment quality control was conducted, revealing an 

average of 77.19% of all reads (range: 51.86% – 83.01%) were aligned to coding RNA 

regions (Table S3). The complete raw read count information can be found in Table S4.

3.2 Cluster analysis

To examine differences in lncRNA expression associated with age and brain region, we first 

performed an unsupervised cluster analysis using Heatmap3 (Zhao et al., 2014). This 

analysis revealed that lncRNA expression patterns are distinctively associated with postnatal 

age and brain region (Fig. 1). Of special interest were the stronger differences by brain 

region in lncRNA expression patterns for older mice. That is, P7 samples were clustered 

together first, then clustered by brain regions. P14 to adult samples were separated into two 

large clusters by brain region and then by age within each regional cluster. This suggests that 

lncRNA expression in the A1 and MG regions was relatively similar for younger mice 

before hearing onset. Then, with maturation, the lncRNA expression patterns became more 

regionally distinct. Gender, on the other hand, had no significant role in lncRNA expression 

in A1 or MG regions. The unsupervised cluster analysis showed that by using lncRNA 

expression information alone, we can distinguish brain regions and postnatal age.

3.3 Differential expression analyses

Differential expression analyses were carried out by comparing A1 and MG at different ages 

and collectively. Because we used three RNAseq expression analysis packages, differential 

expression for a gene was considered to be significant if all three methods identified it as 

significant. Summaries of various comparisons are contained in Tables 1 and 2. The detailed 

results (including fold change and raw and adjusted p-values of all genes) of the 

comparisons can be found in Tables S5-S10. The results reveal several trends. First, in 

comparing brain regions, there were substantial regional differences in expression at all ages. 

The total numbers were fairly stable from P7 to P14, decreased by nearly 60% from P14 to 

P21, and then by an additional 53% from P21 to adulthood (Table 1). Similarly, comparing 

successive ages within each region, the numbers of differentially expressed genes were 

greatest in the P7-P14 interval as compared to all other intervals (Table 2, top). These results 

indicate that regional differences in lncRNA expression are greatest during the earlier stages 

of postnatal development, and before and shortly after the onset of hearing. Second, the total 

numbers of differentially expressed genes from P7 to adult were 70% greater in A1 (N=554) 

as compared to MG (N=388) (Table 2, top). This suggests a greater degree of genomic 
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modification in A1 from P7 to maturity. Finally, of the differentially expressed genes in one 

age interval (e.g., P7-P14), a minority of the same genes was also differentially expressed at 

another age interval (e.g., P14-P21, P21-adult) (Table 2, middle and bottom). Only a handful 

of the same genes that were differentially expressed between P7 and P14 exhibited 

significantly changed expression from P21 to adult (A1, N=0; MG, N=3). This indicates that 

lncRNA genes whose expression levels change with age tend to be different between age 

intervals.

Table 3 lists the top 50 up- and down-regulated genes in A1 and MG, ranked by log2 fold 

change (FC) in expression from P7 to adult. A minority of these genes were up-regulated 

(N=11) or down-regulated (N=9) in both regions. This indicates that the lncRNA genes with 

the greatest changes in expression during maturation tended to be preferentially expressed in 

A1 or MG. Only two genes (GM26924, GM15564) were up-regulated in one region (MG) 

and down-regulated in another (A1). These findings are evidence of strong regional 

specificity in lncRNA expression during maturation.

Table 4 lists the 50 genes at each age that were more highly expressed in MG than A1 (left) 

or A1 than MG (right). Several trends were noted. First, a relatively large number of genes 

exhibited regional dominance at only one age (MG, N=47; A1, N=56). This implies that 

many genes are differentially regulated in A1 or MG at a particular age. Second, a minority 

of genes was regionally dominant in A1 or MG at all ages (MG, N=18; A1, N=11) or three 

out of four ages (MG, N=3; A1, N=11). These genes have strong regional specificity, 

regardless of age. Third, only one gene (1700080N15RIK) was regionally dominant in A1 at 

one age and MG at another. This lncRNA was more highly expressed in MG in adults, but in 

A1 at P7. The rarity of genes with such patterns is further evidence of strong regional 

specificity among the majority of lncRNA genes.

3.4 Expression trend analysis

Expression trend analyses were carried out to identify genes with different expression 

growth patterns with age. We focused on three lncRNA expression patterns: monotonically 

increasing, monotonically decreasing and static. A gene was monotonically increasing if its 

expression continuously increased at each time point and the change between P7 and adult 

was statistically significant. Monotonically decreasing genes were defined in the same 

fashion, but had decreased expression at each time point. A gene was static if the absolute 

fold change of the expression value between any two time points was less than 1.5. LncRNA 

that had other patterns of expression between P7 and adult (e.g., increasing, then decreasing) 

were categorized as “other.” The numbers of significantly monotonically decreasing, 

increasing and static genes in A1, MG and A1+MG are given in Table 5, along with the 

numbers of genes with a different trajectory (Other). In A1, about 7% lncRNAs had an 

increasing pattern, 10% had a decreasing trajectory, 32% had static profiles, and 51% had 

trajectories classified as “other.” For MG, about 5% of lncRNAs had an increasing pattern, 

13% had a decreasing pattern, 32% were static, and 50% had “other” trajectories. A minority 

of the genes with increasing (N=29) or decreasing (N=96) profiles were common to both A1 

and MG (A1 | MG). In contrast, many of the lncRNAs with static or other profiles were 

common to both regions. These findings indicate that expression levels for the majority of 
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lncRNAs were changing during maturation, and also indicate strong regional specificity for 

genes with monotonically increasing or decreasing trajectories.

3.5 Analysis of protein coding potential

We evaluated all lncRNAs’ protein coding potential using CPAT (Wang et al., 2013b) (Table 

S11). CPAT summarizes each lncRNA’s coding potential with a coding probability. The 

majority of the lncRNAs have near zero coding probability, but a relatively small group has 

high coding probabilities (Figure 2A). Of these, 190 lncRNA genes had a coding probability 

greater than 0.90 (see Table S11), many of which are currently listed as provisional protein-

coding genes in the NCBI drosophila gene database (source: flybase.org).

3.6 Analyses of potential interactions with pcRNAs and proteins

To learn more about potential interactions involving lncRNAs, we computed Spearman’s 

correlations (expression levels by age) between all possible lncRNA and pcRNA pairs and 

identified an abundance of highly correlated pairs. There are over 600 million possible 

lncRNA – pcRNA pairs, and the Spearman’s correlations followed a normal distribution 

(Figure 2B). Only pairs with the highest correlations were selected for further functional 

analysis (Table S12). Using Spearman correlation |r| > 0.95 as the cutoff, there were 321 

positively correlated pairs and 221 negatively correlated pairs. Putting these pairs into 

Cytoscape, we identified four major regulation network clusters in the mouse auditory 

forebrain (Fig. 3). These clusters were mainly associated with four sets of lncRNAs; Cluster 

1: Gm13629, A330074k22rik, 2900079g21rik, Miat, 5330434g04rik; Cluster 2: 

9530082p21rik, Snhg6, Neat1, B230217c12rik, A330023f24rik, 2410018l13rik; Cluster 3: 

Rp23-44217.1, Ccdc41os1, C330006a16rik, Gm4425; Cluster 4: Gm14290, Gm26794, 
5430417l22rik.

Additional functional analysis was carried out for the pcRNA within each cluster using 

WebGestalt (Wang et al., 2013a) (Table 6). Functional categories differed between the four 

clusters. These functions included general cellular processes (e.g., intracellular signal 

transduction) as well as those specifically related to brain development (e.g., neuron 

projection development), suggesting a wide range of potential regulatory effects by lncRNA. 

Clusters 1 and 3, for example, contained numerous pcRNAs that are essential for normal 

brain structure and function in the adult and developing brain.

To highlight potential interactions in these clusters, several protein coding transcripts with 

known involvement in brain development or brain activity were selected as exemplars from 

Clusters 1 and 3. In Figs. 4 and 5, the expression levels of genes in both Clusters were 

plotted as a function of postnatal age. Arrows indicate whether the maturational trajectories 

from P7 to adult were significantly increased or decreased (p < 0.05)(from Tables S9-S10). 

A number of general observations were observed. First, the expression levels of pcRNAs and 

lncRNAs (mean normalized read counts) varied within and sometimes between regions. As a 

group, lncRNAs tended to have lower overall expression levels, which is typical of lncRNAs 

(Ulitsky and Bartel, 2013). A notable exception was Miat, which had very high expression in 

both A1 and MG, even higher than many pcRNAs. Second, most genes exhibited some 

degree of regional asymmetry (A1 vs MG) in expression. Among those with the most 
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pronounced asymmetries in Figs. 4 and 5 were Dpsyl3, Kcnc2, Reln and 5330434G04Rik. 

Third, all genes were significantly up- or down-regulated between P7 and adult. Generally, 

the increase (or decrease) tended to be steady over the age range, although relatively large 

shifts in expression were sometimes observed between P7 and P14 (immediately before and 

after hearing onset) in one or both regions (e.g., pcRNAs: Ncam1, Dpsyl3, Kcna2, Reln, 
Vamp1; lncRNAs: Gm4425, Rp21-442l7.1). Fourth, maturational trajectories were the same 

in A1 and MG (up or down) for all genes included in Figs. 4 and 5. However, the trajectories 

of many genes differ between brain regions (Hackett et al., 2015), indicating that regional 

asymmetries in expression level and maturational trajectory are common. Fifth, within a 

Cluster, some pcRNAs were correlated with more than one lncRNA, yet the maturational 

trajectory of a given pcRNA was not always predictive of its correlations. For example, in 

Cluster 1, Kcnc1 was positively correlated with both Gm13629 and A330074k22Rik, Vamp1 
was negatively correlated with Miat and 2900079g21Rik, while Palm was positively 

correlated with 5330434g0Rik and negatively correlated with Miat. Similarly, in Cluster 3, 

Ncam1, Dpys13, and Srgap2 were positively correlated with Rp23-442l7.1 
(1110015O18Rik) and negatively correlated with Ccdc41os1.

Tables 7 and 8 contain the Spearman correlations (r) between each pcRNA – lncRNA pair, 

along with the lncRNA-protein interaction scores (is) computed by the lncPro analysis. 

Several observations were notable. First, while the cutoff for the clustering of pcRNA – 

lncRNA pairs in Fig. 3 was set at |r| = 0.95, most pcRNAs also had significant correlations 

with the other lncRNAs in its Cluster. Second, the majority of pcRNA – lncRNA pairs with 

high correlations also had moderately-high to high predicted protein interaction scores, 

although some exceptions were also noted. For example, the pcRNA Kcnc1 (voltage-gated 

potassium channel Kv3.1) was linked with two lncRNAs in Cluster 1 (Gm13629, 
A330074k22rik). The correlations with Kcnc1 were high at r = 0.95, while the predicted 

protein interaction scores were moderate for Gm13629 and high for A330074k22rik (Table 

7). Similarly, Vamp1 (vesicle-associated membrane protein 1) was highly correlated with 

5330434g0Rik, but the protein interaction score was rather low (i.s. = 46.82). Conversely, 

some pairs with relatively low correlations (e.g., Kcnc2 – Miat) had high interaction scores. 

Kcnc2 (voltage-gated potassium channel Kv3.2) was modestly correlated with Miat (r = 

0.50), but their interaction score was high (i.s. = 90.72). Finally, both positive and negative 

correlations were observed for some pairs with high protein interaction scores (e.g., Reln, 

Kif5a), suggesting potential interactions between pairs with opposing maturational 

trajectories.

To further explore potential lncRNA – pcRNA interactions, we inspected the genomic loci of 

two highly-correlated pairs from Tables 7 and 8 with sequences located on the same 

chromosome, as sequences with overlapping or nearby domains tend to have higher 

correlations and greater interaction potential (see Discussion). Their genomic loci are 

illustrated in Fig. 6.

From chromosome 5, the pcRNA Reln (Reelin) and lncRNA Miat had a strong correlation (r 
= 0.88) and protein interaction score (i.s. = 96.44). Miat is located nearly 90Mb downstream 

of Reln in a region occupied by several lincRNAs and other non-coding genes, and are 

transcribed in the same direction. Its distant location from Reln on chromosome 5 is 
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indicated in Fig. 6, but the sequence was not illustrated. By comparison, two antisense 

lncRNAs (Gm16110, Gm10475) overlapped regions of the Reln sequence. Although, their 

correlations fell below the |r| = 0.80 cutoff, all three genes had significant downward 

trajectories in both A1 and MG (see Tables S9, S10).

On chromosome 10, the pcRNA Kif5a (Kinesin heavy chain isoform 5a) is located just 

downstream of the lincRNA F420014N23Rik and transcribed in opposite directions. Kif5a 
was strongly upregulated from P7 to adult in A1 and MG. F420014N23Rik expression was 

upregulated in A1 and static in MG. Of additional interest was that the F420014N23Rik 
locus overlaps another pcRNA, Pip4k2c (Phosphatidylinositol 4-phosphate 5-kinase), also 

strongly upregulated in both brain regions, which is in a family of proteins with roles in 

brain development and vesicular transport. Thus, potential interactions may be possible with 

one or both pcRNAs.

Overall, these results suggest that lncRNAs that are highly correlated with a given pcRNA 

may be more likely to interact with the associated protein, but the predictive value of 

correlated expression is uncertain. Functional studies will be needed in the future to further 

characterize potential relationships.

4. DISCUSSION

In the present study, we set out to achieve two goals. The first was to generate complete 

lncRNA transcriptome profiles of A1 and MG during postnatal development before and after 

the onset of hearing. As a foundation for future study, our second goal was to create a user-

friendly searchable database and Look-Up Tool to facilitate the examination and exploration 

of trends in expression by brain region and postnatal age. Overall, the differential analyses of 

global lncRNA expression revealed significant differences between brain regions and 

changes in both regions with postnatal age. Based on lncRNA expression profiles alone, we 

could distinguish between brain regions and ages. Analyses of potential interactions between 

lncRNA and pcRNAs or proteins revealed how maturational changes may be manifested 

within functional categories.

4.1 Regional and temporal specificity in lncRNA expression

The expression of lncRNAs was regionally-specific. Globally, expression profiles in A1 

were distinct from MG at every postnatal age examined. A relative minority was strongly 

up- or down-regulated in both regions. This is consistent with the expression patterns of 

pcRNA genes in the auditory forebrain (Hackett et al., 2015), and with studies of lncRNAs 

in other brain regions (Belgard et al., 2011; Liu et al., 2016). Indeed, numerous studies have 

found that lncRNA expression patterns vary by brain region (Amaral et al., 2009; 

Kadakkuzha et al., 2015; Ling et al., 2009; Ling et al., 2011; Lv et al., 2013; Mercer et al., 

2008; Ponjavic et al., 2009; Sauvageau et al., 2013; Spigoni et al., 2010; Ziats and Rennert, 

2013). In addition, the distributions of many genes are specific to restricted loci, such as 

cortical layer, cell type, or subcellular compartment (Aprea et al., 2013; Belgard et al., 2011; 

Kadakkuzha et al., 2015; Korneev et al., 2008; Liu et al., 2016; Mercer et al., 2008; Mercer 

et al., 2010; Pollard et al., 2006; Sasaki et al., 2008; Sauvageau et al., 2013; Sone et al., 

Guo et al. Page 11

Gene. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2007; Spigoni et al., 2010; Tochitani and Hayashizaki, 2008). Thus, the functional roles of 

many pcRNAs and lncRNAs in the developing and mature brain are spatially-specific.

In addition to spatial specificity, several studies have reported that lncRNA expression is 

often temporally specific (Amaral et al., 2009; Aprea et al., 2013; Lin et al., 2011; Ling et 

al., 2009; Ling et al., 2011; Lipovich et al., 2012; Liu et al., 2016; Mercer et al., 2010; 

Ponjavic et al., 2009; Spigoni et al., 2010; Tarabykin et al., 2001). These findings are 

consistent with the maturational trends that we observed in the auditory forebrain. Within 

each brain region (A1, MG), lncRNA expression profiles were distinct at each postnatal age. 

In both regions, the majority of lncRNAs had maturational trajectories that reflected a 

change in expression level between at least two consecutive age groups. Only about one-

third of lncRNAs had static profiles from P7 through adult. Although speculative, it may be 

hypothesized that genes with static profiles are more likely to play roles in housekeeping or 

other maintenance, while those with changing levels are involved in the regulation of key 

maturational events. Moreover, the strong correlations and predicted interactions between 

certain pairs of lncRNA and pcRNAs are suggestive of potential interactions among RNA 

subtypes within various functional pathways. As most of these pathways have not been 

characterized, there is much room for discovery.

4.2 Functional roles of lncRNAs in auditory forebrain maturation: where to begin?

The function of most lncRNAs is unknown. Consequently, network analyses (e.g., functional 

gene ontology analysis) are of limited value at this time. Fortunately, interest in this subject 

is growing, and loss and gain of function experiments are being use to reveal the identity and 

putative functions of many lncRNAs, including those active in the developing brain. Several 

have regulatory influence over the expression of other genes and proteins (Carninci et al., 

2005; Carrieri et al., 2012; Guttman et al., 2011; Guttman and Rinn, 2012; Halley et al., 

2014; Katayama et al., 2005; Khalil et al., 2009; Kornienko et al., 2013; Kurokawa, 2011; 

Magistri et al., 2012; Mattick, 2007; Meng et al., 2012; Onoguchi et al., 2012; St Laurent 

and Wahlestedt, 2007; Tsai et al., 2010; Vance et al., 2014; Wu et al., 2013; Zhang et al., 

2012; Zhao et al., 2013). Through these interactions, lncRNAs can influence a variety of 

maturational processes such as neurogenesis, synaptogenesis, cell migration, cell type 

specification, neurite outgrowth, and synaptic plasticity (Aprea et al., 2013; Berghoff et al., 

2013; Bernard et al., 2010; Bond et al., 2009; Feng et al., 2006; Kraus et al., 2013; Lin et al., 

2014a; Ling et al., 2011; Lipovich et al., 2012; Liu et al., 2016; Modarresi et al., 2012; Ng et 

al., 2012; Onoguchi et al., 2012; Tarabykin et al., 2001; Ulitsky et al., 2011; Vance et al., 

2014). For example, the growth factors Bdnf (Brain-derived neurotrophic factor) and Fgf2 
(Fibroblast growth factor 2) are intensively-studied genes with key roles in brain 

development and plasticity. Both are regulated by their antisense sequences (Bdnf-AS, Fgf2-
AS) in a manner that impacts neuronal proliferation, neurite outgrowth, and maturation 

(MacFarlane et al., 2010; Modarresi et al., 2012). Similarly, the functions of other lncRNAs 

appear to be linked to neuronal activity, as suggested by altered expression with changes in 

activity (Barry et al., 2014; Kim et al., 2010; Lipovich et al., 2012).

Although functional characterization was beyond the scope of the present study, we made 

efforts to identify lncRNAs with the potential to interact with selected pcRNAs or their 
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proteins in the auditory forebrain. One approach was to select lncRNA-pcRNA pairs with 

high correlations in the P7-adult expression trajectory. From these, several genes with known 

involvement in brain development or plasticity were selected for predictive analysis of 

lncRNA – protein interactions. This tact was explored because the interactions of lncRNAs 

are not necessarily restricted to mRNA, as lncRNAs may also interact with proteins 

(Hacisuleyman et al., 2014) and can regulate post-transcriptional processes (Yoon et al., 

2013). We found that most of the highly correlated genes also had strong predicted 

interaction scores, based on sequence matching and secondary structure (Lu et al., 2013). 

Naturally, predicted interactions require experimental validation. However, prior data 

suggest that the screening of correlated lncRNA-pcRNA pairs for potential interactions is an 

efficient way to identify genes that are promising for direct functional study.

For example, among the most highly expressed and upregulated lncRNAs in both auditory 

forebrain regions was the lincRNA, Malat1 (Metastasis associated lung adenocarcinoma 

transcript 1). Malat1 is strongly expressed in the brain, mainly by neurons (Bernard et al., 

2010), and localized to nuclear speckles (Clemson et al., 2009; Hutchinson et al., 2007). In 

cultured hippocampal neurons, Bernard et al (2010) found that Malat1 expression levels 

increased steadily from P0 through P28, consistent with our findings in A1 and MG. They 

also showed that overexpression of Malat1 increased presynaptic bouton density on 

dendrites, while knock-down reduced synaptic density. Accordingly, gene ontology 

categories linked to synaptic and dendritic formation were enriched after Malat1 
overexpression, although not all genes in these categories were affected. Further, cells 

transfected with Malat1 oligonucleotides exhibited reduced expression of the postsynaptic 

proteins neuroligin 1 (Nlgn1) and synaptic cell adhesion molecule 1 (Cadm1), while the Eph 

receptor B2 (Ephb2) and neuronal pentraxin 2 (Nptx2 or Narp) were relatively unchanged. 

This suggests that Malat1 regulates expression of a subset of genes involved in synapse 

formation in cultured hippocampal neurons. In the auditory forebrain, where Malat1 was 

strongly upregulated from P7 to adult, we found that Nlgn1, Cadm1 and Ephb2 were 

significantly downregulated in one or both auditory regions, whereas Nptx2 was upregulated 

in A1 and static in MG (Hackett et al., 2015). The differences between hippocampus and 

auditory forebrain suggest that regulation of the same genes by Malat1 can vary by gene and 

brain region. Accordingly, the potential for interactions between lncRNAs and pcRNAs to be 

regionally and temporally specific suggests that the interactions identified in one brain 

region or cell population may not apply to others.

An additional approach that has been used to identify potential interactions between 

lncRNAs and pcRNAs involves inspection of the genomic loci. Generally, lncRNA 

expression tends to be positively correlated with the expression of neighboring or 

overlapping sequences (Cabili et al., 2011; Dinger et al., 2008; Mercer et al., 2008; Ponjavic 

et al., 2009; Ulitsky et al., 2011). And, genes involved in the same biological pathways tend 

to have higher correlations when located in nearby genomic domains (Al-Shahrour et al., 

2010). Although our inspection of such relationships was limited to a handful of genes, we 

found that some correlated pairs had overlapping or nearby genomic loci, while others were 

located at distant loci or on other chromosomes. Thus, in selecting lncRNA – pcRNA pairs 

that may interact for functional studies, it may be prudent to begin with pairs that have 

closely-associated loci, such as natural antisense transcripts (Carrieri et al., 2012; Katayama 

Guo et al. Page 13

Gene. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2005; Smalheiser et al., 2008). The relationship between Bdnf and Bdnf-As mentioned 

above is a frequently-cited example. A second example provides additional context for 

discussion of such relationships. The expression of two lncRNAs (Dlx1os, Dlx6os1) are in 

flux during the generation and migration of GABAergic interneurons in early development 

(Mercer et al., 2010), where they appear to exert transcriptional control over interneuron 

specification in the hippocampus (Berghoff et al., 2013; Bond et al., 2009; Feng et al., 2006; 

Kraus et al., 2013). These studies indicated that loss of Dlx1os (aka Dlx1-AS), which 

partially overlaps the associated transcription factor, Dlx1, in the antisense direction (Dinger 

et al., 2008), resulted in increased Dlx1 transcript expression and increased interneuron 

number. Similarly, loss of Dlx6os1 (aka Evf2) resulted in increased expression of the 

transcription factor, Dlx6, but decreased interneuron number. Thus, loss of the antisense 

transcripts led to increased expression of the associated transcription factors, but disparate 

effects of interneuron number. In the auditory forebrain, two observations were notable with 

respect to the expression patterns of these genes. First, Dlx1os and Dlx6os1 expression was 

restricted to A1 (absent in MG), suggesting regional specificity in the auditory forebrain. 

Referring to in situ hybridization assays in the Allen Brain Atlas (http://mouse.brain-

map.org), we noted that expression of Dlx1 and Dlx6 overlapped their antisense lncRNA 

counterparts in A1 and most other cortical areas, where signals are concentrated in 

subpopulations of putative GABAergic neurons in layers 1 – 3. The absence of expression in 

MG probably corresponds with the absence of GABAergic neurons in that structure (Hackett 

et al., 2016). Thus, these transcription factors and associated antisense lncRNAs have 

overlapping anatomical distributions in the auditory forebrain that are also restricted to a 

particular neuronal subclass in cortex. Second, the expression of Dlx1 and Dlx1os decreased 

significantly from P7 to adult in A1, mainly between P7 and P14. Dlx6 and Dlx6os1 were 

expressed at very low levels, but with downward trends that did not reach significance. Thus, 

we observed tandem decreases in expression between these pcRNA-lncRNA pairs in A1 

during maturation, while the loss of the same antisense lncRNAs led to increased pcRNA 

expression in developing hippocampus.

The reasons for these regional and temporal differences are not known, but could be 

informative with respect to the varied regulatory roles of lncRNAs in the adult and 

developing brain. However, based on the examples discussed above, we conclude that while 

prediction of pcRNA-lncRNA interactions based on proximity or correlated expression 

levels may be useful, those relationships could also be inaccurate and misleading. Carefully 

designed studies are needed to explore and better understand these relationships.

4.3 Species differences in lncRNA expression

In addition to cellular and regional differences in gene expression, species differences in 

pcRNA and protein expression evident in the central auditory pathway (Bush and Hyson, 

2008; Wang et al., 2009a; Wang et al., 2009b), and are widespread throughout the brain 

(Bernard et al., 2012; Lin et al., 2014b; Mashiko et al., 2012; Nehme et al., 2012; Shukla et 

al., 2014; Van der Zee and Keijser, 2011; Watakabe et al., 2009; Zeng et al., 2012). Although 

not as extensively explored so far, species differences in lncRNA expression are notable, 

with several genes identified as rodent or primate-specific (e.g., Bdnf-As, Fmr4, Har1f, 
Bace1-as, Disc2, Scaant1)(Brandon et al., 2009; Faghihi et al., 2008; Khalil et al., 2009; 
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Lipovich et al., 2012; Millar et al., 2004; Modarresi et al., 2012; Modarresi et al., 2011; 

Pollard et al., 2006; Pruunsild et al., 2007; Sopher et al., 2011; Tay et al., 2009; Washietl et 

al., 2014).

As an example, the pcRNA, brain-derived neurotrophic factor (Bdnf), has comparable 

expression patterns in mice, nonhuman primates, and humans, but the antisense lncRNA, 

Bdnf-As, is only expressed in primates. Thus, regulation of Bdnf by Bdnf-As is unique to 

primates (Lipovich et al., 2012), and therefore its regulation would appear to involve other 

mechanisms in mice or other species.

The proximity and genomic loci of interacting gene pairs may also be species dependent. 

One of the genes found by Bernard et al (2010) to be regulated by Malat1 in cultured 

hippocampal neurons, Cadm1, is located downstream of Malat1 on human chromosome 11, 

whereas in mice, Malat1 is located on chromosome 19 and Cadm1 is on chromosome 9. 

Similarly, Malat1 (aka Neat2) is just downstream of the lncRNA, Neat1, on mouse 

chromosome 19. Malat1 and Neat1 were strongly upregulated in A1 and MG. Moreover, 

Neat1 has been linked to promotion of differentiation and maturation of neurons and 

oligodendrocytes (Ip and Nakagawa, 2012; Mercer et al., 2010), and is associated with 

neuroprotection in Huntington’s disease (Sunwoo et al., 2016). Interestingly, the genomic 

loci of Malat1 and Neat1 are flanked by several pcRNAs with no known functional roles in 

brain development or maturation (e.g., Frmd8, Slc25a45, Dpf2, Tigd3, Pola2, Capn1, Scyl1, 

Ltbp3, Ehbp1l1, Map3k11, Sipa1, Kat5). In fact, very few genes located on chromosome 19 

are currently associated with these functions. One of these, Flrt1, was upregulated in A1 and 

MG from P7 through adult, is in a family of genes with varied roles in brain development 

(Haines et al., 2006; Wheldon et al., 2010; Yamagishi et al., 2011), but there is no known 

association with either Malat1 or Neat1.

Given these observations, we would argue that documentation of species differences is 

absolutely essential to make informed conclusions and predictions about the roles of 

particular genes, and we must be vigilant to consider such differences in the interpretation 

and application of profiling data.

4.4 Applications of the lncRNA database

RNAseq is a powerful tool for mRNA profiling and transcriptome analyses with broad 

potential applicability in neurobiology (Han et al., 2014). Relatively small amounts of 

starting material (< 10 ng) are sufficient to conduct whole transcriptome sequencing of 

discrete brain areas or cell populations. The reduction in sequencing costs, development of 

bioinformatics tools, and availability of genomic libraries further add to the attractiveness of 

this approach (McGettigan, 2013; Sengupta et al., 2011). The dataset generated by this study 

comprises an extensive lncRNA reference library that indexes the expression of all known 

lncRNAs in A1 and MG from P7 to adult. In addition to information about these structures 

during postnatal development, the dataset is also a rich source of information about mature 

animals. We envision several potential applications of this lncRNA dataset by those 

interested in the structure and function of the auditory forebrain.
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4.4.1 Reference database and guide for functional studies of the auditory 
forebrain—At present, none of the known lncRNAs have demonstrated functional roles in 

the auditory system. A major goal of this study was to establish a database of lncRNA 

expression in the auditory forebrain that would provide a broad foundation to guide focused 

studies of lncRNA function and regulation of mechanisms that govern the maturation of 

auditory processing in the forebrain. By identifying the most highly expressed lncRNAs in 

each brain region, and those that were strongly up- and down-regulated with age, numerous 

lncRNAs in A1 and MG are candidates for additional study. Then, as illustrated for a subset 

of genes, examination of lncRNA – pcRNA correlations, shared genomic loci, and predictive 

analyses of protein interactions, genes with the highest potential for interaction may be 

identified. Thus, a potentially powerful application of this database is as a screening tool to 

explore novel roles and interactions. A second, and related, application is to provide a 

baseline for experimental studies of hearing (e.g., altered sound exposure during 

development, hearing loss, aging, other pathology)(Clarkson et al., 2012; Holt et al., 2005; 

Sharma et al., 2009; Sun et al., 2008) [109, 110, 35, 36]. Transcriptomic analyses of global 

or targeted gene expression are powerful means to identify genes that are changing the most 

(or the least). The Look-Up Tool (Table S13) provides a convenient and user-friendly means 

to view expression levels and trends of any lncRNA and pcRNA by brain region and 

postnatal age.

4.4.2 Detailed anatomical profiling of lncRNA expression—In addition to regional 

differences in global lncRNA expression, insight into potential functional interactions may 

be gained by inspection of detailed anatomical distributions of lncRNA transcripts. Most 

lncRNA are expressed in the nucleus, but many have cytoplasmic expression, signaling 

potential regulation of gene expression in the cytoplasm (Batista and Chang, 2013). While 

only partially known, many lncRNA – pcRNA pairs in the developing brain may be co-

localized within the same cells (Ponjavic et al., 2009). In addition, it is likely that lncRNAs 

are differentially expressed in distinct classes of neurons (e.g., glutamatergic, GABAergic, 

other) and glia (e.g., astrocytes, oligodendrocytes, microglia) (Cahoy et al., 2008; Zeisel et 

al., 2015; Zhang et al., 2014). Thus, for lncRNAs that are candidates for functional studies, it 

would be prudent to conduct assays designed to reveal the cellular and subcellular 

localization of their transcripts. To some extent, resources such as the Allen Brain Atlas can 

be consulted to identify the regional and subcellular distributions of transcripts for some 

lncRNAs. Clearly, the inclusion of lncRNAs within such anatomical resources would be 

helpful for identification of genes expressed in target brain areas, and for validation of other 

detection tools (e.g., qRT-PCR, RNAseq).

5. Conclusions

The lncRNA transcriptome of the mouse auditory forebrain was profiled at four postnatal 

ages before and after the onset of hearing. Globally, lncRNA expression was significantly 

different between brain regions (A1, MG) and at each postnatal age (P7, P14, P21, Adult). 

These patterns match trends observed for pcRNA in a prior study (Hackett et al., 2015), 

indicating that both RNA classes have spatial and temporal specificity in the developing 

(maturing) auditory forebrain. The results also identify lncRNAs with high expression levels 
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and those with strong up- or down-regulation from P7 to Adult in both regions. Their 

expression levels are highly correlated with numerous pcRNAs, suggesting potential 

interactions. Additional analyses of selected highly-correlated pairs revealed that predicted 

interactions with associated proteins was often, but not always, strong, suggesting that the 

correlations may serve as an initial screen for potential interactions. Further study of those 

interactions may lead to new insights into the regulatory relationships between lncRNAs, 

pcRNAs, and proteins. A user-friendly database and Look-Up Tool were provided as 

supplementary files to facilitate inspection of the expression levels and maturational 

trajectories for any lncRNA or pcRNA in the database.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A1 Primary auditory cortex, area 1

lncRNA Long non-coding RNA

MG Medial geniculate body, thalamus

pcRNA Protein-coding RNA
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Highlights

lncRNA expression was profiled in 2 auditory forebrain regions during maturation

Expression profiles differed between brain regions at each age (P7-P14-P21-Adult)

For each brain region (A1, MG), expression profiles differed between each age group

Expression trajectories (P7 to adult) correlated with subsets of protein coding genes

Database and look-up tools were created to simplify inspection of the entire dataset
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Fig. 1. Grand summary of lncRNA expression in MG and A1 from P7 to adult
Top: Unsupervised hierarchical clustering of samples by sex, brain region, and age. Bottom: 
Heatmap summarizing total lncRNA expression for each sample, arranged in columns by 

cluster. Each bar represents one gene. Color code denotes expression level.
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Fig. 2. Protein coding probabilities and correlations
A: Histogram of the coding probabilities for all lncRNAs that were expressed in mouse 

brain. B: Histogram of Spearman’s correlation coefficient between all lncRNA – pcRNA 

pairs. LncRNAs and pcRNAs with nominal expression levels were filtered out to avoid 

artificially high correlations.
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Fig. 3. Cluster network clusters of correlated pairs
Cluster network built in Cytoscape from the correlation results in Fig. 2B. Four major 

network clusters were visible.
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Fig. 4. Gene expression profiles of lncRNA and pcRNA pairs from Cluster 1 (see Fig. 3)
For each gene, mean normalized counts are plotted by postnatal age (P7, P14, P21, Adult) 

and brain region (A1, MG). Expression trajectory is indicated by arrows (up, down). Arrows 

indicate significant up- or down-regulation from P7-Adult was significant (p < 0.05).
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Fig. 5. Gene expression profiles of lncRNA and pcRNA pairs from Cluster 3 (see Fig. 3)
For each gene, mean normalized counts are plotted by postnatal age (P7, P14, P21, Adult) 

and brain region (A1, MG). Expression trajectory is indicated by arrows (up, down). Arrows 

indicate significant up- or down-regulation from P7-Adult was significant (p < 0.05).
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Fig. 6. Genomic loci of three pcRNAs involved in brain development and nearby lncRNAs
A: Chromosome 10 loci of pcRNAs Pip4k2c and Kif5a, and overlap with lncRNA 

F420014N23Rik. The distant Miat locus on chromosome 10 is indicated, but the sequence is 

not illustrated. B: Chromosome 5 loci of the pcRNA Reln, overlapped by lncRNAs 

Gm10475 and Gm16110. Arrows indicate the direction of transcription.
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Table 1

Differential expression of lncRNAs between A1 and MG by age.

A1 vs MG
Differentially

Expressed
lncRNA

P7 375

P14 430

P21 180

Adult 85

The total numbers of lncRNAs that were differentially expressed between A1 and MG are listed by postnatal age.
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Table 2

Differential expression of lncRNAs between age groups by brain region.

Age P14
A1
P21 Adult P14

MG
P21 Adult

P7 215 134 554 206 493 388

P14 --- 1 196 --- 55 67

P21 --- --- 0 --- --- 9

Age P7-P21 P7-Adult
A1

P14-P21 P14-Adult P21-Adult

P7-P14 69 169 1 48 0

P7-P21 --- 115 1 32 0

P7-Adult --- --- 1 136 0

P14-P21 --- --- --- 1 0

P14-Adult --- --- --- --- 0

Age P7-P21 P7-Adult
MG

P14-P21 P14-Adult P21-Adult

P7-P14 182 156 21 17 3

P7-P21 --- 298 51 46 8

P7-Adult --- --- 45 58 4

P14-P21 --- --- --- 27 3

P14-Adult --- --- --- --- 4

In each panel, the number of differentially expressed lncRNAs are given for each comparison within the brain region indicated (A1 or MG). Top, 
comparisons of each age with all other ages. Middle (A1) and bottom (MG), interactions between all possible age group comparisons by brain 
region. Totals reflect the numbers of differentially expressed genes from each age group comparison (e.g., P7-P14) that were also differentially 
expressed in all others (e.g., P7-P21, P7-Adult, etc.).
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Table 3

Top 50 up- and down-regulated genes in A1 and MG.

MG A1

Upregulated Downregulated Upregulated Downregulated

lncRNA FC lncRNA FC lncRNA FC lncRNA FC

Gm13905 6.99 H19 −6.79 Gm16291 4.81 Rp24-86o15.2 −5.60

1500015l24rik 5.98 Gm4926 −5.46 Gm26747 4.45 A430048g15rik −5.58

A730090h04rik 4.42 Gm19980 −5.02 Gm12576 4.17 Rp23-442i7.1 −5.54

Gm16336 4.30 Ai314831 −4.42 Gm13905 4.15 Gm14273 −4.43

1810009n23rik 4.28 Gm11738 −4.33 Gm13373 3.92 Rp23-302f9.2 −4.39

6720416l17rik 4.27 E130006d01rik −4.25 1500015l24rik 3.86 Rp23-302f9.4 −4.19

Gm12530 4.10 Gm11375 −4.23 Gm26684 3.86 Rp24-465o15.1 −3.98

1700042g15rik 4.01 Gm12408 −4.20 7530420f21rik 3.74 Nespos −3.77

Gm13293 3.97 D830044d21rik −4.11 Gm13558 3.69 Gm26576 −3.64

Gm26512 3.54 Gm14696 −4.05 A330074k22rik 3.58 Gm13398 −3.60

Gm13558 3.53 Rp24-68f22.7 −3.84 Gm14532 3.52 2310002f09rik −3.53

Gm26924 3.40 Gm14697 −3.80 Gm14285 3.48 1500016l03rik −3.49

2210411m09rik 3.33 Rp23-45g16.5 −3.79 4930588k23rik 3.46 Gm26771 −3.42

Gm13943 3.33 D430036j16rik −3.67 Gm12300 3.38 Gm15564 −3.37

Gm12541 3.16 Gm12371 −3.59 Gm12446 3.32 4930412b13rik −3.36

Gm16291 2.99 5730457n03rik −3.56 Gm12907 3.31 Gm4926 −3.19

Gm16302 2.99 Rp23-442i7.1 −3.56 0610043k17rik 3.30 Gm26924 −3.17

Gm11521 2.77 4930556l07rik −3.48 Nphs1os 3.25 Gm20667 −3.02

Gm11840 2.76 Gm13481 −3.47 Gm13322 3.23 Gm11267 −3.02

Gm13403 2.73 Gm14339 −3.46 Gm13833 3.18 Rp23-302f9.1 −3.01

Gm15564 2.62 Gm27040 -3.42 1810009n23rik 3.17 Gm11820 −3.01

Gm13833 2.62 Gm20618 −3.40 4933428c19rik 3.16 E130006d01rik −2.97

Gm16013 2.62 Gm12923 −3.39 Gm13834 3.14 H19 −2.93

Gm15864 2.53 Gm11419 −3.38 Gm15523 3.13 Gm14100 −2.88

A330074k22rik 2.47 4930453o03rik −3.35 9330179d12rik 3.11 Gm11837 −2.83

Gm10804 2.45 Gm4473 −3.32 Gm14011 3.11 4732490b19rik −2.74

Gm12027 2.44 Gm26626 −3.30 Aw495222 3.08 A530058n18rik −2.65

Rp24-530j21.3 2.43 Gm15295 −3.30 4930563e18rik 3.03 Gm11738 −2.64

Gm1667 2.41 8430436n08rik −3.29 Gm20478 3.01 Gm16863 −2.64

Gm11213 2.40 Gm11754 −3.26 Gm15856 2.94 Gm26654 −2.60

Gm5535 2.36 Gm2990 −3.25 Gm13629 2.92 G630018n14rik −2.60

B230344g16rik 2.33 Rp24-465o15.1 −3.25 Dio3os 2.92 Gm4425 −2.57

Rp24-480m3.2 2.31 4930515l19rik −3.24 A630023p12rik 2.90 B930086a06rik −2.54

Gm17180 2.27 Gm26654 −3.23 4930596m17rik 2.82 Gm14224 −2.53

Gm14424 2.27 2010300f17rik −3.23 Gm14029 2.78 Gm12167 −2.53

Gm17179 2.21 C130021i20rik −3.22 4930486i03rik 2.77 Gm13849 −2.53

Gm12576 2.20 3110099e03rik −3.20 Bc039966 2.76 9930014a18rik −2.52
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MG A1

Upregulated Downregulated Upregulated Downregulated

lncRNA FC lncRNA FC lncRNA FC lncRNA FC

Gm11634 2.20 9130024f11rik −3.20 Gm11681 2.74 Gm13404 −2.52

Gm13629 2.19 2310065f04rik −3.18 Gm15411 2.73 Gm7518 −2.51

Gm12756 2.18 7330404k18rik −3.18 Tmem61 2.72 Gm16292 −2.49

9530072k05rik 2.14 1700028i16rik −3.17 Gm27019 2.72 Gm16876 −2.48

5133400j02rik 2.14 Gm14225 −3.16 Gm13643 2.67 Rp23-45g16.5 −2.45

Gm16535 2.13 D030055h07rik −3.13 Bc051537 2.65 Gm17750 −2.42

A330023f24rik 2.12 Gm15202 −3.12 Gm12536 2.60 Gm26640 −2.42

Gm13807 2.11 Gm14967 −3.12 Gm14317 2.60 Gm2990 −2.40

Gm11681 2.09 4930558j18rik −3.11 Gm14397 2.55 Gm11986 −2.40

Gm13362 2.08 5530401n12rik −3.11 Gm26795 2.55 Gm13066 −2.35

Gm14426 2.07 Gm15222 −3.09 A330048o09rik 2.54 Gm26569 −2.33

Gm12536 2.04 Gm15326 −3.09 Gm12828 2.53 Gm12108 −2.30

9530085p06rik 2.03 Gm11376 −3.04 0610040f04rik 2.52 Mir17hg −2.28

The top 50 up-regulated and down-regulated genes in MG and A1 were ranked based on average log2 fold change (FC) magnitude comparing P7 to 

adult (FC = average of DESeq2, EdgeR, BaySeq). Genes that were up- or down-regulated in both regions are in bold text.
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Table 4

Top 50 differentially expressed genes in MG and A1.

MG > A1 A1 > MG

P7 P14 P21 Adult P7 P14 P21 Adult

Gm2373 2810011l19rik Gm13544 Gm13544 A830009l08rik Gm12371 9130024f11rik Gm12371

Gm13112 Gm13112 2810011l19rik 1700081h22rik 9930014a18rik Gm13389 A830009l08rik A830009l08rik

Rmst A830019p07rik 4930448n21rik B230323a14rik Dlx1os A830009l08rik Gm12371 9130024f11rik

2610028e06rik Gm13544 Gm13112 Gm12828 Gm13389 Gm15810 Gm14317 Dlx6os1

2810011l19rik B230323a14rik Six3os1 4930448n21rik Gm12027 9130024f11rik Gm15810 Gm15810

F730016j06rik Gm26512 B230323a14rik 2810011l19rik Dlx6os1 Gm11766 Gm13601 Gm11766

Gm12828 Gm12828 Gm12828 Gm17634 Gm26580 Gm26803 1700047f07rik C130071c03rik

A330074k22rik Gm2373 Gm2373 A330074k22rik 9130024f11rik Gm17322 Gm12300 Dlx1os

Gm15663 4930448n21rik Gm16168 9330185c12rik 6530403h02rik Gm15581 A330009n23rik Gm13601

Rp23-131o4.2 1500016l03rik 1500016l03rik Gm12750 Gm26803 A830036e02rik Dlx6os1 A330009n23rik

4933436c20rik Rmst Gm10863 Gm2373 Gm15581 2610017i09rik A630023p12rik Gm26805

4930455g09rik Gm17634 9330185c12rik Gm16154 Gm26801 Gm27002 Gm26911 Gm16295

Gm12827 Rp23-448c3.1 Gm12750 1500016l03rik Gm26871 4930467d21rik 5830416p10rik 5330416c01rik

B230323a14rik Gm13629 Rp23-448c3.1 4930579o11rik Gm15810 9230115e21rik 5031425f14rik A830036e02rik

Gm15893 Gm12750 Gm14210 Gm13905 A830036e02rik Gm15813 Gm26565 Gm15813

Gm26641 Gm3510 1700081h22rik Rp23-448c3.1 Gm11766 9930014a18rik Gm15813 Gm26803

1500016l03rik 1700081h22rik 4930579o11rik Rmst Rp24-86o15.2 Gm15338 Gm13659 4930447m23rik

Gm26777 Gm26560 Rp23-302f9.2 Six3os1 Gm15813 5830416p10rik Gm20603 2610017i09rik

Gm17634 Gm26641 Rmst Gm13112 Gm26565 Gm26578 Gm26580 Gm14317

Gm26597 Six3os1 Gm16154 Gm16168 4930467d21rik A330009n23rik 4930467d21rik 1700047f07rik

A330033j07rik 1700040n02rik 4933436c20rik Gm26512 A430048g15rik Gm26911 Gm11767 Gm17202

4930593c16rik F730016j06rik Gm4221 Gm15511 Gm20705 Gm14317 Gm15581 Gm11767

Bb031773 Gm17080 1700040n02rik Gm17566 4833422c13rik Gm13601 G630016g05rik Gm13659

Gm14259 9330185c12rik Gm17634 Gm13629 4930545l23rik Gm20603 2700033n17rik Gm14290

Gm26782 Gm15511 Gm17566 Sox2ot 2310075c17rik A630023p12rik Gm13389 Ai115009

Gm15417 4930593c16rik Gm17080 Gm17080 Gm20687 Gm26580 Gm15411 Gm13389

Gm11454 4930579o11rik A830019p07rik Gm16336 4930419g24rik Gm14290 Gm26924 1700001l05rik

Gm12750 4933436c20rik Gm13629 Neat1 Gm17750 Gm1976 Gm17202 Gm17322

Gm13629 Gm15417 A330074k22rik 1700040n02rik Gm13749 Gm16295 Gm16339 Gm26578

Gm20478 Gm26782 Sox2ot Gm12843 Gm17089 Gm11767 2310065f04rik Gm15411

Rp24-113d21.1 4921504a21rik A730090h04rik Gm12827 Gm26794 C130071c03rik Gm12907 Ai854517

Rp23-392m3.2 Gm17566 Gm26747 4933436c20rik Gm15829 Rp23-230f2.8 Gm16295 2900079g21rik

1700125g02rik Sox2ot Gm20635 A330033j07rik 2610017i09rik Dlx1os 3110099e03rik D030055h07rik

Gm26560 Gm12843 Gm26512 4930552p12rik 9230115e21rik Gm13749 4930545l23rik Gm20603

4732491k20rik A330074k22rik Gm12843 Rp23-302f9.2 Gm12360 6530403h02rik 6530403h02rik Gm26871

4932441j04rik Gm26694 5330434g04rik Gm13293 Gm13963 4933413l06rik 1700108n11rik 7530420f21rik

1700040n02rik 0610007n19rik Gm15511 Gm26742 Gm17088 Gm26871 2610017i09rik Gm14291

5330434g04rik Gm11454 Gm17552 Gm26674 4930578m01rik Gm26565 A830036e02rik Gm12300
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MG > A1 A1 > MG

P7 P14 P21 Adult P7 P14 P21 Adult

A230006k03rik Gm16154 Gm14662 Gm26641 Gm15513 4930538e20rik Rp23-230f2.8 2700033n17rik

Gm15511 Rp23-302f9.2 Rp23-302f9.1 4930593c16rik Gm17116 Gm13963 4930556i23rik Bb114351

6430710c18rik Bc039966 Gm11454 Gm2366 1700080n15rik Gm12063 Dlx1os 5830416p10rik

Gm12843 Gm14259 Gm10687 Bc039966 5830416p10rik 2310075c17rik Gm13749 Gm1976

1700071m16rik Gm12406 Gm26641 Gm26888 Gm17608 Gm17202 Gm26795 Gm13704

Rp24-351j24.2 Gm26674 Gm2366 A430010j10rik Gm11767 1110002j07rik Gm26805 Gm2415

Six3os1 Rp23-131o4.2 4930593c16rik Gm14210 Gm13584 Gm26794 Gm15564 Gm26911

Gm15345 Gm16168 4921504a21rik Gm15417 Gm13398 4930545l23rik Gm16229 Gm27002

A730036i17rik Gm10863 Gm14259 Gm13189 Gm26569 B230216n24rik Gm17322 G630016g05rik

Rp24-312b12.1 Gm10516 2700069i18rik Rp23-302f9.4 4930533b01rik Dlx6os1 Gm12295 C530050e15rik

Gm20686 Rp23-302f9.4 Gm13293 1700080n15rik 9430029a11rik 5031415h12rik Gm27002 4930556i23rik

C130021i20rik Gm26780 Bc039966 1700042g15rik C130071c03rik 4930556i23rik Gm2415 2810029c07rik

The top 50 differentially expressed lncRNA genes between MG and A1 are listed by postnatal age. Left columns, genes with significantly higher 
expression levels in MG as compared to A1. Right columns, genes with higher expression levels in A1 as compared to MG. Significance (p < 0.05) 
and ranking determined by differential expression analyses.
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Table 5

Monotonic lncRNA expression patterns (all genes).

Direction A1 MG A1 | MG

Increasing 216 143 29

Decreasing 325 427 96

Static 1044 1034 1157

Other 1628 1609 1931

The total numbers of genes with maturational trajectories categorized as monotonically increasing, monotonically decreasing, static, or other (from 
P7 to adult) are tallied for A1 and MG. The numbers of genes that were common to both A1 and MG are tallied in the third column (A1 | MG).
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Table 6

Functional gene ontology categories of pcRNA genes in Fig. 3.

Cluster Sub Category Genes p

1 Intracellular Signal Transduction 27 0.0015

1 Cellular Protein Modification Process 31 0.0021

1 Regulation Of Ion Transmembrane Transport 9 0.0021

1 Phosphate-Containing Compound Metabolic Process 33 0.0030

1 Plasma Membrane 49 0.0000

1 Cytoplasm 81 0.0001

1 Golgi Apparatus 19 0.0004

2 Cellular Component Organization 33 0.0002

2 Organic Substance Metabolic Process 55 0.0004

2 Phosphate-Containing Compound Metabolic Process 25 0.0016

2 Primary Metabolic Process 51 0.0019

2 Cytoplasm 57 0.0000

2 Intracellular Organelle 60 0.0002

2 Membrane-Bounded Organelle 54 0.0005

3 Neuron Projection Development 11 0.0001

3 Cell Projection Part 9 0.0008

3 Neuron Projection 10 0.0008

3 Cytoskeleton 15 0.0008

4 Rho Protein Signal Transduction 6 0.0012

4 Cellular Protein Modification Process 15 0.0023

4 Regulation Of Nucleotide Metabolic Process 6 0.0023

4 Neuronal Cell Body 9 0.0000

4 Postsynaptic Membrane 6 0.0001

4 Postsynaptic Density 5 0.0001

For each cluster, the functional subcategories with significant enrichment are listed, along with the number of genes included in each.
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Table 8

lncRNA – pcRNA correlations and interactions.

Gm4425 C330006A16Rik Ccdc41os1 RP23-442I7.1*

12 2 10 3

Chr r is r is r is r is

Kif5a 10 −0.95 95.05 0.87 93.73 0.90 98.81 −0.94 98.89

Snap25 2 −0.90 79.13 0.95 82.73 0.94 97.14 −0.93 97.60

L1cam X 0.93 60.77 −0.87 72.71 −0.95 79.01 0.93 79.12

Ncam1 9 0.92 77.44 −0.86 63.34 −0.95 78.49 0.95 78.65

Dpys13 18 0.94 59.98 −0.91 75.32 −0.96 64.70 0.96 95.66

Srgap2 1 0.92 78.96 −0.90 76.22 −0.95 98.14 0.96 98.12

Correlations and predicted protein interaction scores between pcRNA and lncRNA genes involved in neurotransmission and plasticity in the brain 
(selected from Fig. 3, Cluster 3). Spearman correlations (r) and lncPro interaction scores (is; score range 1 - 100) are listed for each pcRNA-
lncRNA pair.

*
alternative name: 1110015O18Rik (ENSMUSG00000098659). Bold type denotes pcRNA – lncRNA pairs illustrated in Cluster 3 with correlations 

of at least |0.95|. Raw data is in Table S12.
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