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Abstract

The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that 

the response of FFA to non-face objects can predict behavioral performance for these objects. 

However, one possible account is that experts pay more attention to objects in their domain of 

expertise, driving signals up. Here we show an effect of expertise with non-face objects in FFA 

that cannot be explained by differential attention to objects of expertise. We explore the 

relationship between cortical thickness of FFA and face and object recognition using the 

Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical 

thickness in functionally-defined regions in a group of men who evidenced functional expertise 

effects for cars in FFA. Performance with faces and objects together accounted for approximately 

40% of the variance in cortical thickness of several FFA patches. While subjects with a thicker 

FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with 

faces and living objects. The results point to a domain-general role of FFA in object perception 

and reveal an interesting double dissociation that does not contrast faces and objects, but rather 

living and non-living objects.

Keywords

Cortical thickness; Fusiform face area; Modularity of the mind; Object recognition

Introduction

Functional brain imaging research has offered strong support for localized functions in the 

brain. However, brain imaging findings often generate debate with respect to the attribution 

of specific cognitive functions to patterns of localized responses (Burton et al., 2000; Price 

& Devlin, 2003; Shomstein & Yantis, 2006; Grodzinsky & Santi, 2008). For instance, should 

we conceive of the FFA as a specialized module dedicated only to the processing of faces, 
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with little if any role in the processing of other objects (Kanwisher 2010)? Or can we 

understand the strong selectivity for faces in FFA as resulting from expertise with faces, 

such that other objects with similar experience would also recruit the FFA (Tarr & Gauthier, 

2000)? Questioning the evidence of domain-specificity in FFA is questioning some of the 

strongest evidence of domain-specificity in the visual system and the brain.

Fifteen years past the first experiment reporting expertise effects in FFA following training 

with novel objects called Greebles (Gauthier & Tarr, 1997), several studies of individual 

variability in FFA BOLD response in real-world domains suggest that the response of FFA 

to non-face objects can predict behavioral performance for these objects (e.g., Bilalić et al. 

2011; Gauthier et al. 2000; McGugin et al. 2014a; Xu 2005). Expertise effects are obtained 

in the very middle of the FFA (McGugin et al. 2014b), even in the most highly face-selective 

voxels in high-resolution scans (McGugin et al. 2012a). However, other studies have found 

no correlation between performance with cars and FFA response (e.g., Grill-Spector, Knouf 

& Kanwisher, 2004), or failed to replicate the Greeble training effect (Brants, Wagemans & 

Op de Beeck, 2011)1.

One concern about expertise effects in the visual system is that they may be due to greater 

attention to objects of expertise (Harel et al. 2010). This account has been challenged by 

demonstrations of robust expertise effects in FFA under conditions that reduce these effects 

in other visual areas (McGugin et al. 2014a; 2014b). However, attention is a strong 

modulator of responses in visual cortex (Pessoa, Kastner & Ungerleider, 2003), and it is 

plausible for people to pay more attention to objects of expertise (including faces). An 

attentional account of expertise effects of functional MRI data is difficult to rule out entirely.

Here we turn to the study of the structural correlates of face and object recognition ability 

and note that such expertise effects, whether they are related to functional effects or not, 

could not be explained by attention. Test-retest reliability of structural MRI data and, 

specifically, surface maps of CT, are highly reproducible with high intra-class correlations 

(Wonderlick et al., 2008), allowing us to comfortably look at individual differences in 

regional CT. Measures of regional brain structure have been successfully associated with 

performance in a number of domains (Golestani et al. 2002; Schneider et al. 2005; Hyde et 

al. 2006; Shaw et al. 2006; Narr et al. 2007; Wong et al. 2008; Karama et al. 2009; Foster & 

Zatorre 2010; Schwarzkopf et al. 2011; Delon-Martin et al. 2013). These studies 

demonstrate individual differences in brain structure in the same areas where differences in 

BOLD activation are seen, and both types of brain reorganization are associated with 

domain-specific behavioral differences. Accordingly, we may expect CT in FFA to be 

related to behavioral face recognition performance (Kanwisher et al. 1997; Grill-Spector et 

al. 2004; Xu 2005; McGugin et al. 2012a).

In one study with prosopagnosic patients, the right fusiform gyrus showed reduced grey 

matter volume relative to normal controls (Garrido et al. 2009). But using healthy subjects, 

recent work (Bi et al. 2014) found a negative correlation between cortical thickness in left 

1The Grill-Spector study used antique cars in the scanner when subjects were modern car experts (see Bukach et al., 2010 and the 
Brants study did not provide behavioral evidence for the same qualitative changes in perception as the original study.
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FFA and improvements in a task involving judging the orientation of faces. This was not a 

face recognition task and so it is unclear whether face performance should also show the 

same negative correlation with CT or follow the general trend observed when performance 

in patients vs. controls is correlated with BOLD response.

We might also expect CT in FFA to be related to object recognition performance, based on 

functional effects of expertise in this region. However, one report found that expertise with 

cars was related to gray matter volume in the prefrontal cortex, but not in the fusiform gyrus 

(Gilaie-Dotan et al. 2012). We chose to revisit this question because the aforementioned 

study used a group-averaged template, as is typical in brain morphometry, to look for brain 

areas whose structure might be related to behavior. Even when functional ROIs have been 

used in studies looking at brain structure (Bi et al. 2014), they have typically been group-

averaged ROIs. Within the fusiform gyrus, functional effects of expertise are spatially 

limited to two small face-selective areas (Weiner et al. 2014) and are best revealed in 

individually defined ROIs.

We performed CT analyses in individually defined functional ROIs in a sample of twenty-

seven men who were recruited to vary in their expertise for cars. We defined regions of 

interest functionally and individually. None of the prior work with CT used individual 

functional ROIs. In addition, our structural scans come from a sample of subjects who 

showed the expected positive correlation between behavioral performance with cars and FFA 

selectivity to cars in a prior study (McGugin et al. 2014b). Therefore, we are able to ask if 

CT predicts behavioral performance in subjects whose performance with cars was related to 

the BOLD selectivity for cars. Critically, however, there is no reason why cortical thickness 

should be specifically related to the object category(ies) used in our separate functional task. 

Brain structure could be related to performance with any object category. For this reason, we 

used behavioral performance for a variety of object categories and faces, in a battery of 

visual learning tasks (the Vanderbilt Expertise Test, VET (McGugin et al., 2012b) and the 

Cambridge Face Memory Test, CFMT (Duchaine and Nakayama, 2006)). VET performance 

for vehicles shows a stronger relationship with the CFMT in men than women (McGugin et 

al. 2012b). Because of such sex differences, and because the sample we used was composed 

of men (sex has too large of an effect on CT to justify including the three females in the 

original McGugin et al., 2012a study), we decided to index object recognition performance 

according to the two principle factors extracted from a principle component analysis of the 

VET results which, in prior work, also correlated with sex. The first factor corresponds to 

living objects (on which women generally performed better than men) and the second 

corresponds to non-living objects (on which men generally performed better than women 

(McGugin et al. 2012b)). Thus, the behavioral indices of performance used here are the 

same measures as in several studies of expertise (Gauthier et al. 2000; Grill-Spector et al. 

2004; Rossion et al. 2004; Gauthier et al. 2005; Xu 2005; Curby et al. 2009; McGugin et al. 

2014a; 2014b). We average categories for which performance tends to be correlated, which 

may help detect small effects associated with each category. Because this study sample was 

recruited with regards to their car expertise, we also investigate correlations with car 

performance alone.
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We hypothesized that we would find linear relationships between CT in FFA and 

performance for both faces and objects. Importantly, the literature contains examples of 

better performance in various domains that are associated with either thicker (Foster & 

Zatorre, 2010; Karama et al., 2009; Narr et al., 2007; Choi et al., 2008) or thinner (Hyde et 

al., 2007; Jung et al., 2010) cortex. For this reason, we do not formulate a prediction for the 

direction of the linear relations between performance and local cortical thickness, and we 

use two-tailed tests.

Methods

Subjects

Twenty-seven healthy right-handed men (range: 18–34; mean: 26 ± 4.7 years) participated as 

volunteers for a larger study that also included three women, aimed at investigating effects 

of behavioral expertise under conditions of visual clutter (McGugin et al. 2014b). The 

current work represents a new analysis of the structural data that was used in McGugin et al. 

(2014b) only as support for functional analyses. Informed written consent was obtained from 

each subject in accordance with guidelines of the institutional review board of Vanderbilt 

University and Vanderbilt University Medical Center. All subjects received monetary 

compensation for their participation and had normal or corrected-to-normal vision. One 

subject was discarded due to outlier performance (at or below chance of .33) for six of the 

eight object categories in the behavioral memory test.

Behavioral Assessments

All subjects completed three behavioral tasks outside the scanner: the Cambridge Face 

Memory Test (CFMT) (Duchaine and Nakayama 2006), the Vanderbilt Expertise Test (VET) 

(McGugin et al. 2012b), and a sequential matching expertise test used to quantify individual 

skill at matching cars (Gauthier et al. 2000; Grill-Spector et al. 2004; Rossion et al. 2004; 

Gauthier et al. 2005; Xu 2005; Curby et al. 2009; McGugin et al. 2012a). See Table 1 for 

descriptive statistics for all behavioral measures.

In the CFMT, subjects study three images (left 1/3 profile, frontal view, right 1/3 profile) of 

the first target face for three seconds per image, immediately followed by three test items 

where subjects select the studied image amongst two distractors. This introductory learning 

phase is repeated for the remaining five target faces. Subjects were then presented with 30 

forced-choice test displays each containing one target face and two distractor faces. Subjects 

were instructed to select the face that matched one of the original six target faces. The 

matching faces varied from their original presentation by means of lighting, pose, or both. 

Next, subjects were again presented with the six target faces to study, followed by 24 test 

displays presented in Gaussian noise. For a complete description of the CFMT, see Duchaine 

& Nakayama (2006).

The VET (McGugin et al. 2012b) includes eight object categories blocked alphabetically: 

butterflies, cars, leaves, motorcycles, mushrooms, owls, planes, and wading birds. For each 

category, subjects studied a display with images from each of six species/models. For each 

test trial, one of the studied targets (identical images for the first twelve trials, or transfer 
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images requiring generalization across viewpoint, size, and settings for the subsequent 36 

trials) was presented with two distractors from another species/model in a forced-choice 

paradigm. The target image could occur in any of the three positions and subjects indicated 

which image of the triplet was the studied target. Before beginning the VET, participants 

rated themselves on their expertise with all tested categories (leaves, owls, butterflies, 

wading birds, mushrooms, cars, planes, and motorcycles), and also with faces, considering 

“interest in, years exposure to, knowledge of, and familiarity with each category”, where 1 

represented the lowest reported skill level and 9 represented the highest. See Table 1 for 

descriptive statistics of self-report (SR) scores. For a complete description of the VET, see 

McGugin et al. (2012b).

Principle component analysis has demonstrated that the underlying structure of the eight-

category VET is largely explained by two independent factors that represent living and non-

living objects. Therefore, we reduced VET performance to a Living Objects score (VET-LV; 

average of butterflies, leaves, mushrooms, owls, wading birds) and a Non-Living Objects 

score (VET-NL; average of cars, motorcycles, and planes).

The matching task has 112 sequential matching trials for each of three categories: cars, 

planes and birds (56 unique images/category). On each trial, a first stimulus appeared for 

1000 ms, followed by a 500-ms mask and second stimulus that remained visible until 

subjects made a same or different response, or 5000 ms elapsed. Subjects judged if the two 

images showed cars/planes of the same make and model regardless of year, or birds of the 

same species.

MRI acquisition

Scanning was performed using a Philips 3-Tesla Intera Achieva MRI scanner with an eight-

channel head coil located at the Vanderbilt University Institute for Imaging Science. High 

resolution (HR) T1-weighted anatomical volumes were acquired (TR, 8.93 ms; TE, 4.6 ms; 

flip angle, 9°; FOV, 256 × 256; slice thickness, 1 mm, no gap; in-plane resolution, 1 × 1 mm; 

170 slices acquired in the sagittal plane). In a functional localizer run, we used standard 

gradient-echo echoplanar T2*-weighted imaging to obtain functional images (TR, 2000 ms; 

TE, 35 ms; flip angle, 79°; FOV, 192 × 192; slice thickness, 3 mm, no gap; in-plane 

resolution, 3 × 3 mm; 34 ascending interleaved slices acquired axially).

The structural scan was processed using Brain Voyager v2.6 (www.brainvoyager.com). First, 

steps were taken to prepare the brain for automatic correction of intensity inhomogeneities; 

the image background was cleaned, the brain was extracted, and the bias field was estimated 

and removed. The cerebellum and brainstem were manually removed for each brain. After 

automatic intensity inhomogeneity correction, the grey matter and white matter intensities 

were centered around intensity values of 100 and 160, respectively. Brains were then 

Talairach-normalized and interpolated to .5 × .5 × .5 mm resolution. The white/grey matter 

boundary was segmented, after which the grey matter/cerebrospinal fluid boundary 

(corresponding to the pial surface, or the outer boundary of the cortex) was labeled.

For the functional localizer scan, all images were presented with an Apple Macintosh 

computer running Matlab (MathWorks, Natick, MA) using the Psychophysics Toolbox 
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extension (Brainard 1997; Pelli 1997). Stimuli were displayed on a rear-projection screen 

using an Eiki LC-X60 LDP projector with a Navitar zoom lens. 72 grayscale images (36 

faces, 36 objects) were used in a 1-back detection task with 18 alternating blocks of faces or 

objects (16 images shown for 1s) and a 2 s fixation at the beginning and end of each block. 

Sensitivity did not differ for Face and Object blocks: (hit rate, false alarm rate) Face (0.92, 

0.008), Object (0.93, 0.004).

Following the functional localizer scan, subjects completed eight runs using different 

combinations of images and tasks (See McGugin et al. 2014b for full details). To verify the 

face-selectivity of the ROIs in this subset of subjects, we analyzed only the first two of these 

experimental runs to obtain an independent measure of face selectivity in the ROIs defined 

in the functional localizers. These runs showed single objects presented in isolation in a 

blocked fMRI design with a 1-back repetition task of face, car or butterfly images.

Data Analysis

The HR T1-weighted structural scans were normalized to Talairach space. Functional data 

were analyzed using Brain Voyager (www.brainvoyager.com) and in-house Matlab scripts. 

Preprocessing included registration to the original (non-transformed) structural scan, slice 

scan time correction (cubic spline), 3D motion correction (trilinear/sinc interpolation) and 

temporal filtering (high-pass criterion of 2 cycles per run) with linear trend removal.

Regions of interest (ROIs) were defined using the Face>Object contrast from the face-

localizer scan (Table 2). For ROI analyses, no spatial smoothing was applied to the CT 

maps. We localized bilateral ROIs that responded more to faces than objects in the posterior 

fusiform gyrus (FFA1), middle fusiform gyrus (FFA2) (Pinsk et al. 2009; Weiner et al. 

2010), and occipital face area (OFA), and more to objects than faces in the parahippocampal 

gyrus (PHG). To verify the face selectivity of these regions using functional data 

independent from the localizer, we examined the BOLD response to faces relative to a 

butterfly baseline (cars were not used because several subjects were car experts). As 

expected, there was a larger response to faces vs. butterflies in bilateral FFA1, FFA2, and 

OFA, and the opposite effect in object-defined regions in the PHG (Table 2).

All ROIs were initially defined based on the 1 mm (interpolated) statistical maps using a 

fixed mm spread of activation to ensure consistency with reported sizes of these functional 

ROIs in the literature as well as consistency across subjects (Table 1). However, to ensure 

that the signal was weighted per functional voxel, ROIs were subsequently down-sampled to 

functional (3 mm) resolution. Any functional voxel containing one or more 1 mm voxel 

from the initial ROI was considered to be part of the final ROI, thus leading to larger final 

ROIs relative to those initially defined. Functional voxels that were members of multiple 

initial ROIs were dropped from all final ROIs. This latter qualification avoided partial-

volume effects with regard to functional region membership.

In addition to our functionally-defined ROIs, we anatomically defined an additional four 

regions in the precentral and frontal gyri to correspond to the regions where car expertise 

effects were reported in Gilaie-Dotan et al. (2012). We had no means to define this region 
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functionally. The location and extent of these regions was fixed across all subjects (see Table 

4 legend).

To test whether CT varied as a function of ROI size and distance from the peak of face-

selectivity, we defined four additional clusters for bilateral FFA1 and FFA2 in each 

individual. First, we localized the peak face-selective voxel of each ROI based on the 

localizer scan. We computed mean CT from this peak voxel, in addition to the 4, 16, and 60 

contiguous voxels around this peak, following the spread of face-object activation.

For all ROIs, we computed the partial correlation between the mean CT over all voxels with 

each VET factor, regressing out the other VET factor as well as global CT and age, since CT 

has been shown as highly sensitive to age (Shaw et al. 2008). Zero-order correlations and 

partial correlations for each ROI are presented in Table 3. All correlations between CT and 

behavioral performance were tested for bivariate outliers, which were denoted as points 

whose externally studentized residual was >3.5 or <−3.5. Partial correlations are reported in 

Table 3.

To perform group-level statistical data analyses on cortical thickness maps, we used an 

advanced, high-resolution, cortical matching approach (Goebel et al. 2002; 2004; Frost & 

Goebel 2012) to align brains using cortex curvature information (i.e., the gyral/sulcal folding 

patterns). Cortex-based alignment (CBA) operates in several phases during which individual 

hemispheres are morphed into spheres providing a parameterizable surface suited for across-

subject non-rigid alignment. Alignment proceeds iteratively following a coarse-to-fine 

matching strategy, moving from highly smoothed curvature maps to minimally smoothed 

maps (Goebel et al. 2002; 2004; 2006; Frost & Goebel 2012).

CBA was used to compute average thickness maps across subjects. While cortical thickness 

measurements are performed in volume space in individual brains, they are performed in 

surface space for group analyses to benefit from cortical alignment.

During the segmentation procedure, all structural datasets were upsampled from the 1.0 mm 

iso-voxel acquisition resolution to 0.5 mm iso-voxel resolution using sinc interpolation. For 

whole-brain group analyses only, individual CT maps were smoothed by a factor of 2 times 

the size of the upsampled voxel, using 1mm FWHM. These smoothed maps were 

subsequently used as input in a group correlation analysis.

We used a corrected two-tail alpha of .05 for whole-brain analyses. These analyses seeking 

areas where cortical thickness correlated with VET-LV, VET-NL and CFMT performance 

failed to reveal significant clusters of activation. Whole-brain analyses are inherently less 

powerful than ROI analyses both due to correction for multiple comparisons and to the 

greater variance expected when subjects are compared in regions aligned according to gross 

anatomical rather than functional landmarks.

Cortical Thickness

Cortical thickness measurements in Brain Voyager QX are based on the Laplace method 

(Jones et al. 2000). Three tissue classes are identified in the anatomical image based on a 

voxel’s intensity value, i: CSF (i < 75), GM (75 ≤ i ≤ 125) and WM (i > 125). For each gray 
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matter voxel, a streamline is calculated - using a small step size of 0.1 and trilinear 

interpolation - by following a gradient in one direction and then the opposite direction to 

obtain a thickness measure for that gray matter voxel.

Measurement of cortical thickness of individual segmented cortical hemispheres is 

performed first in volume space, but can be projected on the surface with the help of 

gradient maps. See Table 1 for descriptive statistics.

Results

Relationship between performance and cortical thickness

Just as living and non-living performance scores were computed, so were living and non-

living self-report scores. Self-report scores of experience for living and non-living categories 

were significantly correlated (r=.48), and the only significant correlation between self-report 

and performance was that self-report for non-living objects negatively predicted VET-LV (r=

−.45). These results are consistent with prior reports that self-reports generally do a poor job 

predicting performance (McGugin et al. 2012a), probably because we have limited 

opportunity to compare our perceptual skills to those of others. In addition, self-reports did 

not correlate significantly with CT in any ROI.

Table 3 provides correlations between our behavioral measures of performance with faces 

(CFMT) and living (VET-LV) and non-living (VET-NL) object categories, as well as the 

partial correlations that involve measures of cortical thickness (CT) in the various ROIs (we 

first regressed age and global CT out of the CT values within each ROI; see Figure 1 and 

Table 1 for CT averages and spreads). (Figure 1 shows the distribution of raw scores for 

CFMT and VET.) Performance with faces and non-face objects showed no significant 

correlation in this sample, although each measure was reliable (Cronbach Alpha: VET-LV= .

89; VET-NL=.91) and showed considerable variability (Table 1).

Table 3 also presents the partial correlations between performance measures and CT across 

functional ROIs. The only significant effects were found in the FFAs (Figures 2–3). The 

only significant positive correlation for VET was in rFFA2, where CT was related to VET-

NL (r=.42) (Figure 2). To correspond to the VET scores, we grouped the matching 

performance for cars and planes (r=.57), while birds was the only living category. Matching 

performance for cars/planes was correlated with VET-NL (r=.55), and showed a similar 

positive correlation with CT in rFFA2 (r=.43). Matching cars/planes produced the same 

positive correlation in the left FFAs, an effect that was not seen for VET scores (even when 

restricted to cars and planes, the correlations with the two left FFAs are both .24). We can 

only speculate that it is possible the requirements of the matching task tap better into left 

hemisphere representations, but this conjecture would have to be investigated.

In contrast to these positive correlations for cars/planes, VET-LV showed significant 

negative correlations with CT in the two left FFA ROIs (Figure 3). Performance on the 

CFMT was negatively correlated with CT in rFFA1 (Figure 2). The matching task for birds 

did not correlate with CT in any area, although the only negative correlation was observed in 

the lFFA2 where the relationship with VET-LV was also most negative.
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Interestingly, even when we restrict our analyses to consider thickness in the single 

maximally face-selective voxel, the pattern observed at the larger size ROIs remains in 

lFFA1 (rVET-LV=−.49) and in rFFA2 (rVET-NL=.39). Other effects, however, were 

considerably reduced, including that of VET-LV in lFFA2 (rVET-LV=−.30) and of CFMT in 

rFFA1 (rCFMT=−.22). In addition to these ventral areas, we explicitly probed for frontal 

effects by defining four areas in the frontal and precentral gyri of all subjects. These four 

ROIs were placed in regions showing CT effects of car expertise in prior work (Gilaie-Dotan 

et al. 2012). Only one region in the right superior frontal gyrus (rSFG) showed a positive 

correlation between behavioral performance (VET-LV) and regional CT (r=.41) (Table 4).

Finally, in contrast to our functionally- and anatomically-defined ROI results, whole-brain 

correlation analyses performed at the group level in average brain space did not reveal any 

significant effects between behavior and CT, even at a liberal threshold. Note that maps in 

Figures 2c and 3c depict average CT across all subjects irrespective of behavior. Due to 

individual differences in CT, as well as error in cortical registration, these group maps do not 

reflect the full range of CT variability found in individual subjects.

Multiple-regressions on cortical thickness

Performance with faces and objects was not strongly related, and as such, it is possible that 

they account for different parts of the variance in CT. We conducted multiple regressions to 

assess how much variance in CT these variables could explain together in each ROI. All 

three predictors (CFMT, VET-LV, and VET-NL) were entered simultaneously in a multiple 

regression. The results for the four FFA ROIs are shown in Table 5, including the zero-order 

correlations (Table 3) for comparison with the partial correlations (note that they are not 

strictly speaking zero-order because age and global CT were regressed out, but they do not 

take into account any of the other behavioral measures). Neither the full models nor the 

partial correlations were significant in the other non-FFA functionally-defined ROIs.

These analyses allow us to ask how much unique variance is explained by each of the three 

measures. While the simple correlations reveal that VET-NL was a significant predictor of 

CT only in rFFA2, when VET-LV and CFMT are partialed out, both the right and left FFA1s 

also show the same positive correlation. This means that one or both of the other variables 

was suppressing this relation. We identified the suppressor by removing each variable in turn 

from the regressions. In the rFFA1, this suppressor variable was CFMT, and adding VET-LV 

had little influence on the VET-NL predictor. In the lFFA1, both of the other predictors were 

necessary for VET-NL to reach significance. In contrast, VET-LV remained a predictor in 

these multiple regressions, similar to when it was used as the sole behavioral predictor, in 

two areas: VET-LV accounted for unique variance (a negative correlation) in CT for both 

lFFA1 and lFFA2. Finally, there was unique variance in CT accounted for by the CFMT in 

both the right and left FFA1.

Relationship between functional and structural effects of expertise

The functional results for the present dataset were presented in McGugin et al. 2014b and 

revealed a significant relationship between the BOLD response to cars relative to faces in 
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both FFAs of both hemispheres, and when the BOLD response to birds was used as a 

baseline, significant effects of car expertise in rFFA2, and both left FFAs.

Our finding that behavior for different categories can be related to the CT in the same area in 

different ways illustrates how difficult it would be to make predictions between such relative 

functional responses and CT measurements. The same ROI can yield many different 

responses for the same category depending on the task, whereas structural effects are stable 

and can reflect simultaneously the independent influence of many familiar categories.

Nonetheless, to test whether there was a link between the structural effects of CT and the 

functional BOLD-based effects of car expertise in McGugin et al. (2014b), we correlated 

across subjects the CT and the Michelson contrast ratios for cars (or faces) relative to birds 

((Car − Bird)/(Car + Bird) and (Face − Bird)/(Face + Bird)), in each FFA ROI (4 standard 

resolution voxels). These functional responses were not significantly correlated with CT in 

any of the FFA ROIs (see Table 6). The largest effect size is observed in the relationship 

between CT and the face response in rFFA1 (r=−.33, p=.12), which is in the same direction 

as the relation between CFMT and CT in this ROI. Future studies should consider functional 

responses to more object categories and the use of an unfamiliar object category as a 

baseline (so that effects can be investigated for each familiar category independently).

Discussion

We investigated how performance with objects and faces relate to CT in several individually-

defined functional ROIs. Our use of functionally defined ROIs afforded greater sensitivity 

over standard methods that are based on anatomical averaging. Gilaie-Dotan et al. (2012) 

also looked at individually-defined FFAs and found no relation between CT and car 

expertise, although their sample was smaller (15 subjects for right FFA). Several other 

differences could explain why we found effects and they did not; e.g., we defined separate 

anterior and posterior FFAs and measured behavioral performance for more object 

categories. Our results suggest that when the peaks of face-selectivity are defined 

functionally, structural effects may be observed within very small regions centered on these 

peaks. We found a positive correlation between performance with non-living objects and CT 

in FFA, whereas the relationship for faces and living objects with CT, when found, was 

negative. These CT results are generally consistent with past functional results in linking 

FFA specialization to non-face recognition, but the directions of the effects were unexpected. 

In addition, we found no evidence of a relation between BOLD responses to cars and faces 

(relative to birds) and CT in FFA ROIs, but future work should consider using a non-familiar 

category as baseline to look at the relation between each familiar category and CT 

measurements.

To our knowledge, this is the first study looking at CT separately in the anterior and 

posterior parts of human FFA (Pinsk et al. 2009; Weiner et al. 2010). We found that 

behavioral performance with faces has a greater contribution to CT in posterior parts of the 

FFA bilaterally. However, in none of the FFA ROIs did we find a relationship with face 

performance and not with object performance. The current results present little evidence that 

any part of the FFA complex is selectively related to face but not object recognition.
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Our results could be a function of the specific sample used in this study (male subjects, 

selected on the basis of high or low self-report of car expertise). In prior work, the relation 

between performance with faces and different object categories was found to be mediated by 

sex (McGugin et al. 2012b). In that work, women outperformed men on the VET-LV factor, 

whereas men performed better on the VET-NL factor (in this case, vehicles). When age and 

holistic processing of faces were partialed out, the unique variance explained by each VET 

factor was correlated with the CFMT, only for the sex-congruent category. Thus, it would be 

prudent not to generalize the present results to women: it is possible, albeit only a 

speculation, that the results in a sample of women might be a mirror image of those obtained 

here for men, with performance for living objects positively correlated with CT but 

performance for non-living objects negatively correlated with CT. This may also be 

predicted on the basis of several studies reporting that women show an advantage on verbal 

tasks with living objects and men for non-living objects (McKenna and Parry 1994; 

Laiacona et al. 1998; Capitani et al. 1999; Laws 1999).

Another consideration is that the functional definition of the FFA was based on a typical 

localizer that compared images of faces to images of man-made objects (tools, appliances, 

items of clothing etc). Prior work has suggested that the location of the FFA is not impacted 

by the type of baseline (Berman et al. 2010), but we do not know of work that has compared 

localization based on a living vs. non-living comparison. We have no reason to believe that 

our results would vary if a different localizer was used, especially those effects that were 

essentially the same in a 1-voxel vs. a 60-voxel ROI.

Our findings of a negative correlation between CT and face recognition converge with recent 

results showing that CT in the FFA was negatively correlated with learning performance on 

a face orientation judgment task (Bi et al. 2014). We found such a relationship in the right 

FFA1 (CT negatively correlated with face performance on the CFMT), while the previous 

work only found the effect in the left FFA (note that this learning study did not separate the 

two FFAs and used group-averaged ROI definitions). We also found that CT in both parts of 

the left FFA was negatively related to performance with living objects. Thus, our work 

considerably extends the Bi et al. finding to face recognition performance, and suggests that 

such a negative correlation may not be specific to the left FFA, nor to performance with 

faces. It does not, however, provide insight into the biological mechanism that underlies this 

negative relationship. Negative correlations with performance have been attributed to 

synaptic pruning resulting in the loss of non-preferred cortical connections in favor of those 

that support frequently used skills (Giedd et al. 1999; Gogtay et al. 2004; Sowell et al. 

2004). Another possible account is that the observed reduction in measured grey matter 

reflects an increase in myelination such that white matter growth encroaches upon what was 

previously classified as grey matter (Paus 2005). This is consistent with recent results 

showing that fractional anisotropy of the white matter tracts from FFA to the anterior 

temporal lobe correlate with face recognition ability (Gomez et al. 2015). It is possible that 

in our sample, those with thinner cortices also had larger white matter tracts connecting FFA 

to anterior areas.

By themselves, none of these accounts is sufficient to explain why the effect differs from the 

positive relationship obtained with non-living objects. We obtained positive and negative 
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relationships with performance in the same subjects in the same areas, which may seem 

surprising but the multiple regression analyses suggest that the different effects are 

independent. One possible explanation is that performance with these different categories 

reflects different ages of acquisition for experience individuating objects (arguably faces, 

and perhaps also living objects, earlier than vehicles), with different mechanisms of 

plasticity operating at these different times. Face recognition could be learned early in life 

when pruning of large fiber tracts is taking place (Bourgeois et al., 1989). In contrast, the 

recognition of vehicles could be learned much later in life, and as such may show thickening 

of cortex as in learning of skills in adulthood (e.g., Maguire et al., 2003; Mårtensson et al, 

2012).

The relationships we show are not causal: performance with a category would not cause CT, 

nor would CT cause performance, but rather it is more plausible that experience with a 

category would cause both performance and CT. These are conjectures that should be 

explored in future research.

Critically, we find that non-face recognition can be predicted by cortical thickness in the 

FFA, an effect that cannot be accounted for by attention and providing further evidence that 

this region is important for non-face object processing. This should not be taken to suggest 

that other regions in the brain are not also involved in the ability to recognize objects and 

could also be shaped structurally by such experience. We found only limited replication of 

the prefrontal areas where CT correlated with car expertise in prior work, but unlike in FFA, 

we did not have individual functional ROIs to rely on. The effects of experience on brain 

structure may be variable and require methods that allow for spatial displacement of ROIs 

across individuals (see also Pinel et al. 2014). Finally, the structural effects of expertise have 

an interesting advantage over the more standard functional expertise effects: it could lead to 

a relatively faster accumulation of evidence across different labs, as a VET battery (free and 

available from authors) can be easily administered to subjects in the lab or online, before or 

after their participation in any study with a functional FFA localizer.
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Figure 1. 
Dotplot depicting the behavioral performance in the CFMT (represented by the face 

stimulus) and the VET, grouped into VET-living (VET-LV: butterflies, leaves, mushrooms, 

owls, and wading birds) and VET-non-living (VET-NL: cars, motorcycles, and planes) 

categories. Each dot represents the accuracy of a given subject, and the horizontal bars 

represent the mean accuracy across subjects for a given category. The scatterplot to the right 

shows the relationship between standardized measures of VET-LV and VET-NL.
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Figure 2. 
(a) Scatterplots showing the significant partial correlations (regressing out subject age and 

global cortical thickness) between behavioral performance on faces (CFMT; left) and 

behavioral performance on non-living object categories (VET-NL; right) with regional CT in 

rFFA1 and rFFA2, respectively. Colored points in the scatterplots correspond to the 

individual inflated hemispheres shown in (b). (b) Four inflated right hemispheres, selected to 

demonstrate the most extreme (thickest or thinnest) FFA cortices as depicted by the 

scatterplots in (a). Subject-specific maps of cortical thickness are overlaid on the 

corresponding inflated hemispheres, with functionally-defined face- (FFA1/FFA2/OFA) and 

object-selective (parahippocampal gyrus, PHG) regions of interest outlined on top of the 

cortical thickness map. (c) Group-averaged cortical thickness map overlaid on the group-

averaged inflated right hemisphere, with group-averaged coordinates for the center of 

rFFA1, rFFA2 and rOFA overlaid. Also labeled are the occipital temporal sulcus (OTS) and 

collateral sulcus (CoS). The dashed box represents the field of view for the hemispheres 

represented in (b).
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Figure 3. 
(a) Scatterplots showing the significant partial correlations (regressing out subject age and 

global cortical thickness) between behavioral performance on living object categories (VET-

LV) with regional CT in lFFA1 (left) and lFFA2 (right). Colored points in the scatterplots 

correspond to colored bars above the individual inflated hemispheres represented in (b). (b) 

Four inflated left hemispheres, selected to demonstrate the most extreme (thickest or 

thinnest) FFA cortices as depicted by the scatterplots in (a). Subject-specific maps of cortical 

thickness are overlaid on the corresponding inflated hemispheres, with functionally-defined 

face- (FFA1/FFA2/OFA) and object-selective (parahippocampal gyrus, PHG) regions of 

interest outlined on top of the cortical thickness map. (c) Group-averaged cortical thickness 

map overlaid on the group-averaged inflated left hemisphere, with group-averaged 

coordinates for the center of lFFA1, lFFA2 and lOFA overlaid. Also labeled are the occipital 

temporal sulcus (OTS) and Collateral sulcus (CoS). The dashed box represents the field of 

view for the hemispheres represented in (b).
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Table 1

Descriptive statistics.

Average Cortical Thickness (std dev) Range

Right FFA1 2.4 (0.3) 1.53 – 2.95

Right FFA2 2.7 (0.3) 2.17 – 3.58

Right OFA 2.4 (0.7) 1.75 – 5.05

Right PHG 2.4 (0.4) 1.38 – 3.25

Left FFA1 2.3 (0.4) 1.43 – 3.71

Left FFA2 2.6 (0.5) 1.44 – 3.51

Left OFA 2.2 (0.4) 1.21 – 3.1

Left PHG 2.5 (0.4) 1.8 – 3.94

Global CT 2.5 (0.3) 1.8 – 2.9

Age 26 (4.7) 18 – 34

CFMT_all 0.8 (0.1) 0.57 – 0.96

VET-LV 0.6 (0.1) 0.47 – 0.69

VET-NL 0.7 (0.1) 0.40 – 0.84

Matching-Bird 1.3 (0.4) 0.56 – 2.14

Matching-Car/Plane 0.6 (0.7) −0.54 – 2.17

SR-LV 2.2 (1) 1 – 5.2

SR-NL 4.2 (1.7) 1 – 7.67
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Table 2

Localization of regions of interest.

N Mean Talairach coordinates for peak face-selective 
voxel ± SD

Face Selectivity (Face – 
Butterfly) [95% CI]

t-test of mean Face-
selectivity: t-statistic (p-

value)

Right FFA1 26 40, −59, −23 (4, 8, 5) 0.31 [0.22, 0.40] 6.95 (<.0001)

Right FFA2 24 40, −38, −22 (3, 7, 4) 0.28 [0.23, 0.34] 9.58 (<.0001)

Right OFA 24 29, −84, −23 (9, 7, 7) 0.17 [0.09, 0.26] 4.02 (.0004)

Right PHG 27 27, −55, −19 (3, 6, 4) −0.23 [−0.26, −0.19] −11.40 (<.0001)

Left FFA1 27 −39, −59, −24 (4, 8, 5) 0.19 [0.12, 0.26] 5.00 (<.0001)

Left FFA2 24 −40, −40, −24 (4, 7, 6) 0.18 [0.13, 0.23] 6.72 (<.0001)

Left OFA 23 −34, −80, −24 (9, 8, 5) 0.18 [0.08, 0.28] 3.55 (.0015)

Left PHG 27 −29, −53, −19 (4, 7, 4) −0.27 [−0.31, −0.22] −11.64 (<.0001)
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Table 4

Partial correlations across behavioral measures and anatomically-defined volumes matched with those in 

which car expertise effects on CT were observed in Gilaie Dotan et al. (2012). Regions were defined based on 

the MNI coordinates (transformed to Talairach using Matlab (MathWorks, Natick, MA)) and sizes reported in 

Gilaie Dotan et al. (2012) Table 1 and were identical for all participants. Regions included Left anterior 

inferior frontal gyrus (l aIFG): Tal (−42, 32, −1), volume (174 mm3); Right inferior precentral sulcus (r IPC): 

Tal (47, 1, 2), volume (520 mm3); Right superior frontal gyrus (r SFG): Tal (12, 53, 10), volume (47 mm3); 

Right middle frontal gyrus (r MFG): Tal (29, 18, 37), volume (27 mm3). Behavioral measures included VET-

living (VET-LV), VET-non-living (VET-NL) and faces (CFMT). We find a significant correlation between 

VET-LV and CT in the right SFG region, after we regress out the influence of global CT and age (r=.41, p=.

028).

VET-LV VET-NL CFMT

l aIFG −0.13 −0.13 0.24

r iPC 0.19 0.22 −0.08

r MFG −0.07 −0.22 −0.11

r SFG 0.41 0.14 0.28
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Table 6

Correlations of functional selectivity for faces with CT in each ROI (at a size of four 3mm3 voxels). No 

correlations reached significance at p<.05.

rFFA1 rFFA2 lFFA1 lFFA2

fMRI C-B 0.04 −0.11 0.13 −0.06

fMRI F-B −0.33 −0.12 −0.15 0.29

J Cogn Neurosci. Author manuscript; available in PMC 2016 September 23.


	Abstract
	Introduction
	Methods
	Subjects
	Behavioral Assessments
	MRI acquisition
	Data Analysis
	Cortical Thickness

	Results
	Relationship between performance and cortical thickness
	Multiple-regressions on cortical thickness
	Relationship between functional and structural effects of expertise

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

