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Abstract

Interruption of combination antiretroviral therapy in HIV-1-infected individuals leads to rapid viral 

rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117, a 

broad and potent neutralizing antibody (bNAb) against the CD4 binding site of HIV-1 Env1, in the 

setting of analytical treatment interruption in 13 HIV-1-infected individuals. Participants with 

3BNC117-sensitive virus outgrowth cultures were enrolled. Two or four 30 mg kg−1 infusions of 

3BNC117, separated by 3 or 2 weeks, respectively, are generally well tolerated. Infusions are 

associated with a delay in viral rebound for 5–9 weeks after two infusions, and up to 19 weeks 

after four infusions, or an average of 6.7 and 9.9 weeks respectively, compared with 2.6 weeks for 

historical controls (P < 0.00001). Rebound viruses arise predominantly from a single provirus. In 

most individuals, emerging viruses show increased resistance, indicating escape. However, 30% of 

participants remained suppressed until antibody concentrations waned below 20 μg ml−1, and the 

viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, 

suggesting failure to escape over a period of 9–19 weeks. We conclude that administration of 

3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during 

analytical treatment interruption in humans.

A fraction of HIV-1 infected individuals develops broad and potent serologic activity against 

the virus. Single-cell antibody cloning methods2 have uncovered the source of this activity 

as broadly neutralizing antibodies (bNAbs), which target different sites on the HIV-1 

envelope spike protein, gp1601–3.

In animal models, bNAbs show potent prophylactic activity, suppress established viraemia, 

and delay viral rebound during analytical treatment interruption (ATI)4–8. In humans, a 

phase I clinical trial showed that 3BNC117 is generally safe and effective in transiently 

reducing viraemia in chronically HIV-1-infected individuals9. A single infusion of 3BNC117 

was well tolerated, rapidly decreased viral loads in viraemic individuals by an average of 

1.48 log10 copies per ml, with durable activity for 4 weeks9. In addition, 3BNC117 

increased autologous antibody responses in HIV-1-infected individuals, and enhanced 

clearance of infected cells in humans and in humanized mice10,11. VRC01, a less potent 

bNAb that also targets the CD4-binding site, suppressed viraemia by 1.14 log10 (refs 12,13 

and Fig. 1a, b).

Scheid et al. Page 2

Nature. Author manuscript; available in PMC 2016 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To investigate whether 3BNC117 can suppress viral rebound from the latent reservoir during 

ATI in chronically suppressed HIV-1 infected humans, we conducted a phase IIa open label 

clinical trial. To select participants with 3BNC117-sensitive viruses in their latent reservoirs, 

we performed bulk viral outgrowth cultures of peripheral blood mononuclear cells (PBMCs) 

from individuals whose viraemia was suppressed by combination antiretroviral therapy 

(ART). The resulting isolates were screened for sensitivity to 3BNC117 using the TZM-bl 

assay (Supplementary Table 1). Of 63 individuals screened, only 11% yielded viruses that 

were fully resistant to 3BNC117 (IC50 > 20 μg/ml), and 65% were sensitive to 3BNC117 

IC50 at concentrations below 2.0 μg/ml. In contrast only 29% were similarly sensitive to 

VRC01 (Fig. 1a and b, Extended Data Fig. 1 and Supplementary Table 1).

We enrolled HIV-1 infected individuals who were on suppressive antiretroviral therapy 

(ART) with plasma viral loads <50 HIV-1 RNA copies per ml for at least 12 months, had 

CD4 counts >500 cells per mm3, yielded 3BNC117-sensitive outgrowth viruses (IC50 ≤ 2.0 

μg ml−1), and whose viral load at screen was <20 copies per ml (Extended Data Fig. 1, 

Supplementary Tables 2 and 4, and Methods). Participants were enrolled in two groups: 

eightin group A to receive two 30 mg kg−1 infusions three weeks apart, while seven in group 

B received up to four 30 mg kg−1 infusions at two-week intervals (Fig. 1c, d, Supplementary 

Table 2). Two group A participants had viral loads >20 copies per ml at the time of infusion 

and were excluded from further analysis (Supplementary Tables 2 and 4).Participants are 

numbered 701–715 (Supplementary Table 2).

ATI was started 2 days after the first 3BNC117 infusion. ART was reinitiated and infusions 

were stopped after two consecutive plasma viral load measurements exceeded 200 copies 

per ml. All individuals on non-nucleoside reverse transcriptase inhibitors (NNRTIs) were 

switched to an integrase-inhibitor-based regimen (dolutegravir plus tenoforvir disoproxil 

fumarate/emtricitabine) four weeks before ATI owing to the long half-life of NNRTIs 

(Supplementary Table 2).

Both dosing regimens were generally well tolerated. The majority of reported adverse events 

were transient and grade 1 in severity (Supplementary Table 5). The mean CD4 T-cell count 

at baseline (day 0) was 747 cells per mm3, and the average change in CD4 T-cell counts 

between start of ATI and rebound was −127 cells per mm3. Although CD4T cells declined 

modestly during viral rebound in some participants, CD4 T-cells returned to baseline by 

week 12 in most participants (mean 828 cells per mm3) (Extended Data Fig. 2 and 

Supplementary Table 4). Of 12 individuals tested, 5 showed measurable increases in the 

magnitude and/or breadth of T cell responses to HIV-1 12 weeks after ATI, relative to 

baseline (Extended Data Fig. 3). None of the participants experienced acute retroviral 

syndrome during rebound, and viraemia was re-suppressed below 20 copies per ml in all 

participants within 2–7 weeks after restarting ART (Supplementary Table 4). We conclude 

that up to four 30 mg kg−1 infusions of 3BNC117 during ATI are generally safe and well 

tolerated.

By anti-idiotype ELISA9 the half-life of 3BNC117 during ATI was 19.6 days among group 

A participants, and 14.1 days among those in group B (Fig. 1e, f and Supplementary Table 
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4). These measurements are similar to previously reported values for 3BNC117 in HIV-1-

infected individuals on ART9 (Fig. 1e).

All six group A participants maintained viral loads below 200 copies per ml during the first 

4 weeks, with rebound 5–9 weeks after ART interruption (Fig. 2a and Supplementary Table 

4a). In group B, rebound occurred 3–19 weeks after ATI, with four out of seven (57%) 

participants remaining suppressed for at least 10 weeks (Fig. 2b and Supplementary Table 

4b). The average time to rebound was 6.7 weeks in group A, 9.9 weeks in group B, and 8.4 

weeks for all participants together, compared with 2.6 weeks for matched historical non-

infused control individuals (Fig. 2c, Extended Data Fig. 4a, Supplementary Tables 4, 6 and 

7). Altogether, 6 of the 13 infused individuals (46%) remained suppressed until at least 9 

weeks after ATI. Relative to matched historical control individuals, the delay to rebound 

among all 3BNC117-infused participants was highly significant (P < 0.00001, weighted log-

rank test, Fig. 2c, Extended Data Fig. 4, Supplementary Tables 4, 6 and 7 and Methods). We 

conclude that repeated infusions of 3BNC117 are generally safe and significantly delay 

HIV-1 rebound from the latent reservoir during ATI.

Time to viral rebound did not correlate with pre-ATI viral culture sensitivity to 3BNC117, 

nor to baseline levels of cell-associated HIV-1 DNA (Fig. 2d and Extended Data Fig. 4e). 

Therefore the significance of viral outgrowth sensitivity as an inclusion criterion is not clear. 

3BNC117 levels at rebound were also variable, ranging from 6–168 μg ml−1, but were 

directly correlated to the IC80 of the emerging virus (Fig. 2a, b, e)

To determine whether rebound was associated with resistance to 3BNC117, we compared 

pre-infusion and rebound viral outgrowth cultures. A majority (8/13) of participants had 

rebound viruses that were more resistant to 3BNC117 (IC80 > threefold higher, Fig. 3a, c, 

Extended Data Fig. 5a, Supplementary Table 3). Among group A participants, all but one 

(707) had more resistant rebound viruses; however, among group B participants, four of 

seven (710, 711, 712 and 715) showed similar pre-infusion and rebound sensitivity to 

3BNC117 (Fig. 3a, c, Extended Data Fig. 5a, Supplementary Table 3). Among these five 

individuals, 711 was the earliest to rebound at 3 weeks, despite having viruses that were 

surprisingly sensitive to 3BNC117 as measured by IC50 (Fig. 2b, Extended Data Fig. 5a, 

Supplementary Tables 3 and 4). However, 100% neutralization was not achieved against 711 

rebound or pre-infusion viruses, even at high (50 μg ml−1) antibody concentrations, 

suggesting that 3BNC117 was not fully therapeutic (Extended Data Fig. 5, Supplementary 

Table 3). Thus, the only participant in the study to rebound within 3 weeks of ATI may have 

done so because of pre-existing resistance to 3BNC117 by the dominant virus in the 

reservoir.

The other 4 participants that showed no change between pre- and post-infusion culture 

sensitivity to 3BNC117, 707, 710, 712, and 715, rebounded relatively late at 9, 19, 16 and 11 

weeks after ATI, respectively (Figs 2a, b, 3a, c, Extended Data Fig. 5, Supplementary Tables 

3 and 4). In all of these individuals rebound was associated with relatively low antibody 

concentrations ranging from 6–41 μg ml−1 (mean 19.7 μg ml−1). This antibody concentration 

represents 9.6-fold the mean IC80 for the rebounding viruses, which is consistent with 

previous reports on the relationship between suppressive 3BNC117 concentration and 

Scheid et al. Page 4

Nature. Author manuscript; available in PMC 2016 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neutralization titre in macaques14 (Fig. 2, Extended Data Fig. 5, Supplementary Tables 3 and 

4).

To determine whether viral rebound during ATI was associated with resistance to other 

bNAbs undergoing clinical testing, we examined sensitivity to 10-1074 (ref. 15), which 

targets a different and non-overlapping epitope on the HIV-1 trimer (Fig. 3b, d, Extended 

Data Fig. 5, and Supplementary Table 3). With the exception of 703 and 711, the 

participants' rebound cultures did not show increased resistance to 10-1074. We conclude 

that rebound during ATI in the presence of 3BNC117 is infrequently associated with 

increased resistance to 10-1074.

To characterize viruses emerging from the latent reservoir further, we performed single 

genome sequencing (SGS) of viral RNA from the plasma and viral outgrowth cultures from 

eight individuals. Phylogenetic analysis of these sequences indicated that all of these eight 

trial participants were infected with epidemiologically unrelated viruses (Extended Data Fig. 

6). Given the limited sampling of the pre-infusion reservoir, rebound viruses did not always 

fall within the radiation of pre-infusion viral isolates (Fig. 3e, f, Extended Data Figs 7 and 8, 

Supplementary Figs 1 and 2).

Remarkably, in five of eight participants, all rebounding virus sequences clustered within a 

low diversity lineage, consistent with the clonal expansion of a single recrudescent virus 

(Fig. 3e, f, Extended Data Figs 7 and 8, Supplementary Table 8). These data contrast with 

individuals undergoing ATI in the absence of antibody infusion, where virus rebound is 

consistently polyclonal, indicating the activation of multiple latently infected cells16–19. 

Thus, in addition to delaying rebound, 3BNC117 appears to restrict the outgrowth of viral 

genotypes from the latent reservoir.

Six of eight participants sequenced had rebound viral outgrowth culture and/or plasma 

sequences that indicated 3BNC117 resistance. For example, in 704, all rebound viruses 

carried a serine at position 456 (Fig. 4a and Supplementary Figs 1 and 2), which may disrupt 

a highly conserved salt bridge that maintains the V5 loop's position and conformation20–22. 

Similarly, in 708 and 709, nearly all rebound viruses carried atypical residues at position 

282, where a lysine residue typically forms a salt bridge with 3BNC117 (Fig. 4a and 

Supplementary Figs 1 and 2)23. However, documented 3BNC117 resistance mutations24 

were not universally identified among rebound viral strains (Fig. 4a and Supplementary Figs 

1 and 2). Only a minor fraction (3 of 23) of sequences in the rebound population of 

participant 701 had potential resistance-conferring residues in Loop D (274F, 282R), while 

the remaining sequences did not (Fig. 4a and Supplementary Figs 1 and 2). Similarly, in 702 

and 703, only a subset of rebound viruses carried a putative resistance-conferring A281D 

change1,23. Nevertheless, the frequency of this change increased markedly with time in both 

participants, indicating continued selection for 3BNC117 resistance (Fig. 4a and 

Supplementary Figs 1 and 2). For participants 707 and 711, no sequence features were 

identified that would indicate 3BNC117 resistance.

To determine the sensitivity of rebound viruses to 3BNC117, we performed TZM-bl 

neutralization assays using pseudoviruses typed with SGS Env genotypes (Fig. 4b, Extended 
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Data Figs 7 and 8, Supplementary Figs 1 and 2 and Supplementary Table 9). With the 

exception of participant 707, who rebounded 9 weeks after ATI at very low 3BNC117 titres, 

Env genotypes at rebound were more resistant to 3BNC117 than pre-ATI (Fig. 4b, Extended 

Data Figs 7 and 8 and Supplementary Table 9). We conclude that viral rebound during ATI 

in the presence of 3BNC117 selects for the emergence of resistant variants, indicating strong 

selection pressure by this antibody on viral populations arising from the reservoir.

Antibody potency and half-life are directly correlated with HIV-1 prophylaxis in pre-clinical 

models. For example, VRC01, a CD4bs antibody that is less potent than 3BNC1171, is less 

effective than 3BNC117 in preventing SHIVAD8 infection in macaques8,25. Consistent with 

these observations, clinical trials with combinations of three less-potent first-generation 

bNAbs showed limited effects on viral rebound in the setting of ATI in chronically infected 

individuals26,27. In addition, selective pressure as evidenced by escape mutations was only 

observed for one of the three antibodies used in the combination, 2G1226,27. In contrast, 

3BNC117 alone significantly delayed viral rebound with nearly half of all individuals 

remaining below 200 copies per ml until at least 9 weeks, including four individuals who 

failed to develop resistance and only rebounded at low antibody concentrations. We 

speculate that the difference in efficacy between 3BNC117 and less potent bNAbs in the 

setting of ATI is due to increased potency and/or a longer half-life1,9,13.

Nevertheless, the majority of the individuals we studied rebounded at high 3BNC117 serum 

concentrations. A single viral genotype displaying increased resistance to 3BNC117 

established rebound in most cases. These viruses represent pre-existing dormant variants that 

emerged from the latent reservoir. The time to rebound did not correlate with the amount of 

viral DNA in circulating PBMCs; however, this is a poor measure of the HIV-1 reservoir, 

since most integrated proviruses in patients on ART are defective28. Instead, the delay in 

viral rebound may represent a measure of the frequency of 3BNC117-resistant variants in 

the latent reservoir.

Combinations of drugs are needed to maintain HIV-1 suppression in effective ART 

regimens. Similarly, combinations of antibodies were required to suppress viraemia in 

humanized mice6,7. We speculate that combinations of bNAbs will also be needed to 

increase the frequency of individuals that remain suppressed by antibody during ATI.

Whether 3BNC117 can also impact the size and composition of the latent reservoir during 

ATI will require additional studies.

Methods

Study design

An open-label, dose-escalation phase 2a study was conducted in HIV-1-infected participants 

(http://www.clinicaltrials.gov; NCT02446847). Study participants were enrolled sequentially 

according to eligibility criteria. Group A received 3BNC117 on days 0 and 21 at a dose of 

30 mg/kg body weight at a rate of 250 ml/hour. Group B received 3BNC117 on days 0, 14, 

28 and 42 at a dose of 30 mg/kg, as long as viral rebound did not occur. Antiretroviral 

therapy (ART) was discontinued 2 days after the first 3BNC117 infusion (day 2). Plasma 
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HIV-1 RNA levels were monitored weekly, and ART was resumed when viral load increased 

to ≥200 c.p.m. in two consecutive weekly measurements.

Study participants were followed for 36 weeks after the first infusion. Safety data are 

reported until week 36 for participants enrolled in group A and until week 14 for participants 

enrolled in group B. All participants provided written informed consent before participation 

in the study and the study was conducted in accordance with Good Clinical Practice. The 

protocol was approved by the Federal Drug Administration in the USA and the Institutional 

Review Board at the Rockefeller University.

Study participants

All study participants were recruited at the Rockefeller University Hospital, New York, 

USA. Eligible participants were adults aged 18–65 years, HIV-1-infected and before 

enrolment had plasma HIV-1 RNA levels <50 c.p.m. for at least 12 months while on 

combination ART and <20 c.p.m. at the screening visit, and current CD4 count >500/μl. In 

addition, participant-derived HIV-1 isolates produced by co-culture of participant PBMCs 

with HIV-uninfected donor PBMCs were required to be neutralized by 3BNC117 with an 

IC50 <2 μg/ml in TZM-bl neutralization assays, as previously described31. An IC50 of <2 

ug/ml was chosen as a cut-off based on previous PK data of 3BNC117 in humans9 and data 

in macaques showing that antibody levels 10–100 times the IC50 value against infecting viral 

strains are necessary to control viral rebound14. However, given the limited diversity and 

representation of the latent reservoir in outgrowth cultures (Supplementary Fig. 2) and the 

fact that no correlation between pre-infusion IC50 and delay of viral rebound was found in 

this study, the significance of this criterion is unclear. Participants on an NNRTI-based ART 

regimen were switched to a study-provided integrase-inhibitor-based regimen (dolutegravir 

(Tivicay, ViiV Pharmaceuticals) + tenofovir disoproxil fumarate/emtricitabine (Truvada, 

Gilead Sciences) 4 weeks before treatment interruption due to the prolonged half-life of 

NNRTIs. Exclusion criteria included history of CD4 nadir <200 cells/μl, concomitant 

hepatitis B or C infections, previous receipt of a monoclonal antibody of any kind, or 

clinically relevant physical findings, medical conditions or laboratory abnormalities. 

Pregnant and breastfeeding women were not eligible.

Historical controls (ACTG trial participants)

Viral rebound data from 52 participants who participated in four ACTG ATI studies without 

additional interventions (ACTG 37132, A502433, A506834, and A519732) were compared 

with viral rebound data in this study. Historical controls were selected based on similar 

inclusion criteria: age 18–65, Plasma HIV-1 RNA <50 c.p.m. for at least 12 months before 

ATI while on combination ART, CD4 count at time of ATI >500 cells/μl, CD4 nadir >200 

cells/μl, weekly viral load measurements at least until viral rebound occurred.

Study procedures

The appropriate volume of 3BNC117 was calculated according to body weight, diluted in 

sterile normal saline to a total volume of 250 ml, and administered intravenously over 60 

min. Study participants received 3BNC117 on days 0 and 21, or 0, 14, 28, and 42 and 

remained under monitoring at the Rockefeller University Hospital for 4 h after each 
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infusion. Participants returned for frequent follow up visits for safety assessments, which 

included physical examination, measurement of clinical laboratory parameters such as 

haematology, chemistries, urinalysis, and pregnancy tests (for women). Plasma HIV-1 RNA 

levels were monitored weekly during the ATI period and CD4 counts were measured every 

other week (Supplementary Table 4). Study investigators evaluated and graded adverse 

events according to the DAIDS AE Grading Table and determined causality. Blood samples 

were collected before and at multiple times after 3BNC117 infusions. Samples were 

processed within 4 h of collection, and serum and plasma samples were stored at −80 °C. 

PBMCs were isolated by density gradient centrifugation. The absolute number of peripheral 

blood mononuclear cells was determined by an automated cell counter (Vi-Cell XR; 

Beckman Coulter), and cells were cryopreserved in fetal bovine serum plus 10% DMSO.

ART re-initiation criteria

Antiretroviral therapy was discontinued 2 days after the first 3BNC117 infusion (day 2). 

ART was re-initiated when HIV-1 RNA levels were found to be ≥200 c.p.m. and/or CD4 T 

cell counts decreased to <350 cells/μl and the result was confirmed with a repeat 

measurement.

Plasma HIV-1 RNA Levels

HIV-1 RNA levels in plasma were measured at the time of screening (within 49 days before 

the first infusion), day 0 (before infusion), and weekly until week 12, then at weeks 14, 24 

and 36. Participants that remained virologically suppressed to <20 c.p.m. off ART beyond 

week 12, returned for weekly measurements of plasma HIV-1 RNA levels. HIV-1 RNA 

levels were determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Assay, 

Version 2.0, which detects between 20 and 1 × 107 c.p.m. This assay was performed at 

LabCorp.

CD4+ and CD8+ T cells

CD4+ and CD8+ T-cell counts were determined at screening, on day 0 (before infusion), and 

weeks 2, 3, 4, 6, 8, 10, 12, 14, and 36 by a clinical flow cytometry assay, performed at 

LabCorp. Cells were analysed by flow cytometry. Leukocytes were determined as CD45+ 

cells. Percentage of cells positively stained for CD3, CD4, CD8 as well as the CD4/CD8 

ratio were analysed with the BD Multiset software (BD Biosciences).

3BNC117 study drug

3BNC117 is a recombinant, fully human IgG1κ mAb recognizing the CD4 binding site on 

the HIV-1 envelope1. The antibody was cloned from an HIV-1-infected viraemic controller 

in the International HIV Controller Study1,35, expressed in Chinese hamster ovary cells 

(clone 5D5-5C10), and purified using standard methods. The 3BNC117 drug substance was 

produced at Celldex Therapeutics Fall River (MA) GMP facility, and the drug product was 

fill-finished at Gallus BioPharmaceuticals (NJ). The resulting purified 3BNC117 was 

supplied as a single use sterile 20 mg/ml solution for intravenous injection in 8.06 mM 

sodium phosphate, 1.47 mM potassium phosphate, 136.9 mM sodium chloride, 2.68 mM 
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potassium chloride, and 0.01% polysorbate 80. 3BNC117 vials were shipped and stored at 

4°C.

Measurement of 3BNC117 serum levels

Serum levels of 3BNC117 were determined by a validated sandwich ELISA at Celldex 

Theapeutics as described previously9. Plates (Sigma-Aldrich PN: CLS3590 96-well, High 

Bind, polystyrene) were coated with 4 μg/ml of an anti-idiotypic antibody specifically 

recognizing 3BNC117 (anti-ID 1F1 mAb), and incubated overnight at 2–8 °C. After 

washing, plates were blocked for 1 h with 5% BSA. Serum samples, QCs and standards 

were added (1:50 minimum dilution in 5% BSA) and incubated for 1 h at room temperature. 

3BNC117 was detected using an HRP-conjugated mouse anti-human IgG kappa chain 

specific antibody (Abcam PN: ab79115) and the HRP substrate tetra-methylbenzidine. 

3BNC117 concentrations were then interpolated from a standard curve of 3BNC117 using a 

four-parameter logistic curve-fitting algorithm. The reference standard and positive controls 

were created from the drug product lot of 3BNC117 used in the clinical study.

Pharmacokinetic analysis

Blood samples were collected immediately before and at the end of infusions as well as on 

the day after infusion, weekly during the ATI period and at weeks 14, 24 and 36. 3BNC117 

serum levels were measured by ELISA (Celldex Therapeutics).

Neutralization assay

Serum samples, viral supernatants, and control antibodies were tested against HIV-1 

envelope pseudoviruses as previously described36,37.

Cell-associated HIV-1 DNA

Participant's CD4+ T-cells were isolated from 10 million cryopreserved PBMCs by negative 

magnetic selection (Miltenyi). Total DNA was extracted and quantitative PCR performed 

using pol- and CCR5-directed primers as previously described7.

Virus cultures

Autologous virus was retrieved from HIV-1 infected individuals as previously described31. 

Briefly, healthy donor PBMCs were obtained by leukapheresis from a single donor. Cells 

were cultured at a concentration of 5 × 106/ml in Iscove's Modified Dulbecco's Medium 

(IMDM; Gibco) supplemented with 10% fetal bovine serum (FBS; HyClone, Thermo 

Scientific), 1% penicillin/streptomycin (Gibco), and 1 μg/ml phytohemagglutinin (PHA; 

Life Technologies) at 37 °C and 5% CO2. After 2–3 days, 5 × 106 CD8+ depleted cells were 

transferred into IMDM supplemented with 10% FBS, 1% penicillin/streptomycin, 5 μg/ml 

polybrene (Sigma), and 100 U/ml of IL-2. Cells were then co-incubated with 4–8 × 106 

CD4+ T cells from the study participants and 10 million irradiated healthy donor PBMCs 

that had been cultured together for 24 h prior in IMDM supplemented with 10% FBS, 1% 

penicillin/streptomycin, 100 U/ml IL-2 and 1 μg/ml PHA at 37°C and 5% CO2. 

Lymphoblasts were replenished weekly by adding 3 million healthy donor PHA stimulated 

CD8+ depleted lymphoblasts. Culture supernatants were quantified using the Alliance HIV-1 
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p24 Antigen ELISA kit (PerkinElmer) according to the manufacturer's instructions. TCID50s 

were determined for all HIV-1 containing supernatants36,37 and then tested for sensitivity 

against 3BNC117 and other bNAbs in a TZM.bl neutralization assay. Blood samples and 

leukapheresis were collected under separate IRB-approved protocols and after volunteers 

provided informed consent.

Sequence analysis

HIV-1 RNA extraction and single genome amplification was performed as described 

previously38. In detail, HIV-1 RNA was extracted from plasma samples using the Qiagen 

MinElute Virus Spin kit (Qiagen) followed by first strand cDNA synthesis using SuperScript 

III reverse transcriptase (Invitrogen Life Technologies) and the antisense primer env3out 5′-

TTGCTACTTGTGATTGCTCCATGT-3′. gp160 env was amplified using envB5out 5′-

TAGAGCCCTGGAAGCATCCAGGAAG-3′ and envB3out 5′-

TTGCTACTTGTGATTGCTCCATGT-3′ in the first round and second round nested primers 

envB5in 5′-CACCTTAGGCATCTCCTATGGCAGGAAGAAG-3′ and envB3in 5′-

GTCTCGAGATACTGCTCCCACCC-3′. PCRs were performed using a High Fidelity 

Platinum Taq (Invitrogen) at 94 °C, 2 min; (94 °C, 15 s; 55 °C 30 s; 68 °C, 4 min) × 35; 

68°C, 15 min. Second round PCR was performed with 1 μl of first PCR product as template 

and High Fidelity Platinum Taq at 94 °C, 2 min; (94 °C, 15 s; 55 °C 30 s; 68 °C, 4 min) × 

35; 68 °C, 15 min. Sequence alignments, phylogenetic trees and mutation analysis of gp160 

was performed by using Geneious Pro software, version 8.1.6 (Biomatters Ltd.)39. Sequence 

analysis was performed using Antibody database by A. West30. Logograms were generated 

using the Weblogo 3.0 tool40.

Pseudovirus generation

Selected SGS from virus culture supernatants and plasma were used to generate 

pseudoviruses and tested for sensitivity to bNAbs in a TZM.bl assay41. To produce the 

pseudoviruses, plasmid DNA containing the cytomegalovirus (CMV) promoter was 

amplified by PCR using forward primer 5′-GTTGACATTGATTATTGACTAG and reverse 

primer 5′-CTTCCTGCCATAGGAGATGCCTAAAGCTCTGCTTATATAGAC-CTC. The 

CMV promoter amplicon was fused to individual env SGS amplicons by PCR using forward 

primer 5′-AGTAATCAATTACGGGGTCATTAGTTCAT and reverse primer 5′-

ACTTTTTGACCACTTGCCACCCAT. Fusion PCR was carried out using the Expand Long 

Template PCR System (Roche) in a 60μl reaction consisting of 1 ng purified CMV promoter 

amplicon, 0.125 μl unpurified env SGA amplicon, 200 nM forward and reverse primers, 200 

μM dNTP mix, 1 × Buffer 1, and 1 μl DNA polymerase mix. PCR was run at 94 °C for 2 

min; 25 cycles (94 °C for 12 s, 55 °C for 30 s, 68 °C for four minutes); and 72 °C for 10 

min. Resulting amplicons were analysed by gel electrophoresis, purified without gel 

extraction, and co-transfected with pSG3Δenv into HEK293T cells to produce pseudoviruses 

as described previously41.

Statistical analyses

Adverse events were summarized by the number of participants who experienced the event, 

by severity grade according to the DAIDS AE Grading Table and by relationship to 

3BNC117 as determined by the investigator. PK-parameters were estimated by performing a 
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non-compartmental analysis (NCA) using WinNonlin 6.3. Kaplan–Meier survival curves 

were used to compare time to rebound in trial participants to participants in previous ATI 

studies conducted by ACTG29. To exclude the possibility that the observed delay in rebound 

is confounded by clinical factors, we compared the clinical variables between the control 

(ACTG trial participants) and treated group using a two-sided Fisher's Exact test for 

categorical variables (gender and CD4 Nadir) and an unpaired Wilcoxon test (two-sided) for 

continuous variables (age, years on ART and CD4 count before ATI initiation) 

(Supplementary Table 7). Additionally, we tested for each potential confounder whether the 

variable is predictive for the rebound time. Therefore, we built a univariate survival 

regression model for each potential confounder and compared those models to a null model 

using a likelihood ratio test (LRT), which determines how much better the more complex 

model explains the data than the less complex model. Confounders were considered 

significant if the model with the potential confounder had an LRT P value of 0.05 or less, 

which was the case for ‘years on ART’ as well as ‘age’ for the comparison between the 

controls and the combined treatment group (Supplementary Table 7). We did not perform a 

standard Cox regression, since the proportional hazards assumption was not fulfilled for 

some of the variables. Rebound time was modelled using a log-normal distribution, which 

resulted in the best model fit as measured by Akaike information criterion (AIC) among 

several different distributions (Extended Data Fig. 4b–d). To determine the effect of the 

treatment after adjusting for the discovered confounders, we performed a weighted log-rank 

test42. Therefore, for each sample inverse probability weights based on the discovered 

confounders were estimated, which were used to re-weigh the variables of the log-rank 

statistic. We performed a bootstrapped version of the weighted log-rank test, as 

recommended in ref. 42 owing to the small sample size. We estimated the class probabilities 

using a lasso logistic regression model trained with the Matlab function lassoglm with five 

lambda values in a threefold cross-validation. To improve stability, the optimal lambda for 

the lasso logistic regression was determined only once using the original labels and used in 

all bootstrap runs to train the models that estimate the class probabilities.

Additionally, we performed an LRT at significance level α = 0.05 based on a parametric 

survival regression model adjusted for the discovered confounders. In this analysis the 

treatment group still significantly predicted the delay in rebound (Supplementary Table 7). 

For the analyses, the R (version 3.2.1) packages survival (version 2.38-3) and fitdistrplus 

(version 1.0-6) were used and Matlab (version R2015b) for implementation of the weighted 

log-rank test.

Sequence and phylogenetic analysis

Nucleotide alignments were generated using ClustalW (v.2.11)43 and manually adjusted 

using Geneious R8 (v.8.1.6)39 and MacClade (v.4.08a)44. Sites that could not be 

unambiguously aligned were removed for all phylogenetic analyses. Optimal evolutionary 

model classes were determined using jModelTest (v.2.1.4)45. Maximum likelihood 

phylogenetic trees were generated using PhyML (v.3)46 with joint estimation of evolutionary 

model parameter values and phylogenies. The tree comparing all participants was midpoint 

rooted and each within-subject tree was rooted on the basal branch as determined by the 

between-subject tree. Sequences with premature stop codons and frameshift mutations that 
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fell in the gp120 surface glycoprotein region were excluded from all deduced protein 

analyses.

Sequences generated from the supernatants of viral outgrowth assays represented viruses 

that were present in the latent reservoir. Per assay, 4–8 million CD4+ T cells were activated. 

In an HIV-infected person who is completely suppressed on antiretroviral therapy, it has 

been determined that 1 × 10−6 resting CD4 cells are latently infected with replication 

competent virus47. Thus, one would expect to identify up to eight distinct viral isolates per 

individual culture. Single genome sequencing of the culture supernatants revealed sets of 

clonally related sequences, which appear as ‘rakes’ in a phylogenetic tree (Extended Data 

Figs 7 and 8). The most recent common ancestor of these rakes represents the reactivated 

virus that was present in the host (similar to the inference of infectious molecular clones as 

described in ref. 48). As shown in Extended Data Figs 7 and 8, sequences from culture 

reactions fall in 1–3 rakes within a given individual. We inferred each rake's most recent 

common ancestor (MRCA) by building a majority-rule consensus and treated it as a single 

virus from the participant's latent pool. These MRCAs were used to build the phylogenetic 

trees shown in Fig. 3.

Because mixed culture isolates replicated for 14 or more days, in vitro recombinants were 

observed. In vitro recombinants from culture reactions were identified and removed from the 

data set if they: (i) had two identifiable parental sequences within the same culture reaction; 

and (ii) exhibited three consecutive informative sites relative to one parent followed by three 

consecutive informative sites relative to another. We independently verified that a subset of 

these sequences showed evidence of recombination using the Recco tool (v.0.93)49.

Assessment of rebound virus clonality

The Poisson Fitter v2 tool50 is designed to test if a set of homogeneous sequences exhibits 

random diversification. If such a set of sequences exhibits a star-like phylogeny and a 

Poisson distribution of pairwise differences (Hamming distances), it can be inferred that a 

single virus gave rise to those sequences. Poisson Fitter v2 tests these and other parameters 

using maximum likelihood methods and performs a χ2 goodness of fit test to obtain a P 
value. A non-significant P value signifies that the observed Hamming distances adhere to a 

Poisson distribution and it can be inferred that a single virus gave rise to rebound. Single 

genome derived env sequences from the plasma at the earliest time point post-rebound from 

each participant were tested using Poisson Fitter (Supplementary Table 8).

ELISPOT T-cell response analysis

Interferon gamma Elispot assays were performed as described51. Briefly, 96-well 

polyvinylidene plates (Millipore, Bedford, Mass.) were precoated with 0.5 g/ml of anti-

IFNγ monoclonal antibody, 1-DIK (Mabtech, Stockholm, Sweden) and previously frozen 

PBMCs were plated at a concentration of 50,000 to 100,000 cells per well in a volume of 

100 μl of R10 medium (RPMI 1640 (Sigma), 10% fetal calf serum (Sigma), 10 mM HEPES 

buffer (Sigma)) with antibiotics (2 mM L-glutamine, 50 U of penicillin-streptomycin/ml). 

Plates were incubated overnight at 37°C, 5% CO2, and developed as described51. Cells were 

tested against a panel of 410 B-clade overlapping 18-mer peptides (OLPs) spanning the 
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entire HIV-1 genome (consensus sequence from 2001). These peptides were used in a matrix 

system of 11–12 peptides per pool to screen study participants for HIV-specific T cell 

responses. Confirmation of recognized individual peptides within a peptide pool was 

undertaken in an additional Elispot assay, as described52. Wells containing PBMCs and R10 

medium alone were used as negative controls and were run in duplicate on each plate. Wells 

containing PBMCs and phytohemagglutinin (PHA) served as positive controls. The numbers 

of spots per well were counted using an automated Elispot plate reader (ImmunoSpot Reader 

System; Cellular Technology Limited, Shaker Heights, OH). Responses were regarded as 

positive if they had at least three times the mean number of spot forming cells (SFC) in the 

two negative control wells and had to be >50 SFC/106 PBMCs (ref. 51,52).

Extended Data
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Extended Data Figure 1. Study participant selection and neutralization of pre-infusion cultures 
by 3BNC117
a, Flow diagram showing the selection of study participants. b, Bar diagrams showing IC50 

values (μg ml−1) in TZM-bl assays for 3BNC117 against bulk virus outgrowth culture 

supernatants from the indicated time point pre-infusion for each participant (Supplementary 

Table 3). For some participants both screen and day 0 cultures were obtained and showed 

less than threefold variation in IC50 values. The red dotted line indicates an IC50 of 2 μg 

ml−1 which was used as a threshold for inclusion in the study.

Extended Data Figure 2. CD4+ and CD8+ T cells during study period in participants
a–d, Absolute T cell counts (a, c) and percentage of CD4+ and CD8+ T cells among CD3+T 

cells (b, d) for group A and B, respectively (Supplementary Table 4). 3BNC117 infusions 

are indicated with red arrows. e, Comparison of absolute CD4+ T cell counts and percentage 

of CD4+ T cells among CD3+T cells at screen, day 0, rebound and after re-suppression. 
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Shown is the data from participants 701, 702, 703, 704, 707, 708, 709, 711 and 713 for 

whom re-suppression CD4 counts were available (Supplementary Table 4). The last 

available time point was used as re-suppression time point. Red lines indicate the mean 

value and error bars indicate standard deviation. P values were obtained using a paired t-test 

comparing the indicated time points. f, Plasma viral loads and CD4 counts in all study 

participants. 3BNC117 infusions are indicated with red arrows. The left y-axis shows plasma 

viral loads in RNA copies per ml (black curves), and right y-axis shows absolute CD4 counts 

in cells per μl (red curves). Grey areas indicate ART therapy.

Extended Data Figure 3. HIV-specific T-cell responses
Total breadth (open squares) and magnitude (bars) of T-cell responses against HIV-1 

overlapping peptides (OLPs) at the designated time points following administration of 

3BNC117 (yellow arrows indicate infusions of 3BNC117 at 30 mg kg−1). For all study 

participants, antiretroviral therapy was discontinued on day 2 after the first 3BNC117 
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administration. Blue arrows indicate the time of viral rebound. For study participants 710, 

712 and 715 rebound occurred at week 19, 16 and 11, respectively. Baseline samples for 

study participant 710 and week 12 samples for study participant 714 were not available for 

ELISpot analysis. Overall, breadth, magnitude and protein specificity were heterogeneous 

among the study participants.

Extended Data Figure 4. Viral rebound in ACTG control subjects and trial participants
a, Kaplan–Meier plot summarizing viral rebound in 52 ACTG trial participants who 

underwent ATI without antibody treatment (black, Supplementary Table 6) and trial 

participants (Fig. 2a, b, Supplementary Table 4). Six group A participants are shown in red, 

seven Group B participants in blue and the combination in green as indicated. The y-axis 

indicates the percentage of participants with viral levels below 200 RNA copies per ml, x-

axis indicates weeks after ATI initiation. The survival curves of all considered partitions of 
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the trial participants (group A, group B and group A + B) differed significantly at 

significance level α = 0.05 from the survival curve of the ACTG trial participants. For the 

comparison of group A (group A + B) with the ACTG trial participants, we performed a 

weighted log-rank test adjusting for the clinical variables ‘years on ART’ and ‘age’ to 

correct for possible confounding factors (Supplementary Table 7 P <0.00001). We identified 

those potential confounders by univariate parametric survival regression using a likelihood 

ratio test (Statistical Methods). Since we did not discover any confounders with the same 

analysis among all available clinical variables for the comparison between group B 

participants and the ACTG trial participants, we performed a standard log-rank test in that 

setting (P < 0.0001). b–d, In order to perform a survival regression, the distribution of the 

rebound times has to be determined. Therefore, we compared the empirical cumulative 

distribution function (CDF) of the rebound times (black, solid line) with the CDF of the 

rebound times to a fitted distribution (Weibull, exponential, normal, logistic, log-normal, and 

gamma) for each comparison group (combined trial participants, group A or group B with 

ACTG control patients). Since the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) were smallest for the log-normal distribution (green), we have 

chosen to model the rebound times with the log-normal distribution. e, Dot plot indicating 

the relationship between cell associated HIV DNA in pre-infusion PBMCs (y-axis) and the 

week of rebound (x-axis). Group A and group B participants are coloured red and blue 

respectively. The P value was derived from calculating the Pearson correlation coefficient.
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Extended Data Figure 5. In vitro neutralization of pre-infusion and rebound virus outgrowth 
cultures by 3BNC117 or 10-1074
a, b, TZM-bl assay neutralization by 3BNC117 (a) and 10-1074 (b) are shown for individual 

virus outgrowth cultures derived from pre-infusion (black lines/symbols) or rebound (red 

lines/symbols) time points for each participant. In some cases, multiple independent cultures 

were grown from a single time point and assayed for neutralization (Supplementary Table 

3). ‘Screen’ refers to cultures of PBMC samples taken weeks before infusion during 

screening, while ‘Day 0’ refers to cultures of PBMCs collected immediately before the first 

3BNC117 infusion. Rebound culture time points are denoted by the week (W) at which the 

samples were collected. Symbols reflect the means of two technical replicates; error bars 

denote standard deviation.
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Extended Data Figure 6. Phylogenetic tree of env nucleotide sequences from trial participants
A maximum likelihood phylogenetic tree was constructed from single-genome-derived viral 

env sequences from outgrowth culture supernatants as well as plasma from participants 701 

(olive), 702 (black), 703 (pink), 704 (yellow), 707 (light blue), 708 (green), 709 (dark blue) 

and 711 (brown). Hypervariable (as defined in http://www.hiv.lanl.gov/content/sequence/

VAR_REG_CHAR/) and other poorly aligned regions were excluded from the analysis. The 

tree was constructed using PhyML with a GTR+I+G substitution model and midpoint 

rooted. Asterisks indicate 100% bootstrap support (only values for major nodes are shown). 

The scale bar indicates 0.01 substitutions per site.
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Extended Data Figure 7. Rebound virus clonality and neutralization sensitivity to 3BNC117
Maximum likelihood phylogenetic trees of plasma and culture-derived env sequences are 

shown for participants 701, 702, 703, 704. Sequences obtained at screening, on Day 0, and 

consecutive rebound time points (plasma and cultures) are colour coded as indicated. The 

trees were rooted based on the branch insertion identified in the between-subject tree 

(Extended Data Fig. 6). Bootstrap values ≥90% are shown. Names of env sequences used to 

generate pseudoviruses for 3BNC117 neutralization analysis are indicated along with the 

respective IC80 titres in μg ml−1. Representative rebound viruses selected in Fig. 4b are 

marked with red stars (Fig. 4b, Supplementary Table 9). Zero branch length viruses in multi-

rebounders 702 and 703 are marked with black stars.
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Extended Data Figure 8. Rebound virus clonality and neutralization sensitivity to 3BNC117
Maximum likelihood phylogenetic trees of plasma- and culture-derived env sequences are 

shown for participants 707, 708, 709 and 711. Sequences obtained at screening, on day 0, 

and consecutive rebound time points (plasma and cultures) are colour coded as indicated. 

The trees were rooted based on the branch insertion identified in the between-subject tree 

(Extended Data Fig. 6). Bootstrap values ≥90% are shown. Names of env sequences used to 

generate pseudoviruses for 3BNC117 neutralization analysis are indicated along with the 

respective IC80titres in μg ml−1. Representative rebound viruses selected in Fig. 4b are 

marked with red stars (Fig. 4b, Supplementary Table 9). Zero branch length viruses in multi-

rebounder 709 are marked with black stars.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 3BNC117 neutralization coverage, trial design and pharmacokinetics of 3BNC117 in 
HIV-1-infected individuals during ATI
a, b, Sensitivity of virus outgrowth cultures from 63 ART suppressed individuals to 

3BNC117 and VRC01 (Supplementary Table 1). The y-axis shows the fraction of viral 

outgrowth culture supernatants neutralized by a given antibody concentration (x-axis) in 

Tzm-bl assays. Red line indicates cut-off IC50 (2 μg ml−1) for participation in the trial. c, d, 

Diagrammatic representation of study groups A and B respectively. 3BNC117 infusions 

indicated by the red arrows, and sampling for PK and virologic studies indicated below. 

Numbers indicate study weeks. e, f, 3BNC117 levels as determined by ELISA for group A 

(n = 6, left panel, red), group B (n = 7, right panel, red (n = 4), black (n = 2) and purple (n = 

1)), HIV-1 negative (n = 3, blue) and viraemic individuals (n = 6, green)9. Curves indicate 

mean 3BNC117 levels, error bars the standard deviation. Arrows indicate 3BNC117 

infusions.
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Figure 2. Delay in viral rebound in the presence of 3BNC117
a, b, Plasma viral loads and 3BNC117 levels in group A and group B participants 

respectively. 3BNC117 infusions are indicated with red arrows. The left y-axis shows 

plasma viral loads in RNA copies per ml (black curves), and right y-axis shows antibody 

levels measured by ELISA (red curves). Average rebound time point (2.6 weeks, 

Supplementary Table 6) in 52 ACTG trial participants who underwent ATI without antibody 

treatment29 is shown with dotted lines. Grey areas indicate ART therapy. c, Kaplan–Meier 

plot summarizing viral rebound in 52 ACTG trial participants who underwent ATI without 

antibody treatment (black, Supplementary Table 6), and the combination of all 13 

participants (red) who underwent ATI with 3BNC117 infusions. The y-axis indicates the 

percentage of participants with viral levels below 200 RNA copies per ml, x-axis indicates 

weeks after ATI initiation. The P value is based on a bootstrap version of the weighted log-

rank test adjusting for the potential confounders ‘years on ART’, and ‘age’ (Supplementary 

Table 7, Methods Statistical Analyses). d, Dot plot indicating the relationship between 

3BNC117 sensitivity of pre-infusion outgrowth cultures at screening (y-axis, IC80 in μg 

ml−1) and the week of rebound (x-axis). Group A (n = 6) and group B (n = 7) participants 

are coloured red and blue respectively. The P value was derived from calculating the Pearson 

correlation coefficients. e, Dot plot indicating the relationship between 3BNC117 sensitivity 

of rebound outgrowth cultures (y-axis, IC80 in μg ml−1) and the 3BNC117 serum 

concentration at rebound (x-axis, in μg ml−1). 704, 708, 709 and 713 did not reach IC80 at 

the concentrations tested and were assigned a value of 22 μg ml−1. Group A (n = 6) and 
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group B (n = 7) participants are coloured red and blue, respectively. The P value was derived 

from calculating the Pearson correlation coefficients.
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Figure 3. Viral rebound during ATI and 3BNC117 treatment
a, b, Graph of 3BNC117 (a) or 10-1074 (b) IC80 titres against baseline and rebound 

outgrowth cultures. Blue and green bars represent average IC80 titres against screen and day 

0 outgrowth cultures; red and purple bars represent IC80 titres against rebound outgrowth 

cultures from the indicated time points. Asterisks indicate cultures failing to reach an IC80 

up to 20 μg ml−1. c, d, Difference between rebound and pre-infusion culture IC80 titres 

(from a, b) for 3BNC117 (c) or 10-1074 (d). For cultures failing to reach an IC80 up to 20 

μg ml−1, a value of 20 μg ml−1 was assigned, and such cultures are marked with an asterisk. 

e, f, Clonality of the rebound virus. Maximum likelihood phylogenetic trees comparing pre-

ATI single genome derived env sequences (blue and orange) to rebound plasma env 
sequences (green and pink) are shown for participants whose rebound comprised single (e) 

versus multiple (f) viruses (Supplementary Table 8). Pre-ATI culture sequences were 

inferred as described in the Methods section ‘Statistical analyses’.
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Figure 4. 3BNC117 resistance in rebound viruses
a, Logogram shows env gp120 regions (amino acid positions; 270–285 and 455–467, 

according to HXBc2 numbering) indicating sequence changes from pre-infusion culture(s) 

(first row) to rebound sequences derived from plasma SGS at the indicated time points. The 

frequency of each amino acid is indicated by its height. Red residues represent mutations 

predicted to affect neutralization30. b, 3BNC117 neutralization sensitivity of pseudoviruses 

derived from pre-infusion or rebound SGS. Black lines represent pre-infusion virus envs; red 

lines represent the major env at rebound for each participant (Extended Data Figs 7 and 8, 

Supplementary Tables 8 and 9 and Methods); grey lines represent minor rebound envs in 

participants with multiple rebound viruses or variants that evolved after rebound (Extended 

Data Figs 7 and 8, Supplementary Table 9). Symbols reflect the means of two technical 

replicates; error bars denote standard deviation.
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