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ABSTRACT

The existing biobanks of remnant tissue from clinically indicated
kidney biopsies are attractive potential reservoirs for quantification of
clinically relevant human tissue proteins by quantitative proteomics.
However, a significant caveat of this strategy is that the tissues are
often preserved in optimal cutting temperature (OCT) medium.
Although OCT is an effective method of preserving the morphologic
and immunohistological characteristics of tissues for later study, it
significantly impacts efforts to quantify protein expression by liquid
chromatography–tandem mass spectrometry methods. We report
here a simple, reproducible, and cost-effective procedure to extract
proteins from OCT-embedded tissue samples. Briefly, the excess
frozen OCT medium was scraped before thawing from the tissue
specimens stored at –80�C for ∼3 months. The tissue samples were
homogenized and diethyl ether/methanol extraction was performed

to remove the remaining OCT medium. The recovered protein was
denatured, reduced, and alkylated. The second step of protein
extraction and desalting was performed by chloroform/methanol/
water extraction of denatured proteins. The resultant protein pellet
was trypsin-digested and the marker proteins of various kidney
cellular compartments were quantified by targeted selective reaction
monitoring proteomics. Upon comparison of peptide signals from
OCT-embedded tissue and flash-frozen tissue from the same donors,
both individual protein quantities, and their interindividual variabilities,
were similar. Therefore, the approach reported here can be applied
to clinical reservoirs of OCT-preserved kidney tissue to be used for
quantitative proteomics studies of clinically relevant proteins
expressed in different parts of the kidney (including drug transporters
and metabolizing enzymes).

Introduction

Twenty-six million Americans adults have chronic kidney disease
(CKD) (http://www.niddk.nih.gov/health-information/health-statistics/
Pages/kidney-disease-statistics-united-states.aspx), and people with
CKD are at higher risk for cardiovascular and all-cause mortality
(Tonelli et al., 2006). However, development of new diagnostic and
therapeutic tools for CKD is hampered by our incomplete understanding
of its underlying pathophysiology. In this direction, targeted mass
spectrometry is a powerful tool, enabling simultaneous quantification of
several prespecified proteins in biologic samples (Hood et al., 2012).
Determining the abundance of protein components or targets of a given
pathway using quantitative proteomics can generate a snapshot of the
pathway status and activity within these samples. More recently, kidney
tissue has gained notice as a more informative biologic sample for
proteomics studies aiming to understand CKD pathophysiology.
However, although kidneys play a critical role in the elimination of
many drugs (Feng et al., 2012; Yacovino and Aleksunes, 2012; Moss
et al., 2014), we have a limited quantitative understanding of the protein

expression of drug transporters and metabolizing enzymes in the kidney
tissue. Further, these data are scarcely available from CKD patients.
Quantitative characterization of the transporters and enzymes in healthy
as well as diseased tissues is indispensable for building pharmacokinetic
and pharmacodynamic models to predict drug disposition and response.
As such, both targeted and untargeted, or “shotgun,” proteomics
methods have been applied to blood and urine in attempts to gain
insight into mechanisms underlying CKD (Rossing et al., 2008; Filip
et al., 2014). However, lack of power of such studies owing to the
limitation of sample size often leads to inconclusive outcomes.
To overcome the sample-size problem, an attractive potential reservoir

for such tissue is the existing biobanks of remnant tissue from clinically
indicated kidney biopsies. Unfortunately, a significant caveat of this
strategy is that these clinically stored tissues are often preserved in the
optimal cutting temperature (OCT) medium, which interferes with mass
spectrometry signal. On the other hand, mass spectrometric analyses
perform best on protein extracted from flash-frozen tissue. Here, we
describe optimization and evaluation of a method for membrane or
structural protein extraction and targeted liquid chromatography–tandem
mass spectrometry (LC-MS/MS), selective reaction monitoring (SRM) on
OCT-embedded kidney tissue and assess the method’s performance
compared with the gold-standard samples preserved by flash freezing.

Materials and Methods

Chemicals. The ProteoExtract Native Membrane Protein Extraction Kit was
procured from Calbiochem/MerckMillipore (Darmstadt, Germany). The protein
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quantification bicinchoninic acid (BCA) assay kit, sequencing-grade trypsin,
iodoacetamide, and dithiothreitol were purchased from Pierce Biotechnology
(Rockford, IL). Synthetic heavy peptides for all the surrogate peptides
(Supplemental Table 1S) were obtained as internal standards from Thermo Fisher
Scientific (Rockford, IL). Synthetic light peptides for the renal transporters OAT1,
OAT3, OCT2, and P-glycoprotein (P-gp) were obtained as calibrators from New
England Peptides (Boston, MA). Chloroform, ethyl ether, high-performance
liquid chromatography (HPLC)-grade acetonitrile/methanol, and formic acid
were purchased from Fischer Scientific (Fair Lawn, NJ). Ammonium bicarbonate
(98% purity) and sodium deoxycholate (DOC, 98% purity) were obtained from
Thermo Fisher Scientific (Rockford, IL) and MP Biomedicals (Santa Ana, CA),
respectively.

Sample Procurement, OCT Removal, and Trypsin Digestion. Histolog-
ically normal sections of kidney tissue from healthy donors (n = 5, 3 male,
2 female, 53–67 years old) undergoing clinically indicated partial nephrec-
tomy (e.g., removal of a kidney mass) were obtained after informed consent
(Proteogenex, Culver City, CA). Specimens weighed 450–700 mg and were
divided into two equal sections, with one section immediately frozen in liquid
nitrogen and stored at –80�C. The second half was embedded in the OCT
medium using a protocol followed by the University of Washington
Department of Pathology; samples were subsequently transferred to –80�C.
After 3 months of storage at –80�C, excess OCT around the tissue block was
removed with a scalpel without compromising the embedded tissue. Two
milliliters of extraction buffer I and 10 ml of protease inhibitor (Calbiochem
ProteoExtract Native Protein Extraction Kit) were added to both sets of tissue
samples. The samples were homogenized until completely suspended and
then incubated on ice for 20 minutes on a rocker table to prevent the formation
of cell clumps. The samples were then sonicated for 60 seconds and
centrifuged at 16,000g, 4�C, for 15 minutes. The supernatant (the cytosolic
fraction) was removed without disturbing the pellet and transferred to a new
tube and set aside. One milliliter of extraction buffer II plus 5 ml of protease
inhibitor was added to the pellet, which was then resuspended by pipetting up and
down ten times or until the pellet was completely broken apart. The sample was
incubated on ice for 30 minutes on a rocker table to prevent cell clumps from
forming, then centrifuged at 16,000g, 4�C, for 15 minutes. The supernatant
(membrane fraction) was removed without disturbing the pellet and transferred
completely to a new tube. Total protein was quantified using BCA assay kit (Pierce
Biotechnology) and the sample was diluted to 2 mg/ml before analysis.

To remove OCT contamination a previously developed method was
modified (Weston and Hummon, 2013). First, 800 ml of diethyl ether and
200 ml of methanol were added to 50 ml of diluted protein sample (100 mg total
protein). The sample was vortexed for 5 minutes and then centrifuged at
10,000g for 10 minutes. The upper and lower liquid layers were removed
carefully so as not to disturb the interfacial pellet, and air dried. The pellet was
resuspended in 80ml of ammonium bicarbonate, 20ml of DOC (3%), and 15ml
of 250 mM dithiothreitol and incubated for 5 minutes at 95�C. iodoacetamide
(IAA) (18 ml of 500 mM) was added to the samples, and then they were
incubated in the dark for 20 minutes. Beyond the previously reported method,
a second cleaning step was added to decrease ion suppression in liquid
chromatography–tandem mass spectrometry (LC-MS/MS) and to remove any
contamination that could affect trypsinization. Five-hundred microliters of
methanol, 100 ml of chloroform, and 400 ml of water were added and the
samples were vortexed for 1 minute. The samples were centrifuged at 6000g,
4�C, for 5 minutes. The upper and lower liquid layers were removed without
disturbing the interfacial layer. The pellet was washed with 1 ml of methanol
followed by centrifugation at 6000g for 5 minutes. Then the methanol was
completely removed and the sample was air dried. The pellet was completely
resuspended in 20 ml of sodium DOC (3%) and 40 ml of 100 mM ammonium
bicarbonate. Twenty microliters of 0.16mg/ml trypsin was added to the sample,
which was then incubated for 18 hours at 37�C, with gentle shaking to assist
trypsin digestion. The reaction was quenched by adding 30 ml of heavy peptide
cocktail in 80% acetonitrile containing 0.1% formic acid. The sample was
centrifuged at 3000g for 2 minutes and 100 ml of the supernatant was
transferred into LC-MS vials for analysis. The absolute quantification of
OAT1, OAT3, OCT2, and P-gp was performed by using light surrogate
peptides as calibrators per published protocol (Prasad et al., 2016).

LC-MS/MS Analysis. LC-MS/MS was performed to quantify 23 structural
proteins expressed in different sections of the nephron, the functional unit of
the kidney (Table 1). The surrogate peptides of the markers of various
cellular compartments of kidney were quantified using triple-quadrupole
LC-MS instruments [Xevo TQ-S coupled to ACQUITY UPLC (Waters,
Milford, MA)] in positive electrospray ionization mode. Approximately
10 mg of the trypsin digest (5 ml) was injected onto the column (Waters 2.1 mm,
C18 100A; 150 � 2.1 mm; Phenomenex, Torrance, CA) and eluted at
0.3 ml/min. A mobile phase consisting of water containing 0.1% formic acid
(A) and acetonitrile containing 0.1% formic acid (B) was employed. A flow

TABLE 1

Proteins and peptides quantified in the kidney tissue

Protein Tissue Localizationa Detected Peptide

Nephrin Podo ELVLVTGPSDNQAK
Podocalyxin-like Podo LGDQGPPEEAEDR
Podocin Podo LPAGLQHSLAVEAEAQR and SLTEILLER
CD34 Mes, Glom endo LGILDFTEQDVASHQSYSQK and SWSPTGER
Aldolase B PT ELSEIAQSIVANGK
Arginosuccinate synthase 1 PT APNTPDILEIEFK
Cathepsin H PT VNHAVLAVGYGEK
Dicarbonyl/L-xylulose reductase PT TQADLDSLVR
Dipeptidase 1 PT VASLIGVEGGHSIDSSLGVLR
OAT1 PT TSLAVLGK
OAT3 PT TVLAVFGK
OCT2 PT SPGVAELSLR and LNPSFLDLVR
SERPINA1 PT DTEEEDFHVDQVTTVK
SGLT2 PT LEDISEDPSWAR
P-gp (MDR1) PT, Mes NTTGALTTR
Tamm-Horsfall protein TAL DWVSVVTPAR
Golgi membrane protein 1 DTINLLDQR
Aquaporin 2 CD QSVELHSPQSLPR and SLAPAVVTGK
Carbonic anhydrase 2 DCT, CD YDPSLKPLSVSYDQATSLR
Tight junction protein 1 (ZO1) Podo, TAL, DCT, CD DNPHFQSGETSIVISDVLK
Plakoglobin PT, TAL, DCT, CD LLNQPNQWPLVK
Claudin 5 Endo EFYDPSVPVSQK and VYDSVLALSTEVQAAR
Intercellular adhesion molecule 2 Endo ILLDEQAQWK

Podo, glomerular podocytes; Mes, glomerular mesangial cells; PT, proximal tubule; TAL, thick ascending limb of the loop of Henle;
DCT, distal convoluted tubule; CD, collecting duct; Endo, endothelial cells

aErnest et al., 1997; Kwon et al., 1998; Miyanaka et al., 1998; Motohashi et al., 2002; Reyes et al., 2002; Higgins et al., 2004;
Kuusniemi et al., 2004; Aires et al., 2013; Motohashi et al., 2013; Fujinaka et al., 2014.
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Fig. 1. Expression levels of selected proteins, shown as percent expression detected in OCT-embedded sample versus expression detected in flash frozen samples (A). The
protein signals in OCT-embedded samples were measured at 101.1 6 5.3% of the signal in flash frozen samples, indicating good recovery of proteins. Interindividual
variability (%CV) of tissue protein expression determined in flash-frozen and OCT-embedded samples (B)
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rate of 0.3 ml/min was used in a gradient manner (Supplemental Table 1S).
MS/MS analysis was performed by monitoring the surrogate peptides and the
internal standards using instrument parameters provided in Supplemental Table 1S.

Data Analysis. LC-MS/MS data were processed by integrating the peak
areas generated from the reconstructed ion chromatograms for the surrogate
peptides and the internal standards usingMassLynx 4.1 (Waters, Hertfordshire,
UK). The peak response for two to three transitions from each peptide was
averaged for quantification of samples or standards. Paired Student’s t test was
used to compare peptide recovery between flash-frozen and OCT-embedded
samples.

Results

The results of LC-MS/MS quantification of 23 structural proteins
expressed in different sections of the nephron are presented as %
expression of each protein in the OCT-embedded samples compared
with the paired flash-frozen control sample (Fig. 1A). When
comparing peptide signal from OCT-embedded tissue to flash frozen
tissue, we observed a cumulative peptide signal recovery of 101.1 6
5.3%. Individual protein quantities in OCT were 92.1–116.2% of that
in flash-frozen tissue (Fig. 1A). Interindividual variability of all the
targeted proteins was also comparable in OCT-embedded versus
flash-frozen tissue (42.7% and 42.9%, respectively; Fig. 1B). At
absolute level, OAT1, OAT3, OCT2, and P-gp expression (pmol/mg
total protein) was 7.266 3.21, 4.676 0.79, 10.626 3.96, and 2.646
0.83 (control) versus 8.53 6 4.25, 4.76 6 0.92, 9.54 6 2.63, and
2.66 6 0.87 (OCT-embedded), respectively (Fig. 2). The latter
indicates 100% recovery of the proteins from the OCT-embedded
kidney samples.

Discussion

The method reported here yields comparable protein quantifica-
tion by targeted mass spectrometry from OCT-embedded tissue
versus the gold standard of flash-frozen tissue and enables the use
of clinical stores of OCT-preserved kidney tissue for quantita-
tive proteomics studies. Methods have been reported for protein
extraction and mass spectrometry from formalin-fixed and paraffin-
embedded (FFPE) tissue; however, a limited number of reports exist
on mass spectrometry proteomic analysis of OCT embedded tissue
samples (Azimzadeh et al., 2010; Tian et al., 2011; Quesada-Calvo
et al., 2015; Zhang et al., 2015). These published reports are mainly
discovery proteomics data, which focuses on qualitative appearance
of peptide signals rather than absolute peptide quantitation.

OCT and FFPE media are not ideal matrices for mass spectrom-
etry quantification. OCT is mainly composed of polyvinyl alcohol
(PVA), polyethylene glycol (PEG), and nonreactive ingredients,
which serve as cryopreservative medium and support matrix for
tissue sectioning. Unless completely removed, PVA and PEG can
suppress ionization of the targeted peptides (Schwartz et al., 2003).
Starting from recently developed methods for OCT removal (Tian
et al., 2011; Johnson and White, 2014; Zhang et al., 2015), we
optimized a simple and cost-effective method to extract proteins
from OCT-embedded kidney tissue samples for quantitative mass
spectrometry applications. This method can be applied to clinical
reservoirs of OCT-preserved kidney tissue for use in quantitative
proteomics studies of clinically relevant proteins expressed in
different parts of the kidney (including drug transporters and
metabolizing enzymes). Differential interindividual variability of
proteins was observed, indicating unique regulation (e.g., mediated
by individual genetic and epigenetic factors) of these proteins. The
highest variability was observed for Tamm-Horsfall protein, con-
sistent with reported values (Fu et al., 2016). However, as the main
aim of this report was methodological, unique interindividual
variability has no effect on our conclusions. Quantitative charac-
terization of the clinically relevant proteins, including transporters
and enzymes, in healthy as well as diseased kidney tissues is
indispensable for building better pharmacokinetic and pharmaco-
dynamic models to predict drug disposition and response.
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