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Abstract

BACKGROUND: Metrafenone has been used in Europe in integrated pest management programmes since 2006 to control
powdery mildews, including Erysiphe necator. Its exact mode of action is not known, but it is unique among fungicide classes
used in powdery mildew management. Recently, resistance to metrafenone was reported in Blumeria graminis f. sp. tritici. In this
study we investigated metrafenone resistance in Erysiphe necator in northern Italy.

RESULTS: Metrafenone efficacy to control grapevine powdery mildew was monitored in three consecutive years in the field, and
its reduced activity was observed in 2013. Out of 13 monoconidial isolates, two sensitive strains were identified, which did not
grow at the fungicide concentration recommended for field application. The remaining strains showed variable response to
metrafenone, and five of them grew and sporulated similarly to the control, even at 1250 mg L~" of metrafenone. Moreover, the
resistant strains showed cross-resistance to pyriofenone, which belongs to the same FRAC group as metrafenone.

CONCLUSION: The results indicate the emergence of metrafenone resistance in an Italian population of Erysiphe necator. Further
studies are needed to gain insight into the metrafenone’s mode of action and to understand the impact of resistance on changes
in the pathogen population structure, fitness and spread of resistant strains, which will be indicative for designing appropriate
antiresistance measures.
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1 INTRODUCTION

E. necator is listed as a medium-risk pathogen by FRAC, but as

Grapevine powdery mildew, caused by the obligate biotrophic
fungus Erysiphe necator Schwein. (previously Uncinula neca-
tor (Schwein.) Burrill; anamorph Oidium tuckeri Berk.), is one of
the most important fungal pathogens of cultivated grapevine
worldwide.’? It infects all green parts of the plant, such as leaves,
shoots, flowers and fruit clusters.?3

The control of E. necator in Italian vineyards follows principles
of integrated pest management (IPM), which combines the use of
chemicals with agronomical practices.* However, the use of fungi-
cides remains the main and the most effective means to control
powdery mildew epidemics. They are usually applied in preventive
programmes. The treatments start as early as the 3-5-leaf stage of
shoot development (BBCH stage 13-15) if the epidemicrisk s high
and associated with the pathogen overwintering in dormant buds
or conditions favourable for ascospore infections, and continue
until grape veraison (BBCH stage 81-83), which implies a mini-
mum of 4-8 fungicide treatments during the growing season.’

The Fungicide Resistance Action Committee (FRAC) classifies
commercial fungicides into different groups based on their mode
of action.® The majority of modern fungicides have a single-site
mode of action, which greatly increases the risk of resistance in
diverse pathogen populations. Therefore, their use is limited to
2-3 applications per season, which implies the availability of a
large number of different fungicide groups. In Italy, fungicides
belonging to ten different FRAC groups are currently on the market
to control grapevine powdery mildew in conventional agriculture.

a high-risk pathogen by the European and Mediterranean Plant
Protection Organisation (EPPO).” It has developed resistance to
several fungicide groups, including methyl benzimidazole carba-
mates (MBCs, FRAC group 1), demethylation inhibitors (DMls, FRAC
group 3), azanaphthalenes (FRAC group 13) and quinone outside
inhibitors (Qols, or strobilurins, FRAC group 11).87'3 In the case of
Qols and DMIs, the main molecular mechanisms of their modes of
action are known, and diverse mutations responsible for the resis-
tance have already been described.'014~16

However, identification of resistant isolates does not always lead
to field resistance.” To prevent or delay the selection and spread-
ing of resistant isolates in the pathogen population, implemen-
tation of appropriate antiresistance management strategies is of
utmost importance. One of the key strategies is the rotation of
fungicides with different modes of action.'®

Metrafenone  (3-bromo-2’,3',4’,6-tetramethoxy-2,6’-dimethyl
benzophenone) is a fungicide active against diverse powdery
mildews, including grapevine powdery mildew. It is represen-
tative of the chemical class benzophenones, and together with
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a benzoylpyridine pyriofenone belongs to the U8 FRAC group.’
Its exact mode of action is not known; however, early studies
on barley powdery mildew (Blumeria graminis Speer f. sp. hordei
Marchal) and wheat powdery mildew (Blumeria graminis Speer
f. sp. tritici Marchal) suggest that it interferes with hyphal mor-
phogenesis, polarised hyphal growth and the establishment and
maintenance of cell polarity.'®?° Metrafenone has a unique mode
of action, different from other fungicides used in powdery mildew
management, as demonstrated by the absence of cross-resistance
with other known chemical classes, and therefore it repre-
sents a valuable choice in fungicide rotation programmes,'1%-20
Recently, metrafenone-resistant isolates of B. graminis f. sp.
tritici were detected in an extensive monitoring study of cereal
powdery mildews; however, its performance in the field was not
reduced.?! Until now, this is the only report of reduced efficacy of
metrafenone in the field.

Our objective was to verify the efficacy of metrafenone to con-
trol grapevine powdery mildew pathogen, E. necator, after 8 years
of its extensive use in Italian vineyards. For this purpose we moni-
tored the efficacy of metrafenone to contain powdery mildew epi-
demics in a vineyard in Timoline, Brescia, in northern Italy, in three
consecutive years. Furthermore, we determined the response of
E. necator isolates, collected subsequently from the experimental
vineyard, to elevated concentrations of metrafenone in terms of
mycelium growth and sporulation. Finally, we monitored the pres-
ence of metrafenone-resistant isolates in the Franciacorta area in
2013 and 2014.

2 MATERIALS AND METHODS

2.1 Disease epidemics and metrafenone activity in the field
Biological activity of metrafenone was assessed in a vineyard in
Timoline (Franciacorta area, Italy) during the years 2011-2013.
The vineyard was planted with Vitis vinifera cultivar ‘Chardonnay’,
cordon trained and spur pruned, with a planting density of 6250
plants ha='.

The experimental scheme consisted of randomised blocks with
four replicas, and each plot included 12 plants grown on a surface
of approximately 18 m? (8.8 x 2 m). Downy mildew was managed
using Forum MZ (9.0 g ha™' of dimethomorf+60.0 g ha™' of
mancozeb; BASF, Ludwigshafen, Germany) and Pergado MZ (50 g
L~" of mandipropamid + 600 g L' of mancozeb; Syngenta, Basel,
Switzerland), applied at rates of 220 and 250 g ha™" respectively.

To assess the biological activity of metrafenone, Vivando (500
g Al L~'; BASF) was applied preventively, before the appearance
of powdery mildew symptoms, starting from BBCH stage 13-15
(3-5 fully unfolded leaves), at a rate of 250 mL ha~" with an inter-
val of 10-12 days. The disease progress in the untreated control
and in metrafenone-treated plots was monitored periodically from
bud-break to veraison by inspecting 100 leaves or grape clusters
per plot.?? The disease incidence (DI) was expressed as the percent-
age of infected leaves or grape clusters. The disease severity (DS)
was calculated according to the Townsend-Heuberger formula,?
using eight classes of severity index based on the surface of
the organ colonised by the pathogen. Subsequently, protection
indices for disease incidence and severity were calculated.?

2.2 Sample collection and maintenance of E. necator strains
in the laboratory

In 2013, infected leaves and grape clusters were collected
from the vineyard in Timoline from the untreated control and

Table 1. Erysiphe necator strains collected from the experimental
vineyard in Timoline from control or metrafenone-treated plots, and
from commercial vineyards in the Franciacorta area in 2013

Strain Locality Treatment Organ infected
1C Timoline Control Leaves

2C Timoline Control Leaves

3C Timoline Control Grape clusters
4C Timoline Control Grape clusters
™ Timoline Metrafenone Grape clusters
2M Timoline Metrafenone Leaves

3M Timoline Metrafenone Grape clusters
4M Timoline Metrafenone Grape clusters
5M Timoline Metrafenone Leaves

6M Timoline Metrafenone Leaves

1F Franciacorta Unknown Grape clusters
2F Franciacorta Unknown Leaves

3F Franciacorta Unknown Grape clusters

metrafenone-treated plots, and ten monoconidial isolates were
obtained in the laboratory (Table 1). Three additional mono-
conidial isolates of E. necator were obtained from a commercial
vineyard in the Franciacorta area, 2.5 km from the Timoline vine-
yard, to verify whether the metrafenone resistance was more
widely spread in the area. The infected tissues were observed
under a dissecting microscope, and single conidial chains were
transferred from the infected leaf to a newly formed leaf of V.
vinifera cv. ‘Chardonnay’ grown in the laboratory as described
previously.?®

In 2014, the vineyard in Timoline changed from IPM to biolog-
ical management, and the use of synthetic fungicides was dis-
continued. Powdery-mildew-infected leaves were collected, and
single conidial chains from sporulating colonies of E. necator
were directly transferred onto leaves preventively treated with
metrafenone (125 mg L~") or onto untreated leaves, and incubated
in Petri plates containing water-agar medium (8 g L=' of agar bac-
teriology grade; Applichem, Darmstadt, Germany) added with 5
mg L' of tetracycline. The growth of resistant isolates was veri-
fied after 2 weeks of incubation in a growth chamber with a 16 h
day cycle at 24 °C.

The strains were routinely maintained on leaves of V. vinifera
plants, cv. ‘Chardonnay’, grown from seeds in laboratory condi-
tions. Leaves from 4-5-week-old plants were surface sterilised for
15 sin 70% ethanol and for 1 min in 0.5% hypochlorite and rinsed
3 times in sterile water. Leaves were dried with paper tissues and
placed in Petri plates containing water—agar medium. The plates
were cultivated in a growth chamber with a 16 h day cycle at 24 °C.
Strains were transferred to fresh leaves every 2 weeks.

2.3 Mycelium growth and sporulation of E. necator exposed
and not exposed to metrafenone in the laboratory

The strains of E. necator, collected in 2013, were grown for 2 weeks
as described previously to sporulate abundantly. Four-week-old
plantlets of Vitis vinifera cv. ‘Chardonnay’ were sprayed with two
different concentrations of metrafenone: 125 mg L' (field treat-
ment concentration) or 1250 mg L~" (10 times the field treatment
concentration) and were left to air dry for 2 h. Control plants were
sprayed with water. The plants were subsequently inoculated by
depositing spores of E. necator on the two youngest leaves at 4
points per leaf. The inoculated plants were incubated for 2 weeks,
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and the mycelium growth was assessed 14 days after inoculation.
The colony growth was estimated by transferring the dimensions
of the colony observed under the dissecting microscope to mil-
limetre graph paper and then calculating the colony area using
the program ImageJ.??” Sporulation was evaluated 14 days after
inoculation: the entire colony was cut out and put in an Eppen-
dorf tube containing 100 pL of 0.9% NaCl + 0.02% Tween 80, and
the number of conidia pL=! was counted with a haemocytome-
ter after vortexing. The sporulation (Sp) was expressed as conidia
cm~2: Sp=N"100/A,,, where N is the number of conidia uL=", and
A,, is the area of the colony 14 days after inoculation. The experi-
ments were repeated 2 times.

2.4 Cross-resistance

We studied the cross-resistance of E. necator metrafenone-
resistant strains to pyriofenone (90 mg L', Kusabi; Belchim, Lon-
derzeel, Belgium), a fungicide belonging to the same U8 FRAC
group as metrafenone. Moreover, we tested two additional fungi-
cides widely used in powdery mildew management, belonging
to the Qol and DMI groups: azoxystrobin (175 mg L=, Quadris;
Syngenta) and myclobutanil (60 mg L~', Thiocur Forte; Dow
AgroSciences, Indianapolis, IN), respectively. All fungicides were
tested at recommended concentrations for field application. One
metrafenone-sensitive strain (2C) and two resistant strains (1M and
2M) of E. necator were grown for 2 weeks to sporulate abundantly
as described previously. Four-week-old plantlets of Vitis vinifera cv.
‘Chardonnay’ were treated with the recommended field concen-
trations of the above-listed fungicides, or metrafenone (125 mg
L="), and were left to air dry for 2 h. Control plants were treated
with water. The plants were subsequently inoculated with spores
of E. necator using an inoculation tower and air current. Inoculated
plants were incubated in a growth chamber for 12-14 days, and
disease severity was determined by estimating the percentage of
the leaf surface colonised by sporulating colonies of E. necator.
The experiments were repeated 2 times.

2.5 Statistical analyses

The statistical analyses were performed using R software,
V.R3.0.2.2% The percentage data of disease incidence and dis-
ease severity in control and metrafenone-treated plots were
square root arcsine transformed and submitted to ANOVA. Simi-
larly, ANOVA was performed for mycelium growth and sporulation
data, followed by Tukey’s post hoc test for multiple comparison
(P=0.05), using the TukeyC package.?

3 RESULTS

3.1 Powdery mildew epidemics in 2011-2013

During the 3 years of the study in the Timoline field, the dynamics
of powdery mildew epidemics was variable. The disease dynamics
was monitored in the control plots from bud-break (mid-April)
to veraison (mid-July) (Fig. 1). The 2011 season was characterised
by conditions unsuitable for disease development. The disease
progress was slow, resulting in 8% of grape clusters infected in
mid-July, while the disease was almost absent on leaves. In 2012,
the first symptoms appeared at the end of May, and afterwards the
disease incidence increased constantly. In mid-July, almost 100%
of grape clusters and ca 60% of leaves were infected, with a disease
severity index of ca 50%. In 2013, the disease incidence had the
fastest progress, and in mid-July almost 90% of leaves and 100%
of grape clusters were infected.

3.2 Biological activity of metrafenone in the field

Powdery mildew incidence and severity were evaluated on
leaves and grape clusters of control plots and plots treated with
metrafenone in mid-July in 2011-2013, and the respective pro-
tection indices were calculated (Fig. 2). Control plots were heavily
infected in 2012 and 2013, with the disease particularly serious on
grape clusters, while it was sporadic in 2011.

In 2011, metrafenone showed 100% efficacy on leaves and 93.5
and 98.7% protection of grape clusters in terms of disease inci-
dence and severity, respectively. In 2012, metrafenone protected
grape clusters by 52.2% (DI) and 84.0% (DS) compared with the
control, and showed even better protection on leaves. Finally, the
2013 season was even more favourable for disease epidemic devel-
opment, with approximately 90% of leaves and 100% of grape
clusters infected by E. necator in control plots by mid-July. Sur-
prisingly, metrafenone did not prevent disease development on
grape clusters, with results similar to those of the control (0.5 and
15.8% protection for disease incidence and severity, respectively),
and only partially protected leaves (32.3 and 64.5% protection for
disease incidence and severity, respectively). In 2011 and 2012,
metrafenone treatment significantly reduced disease incidence
and severity on leaves and grape clusters by comparison with the
control. On the other hand, metrafenone treatment did not signif-
icantly reduce disease incidence and severity in 2013, which were
similar to the control (data not shown).

3.3 Identification of metrafenone-resistant strains in the
laboratory

Owing to the surprisingly low efficacy of metrafenone observed
in the Timoline field in 2013, infected leaves and grape clus-
ters were collected from the experimental vineyard, and ten
monoconidial isolates of E. necator were obtained (Table 1).
Three additional monoconidial strains were isolated from a
commercial vineyard in the Franciacorta area. We previously
determined that the sensitivity of strains collected before 2013 to
metrafenone in terms of mycelium growth and sporulation was
lower than 12.5 mg L', the concentration that inhibited mycelium
growth by 95% and completely inhibited sporulation (data not
shown).

To assess the sensitivity of the 13 putatively resistant strains col-
lected in 2013, mycelium growth and sporulation of strains grown
on plants treated with metrafenone at the concentration used in
the field (125 mg L=") and ata 10 times higher concentration (1250
mg L~") were compared with the untreated control. All isolates
grew abundantly on control plants; after 14 days of growth, their
average colony area was 89.4 mm? (standard deviation SD = 39.9),
and they produced on average 2212.1 spores cm~2 (SD = 1668.8).
Two out of 13 strains were metrafenone sensitive (2C and 3C) and
did not grow on metrafenone-treated plants (Tables 2 and 3). Four
strains (1M, 3M, 4M and 3F) grew and sporulated equally to the
control at both metrafenone concentrations. The remaining tested
strains also grew and sporulated on metrafenone-treated plants,
but to a lower extent than on control plants, especially at a con-
centration of 1250 mg L~".

In 2014, single conidial chains from sporulating colonies
collected in the field were placed directly to germinate on
metrafenone-treated and untreated leaves. Two out of ten
conidia developed colonies on control leaves, indicating a
20% infection rate. In contrast, from 120 conidia transferred
to metrafenone-treated (125 mg L") leaves, only two potentially
resistant colonies were obtained (8.3% infection rate).
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Figure 1. Epidemics of Erysiphe necator during 2011-2013 in Timoline, Brescia, Italy. The dynamics of disease incidence (DI, black) and disease severity
(DS, grey) on leaves (A) and grape clusters (B) was recorded each year from the beginning of May to mid-July.
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Figure 2. Metrafenone protection indices for disease incidence (DI, black) and disease severity (DS, grey) on leaves (A) and grape clusters (B) in mid-July,

in years 2011-2013, in Timoline, Brescia, Italy.

3.4 Cross-resistance

The metrafenone-sensitive strain (2C) grew and sporulated abun-
dantly on control plants, while it was efficiently controlled by
metrafenone and the other tested fungicides. On the other
hand, the two resistant strains (1M and 2M) grew abundantly
on control and metrafenone-treated plants, with 100% of the
leaf surface covered by sporulating colonies (Figs 3A and B).
Complete colonisation of the leaf surface was also observed for
pyriofenone-treated plants, which confirmed our expectations of
cross-resistance between metrafenone and pyriofenone (Fig. 3C).
However, the growth of metrafenone-resistant strains was fully
controlled by the other two fungicides representative of the Qol
and DMI groups (azoxystrobin and myclobutanil, respectively),
which indicates the absence of cross-resistance with these groups
(Figs 3D and E).

4 DISCUSSION

Powdery mildew is one of the major diseases of grapevine world-
wide. Although cultural practices and biological control help to
reduce the severity of epidemics, its management relies on the
use of fungicides." However, resistant strains of Erysiphe necator
to several major fungicide classes, including Qols and DMIs, have
been described.’®'213 Qols are typical fungicides with a single-site
mode of action, and resistance often leads to suboptimal control or

complete loss of activity in the field.'*'8 On the other hand, resis-
tance to DMIs is thought to be oligogenic and quantitative, and
resistance levels in the field are often low and only rarely result
in control failure.3® Moreover, the use of synthetic pesticides is
becoming severely limited owing to the new European Union
strategy, which heavily restricts the registration and use of chemi-
cals and favours alternative methods.3"32 In this situation, reduced
efficacy of afungicide to control powdery mildew epidemics repre-
sents a serious problem, as it may imply resistance in the pathogen
population, which could ultimately lead to loss of efficacy of the
entire fungicide group.

Metrafenone was registered in Europe in 2006 to manage pow-
dery mildews and eye spot disease (Oculimacula spp.) epidemics
in cereals, and since then it has been used extensively, especially
on cereals, cucurbits and grapevine. The first report of resistance
to metrafenone in Blumeria graminis f. sp. tritici appeared in the lit-
erature only after 3 years of its use, and 3.9% of tested isolates were
classified as moderately or highly resistant, while no resistance was
observed in B. graminis f. sp. hordei.”!

In our study we investigated the sensitivity of E. necator to
metrafenone in the Franciacorta area in northern Italy. We demon-
strated the reduced efficacy of metrafenone to control grapevine
powdery mildew in the field in 2013, as there were no differences
observed in disease incidence and severity between the untreated
control and the metrafenone-treated plots. Based on this evidence,
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Figure 3. Cross-resistance of E. necator metrafenone-resistant strain 1M sporulating on leaves treated with water (A), metrafenone (B) and pyriofenone
(C), and inhibition of growth of E. necator 1M on leaves treated with azoxystrobin (D) and myclobutanil (E). Leaves were observed under a dissecting

microscope at a magnification of 20x. The bar represents 1 mm.

Table 2. Mycelium growth of Erysiphe necator strains on control and
metrafenone-treated plants

Mycelium growth (mm?)

Metrafenone

Strain Control 125 mg L™! 1250 mg L™!
1C 87.04 (38.65)2nsP 93.98 (26.02) ns 72.05(33.98) ns
2C 69.13(19.57)a 0(0)b 0(0)b
3C 42,64 (16.6) a 0(0)b 0(0)b
4C 67.01(17.68) ns 76.92 (23.60) ns 69.4 (13.22) ns
™ 72.88(31.79) ns 73.15(21.81) ns 57.58 (15.83) ns
2M 111.11 (40.55) a 110.63 (38.89) a 72.95(16.95) b
3M 99.93 (26.55) ns 109.83 (42.89) ns 97.57 (28.34) ns
4M 80.24 (12.74) ns 76.03 (4.99) ns 76.8 (19.47) ns
5M 79.12(35.59) b 11731 (14.13)a 97.03 (8.77) ab
6M 154.62 (59.36) a 140.03 (26.61) ab 98.85(22.91) b
1F 84.52(33.77)a 4391(12.18) b 324(6.73) b
2F 90.05(33.8) a 52.98 (21.78) b 5427 (19.97) b
3F 107.88 (42.62) ns 101.06 (35.75) ns 82.74 (17.49) ns
@ The mean value followed by SD.
b Tukey's post hoc test; means in a row with the same letters are not
significantly different (P = 0.05); ns = not significant.

13 putatively resistant samples were collected in 2013 from the
experimental vineyard and an additional commercial vineyard in
the Franciacorta area, to determine their response to metrafenone
in the laboratory. Metrafenone does not inhibit the germination
of E. necator spores, but blocks further development beyond the
formation of appressoria (data not shown);?° therefore, its activity
was assessed in terms of pathogen mycelium growth and sporula-
tion. Examples from other fungicide-resistant pathogens indicate
that strains with lower resistance factors are still well controlled

by the recommended field doses of the fungicides;'®3334 how-
ever, 85% of the strains obtained in this study showed moderate
to high resistance to metrafenone, with the estimated resistance
factor higher than 100. In fact, all resistant strains also grew and
sporulated at 1250 mg metrafenone L=, a concentration 10 times
higher than the recommended field dose. The detection of two
additional resistant isolates in 2014, even after metrafenone treat-
ments were discontinued, indicates that metrafenone-resistant
strains persisted in the experimental vineyard also in the absence
of selection. We hypothesise that the low frequency of their recov-
ery might have been caused by a fitness penalty in comparison
with metrafenone-sensitive strains, or by an influx of sensitive iso-
lates from surrounding vineyards.

The cross-resistance studies indicate that metrafenone-resistant
strains are still controlled by fungicides representative of two
groups widely used in powdery mildew management: strobilurins
(azoxystrobin) and DMIs (myclobutanil). However, our data indi-
cate cross-resistance with pyriofenone, a new fungicide belonging
to the same U8 FRAC group as metrafenone.® These results further
confirm that the two fungicides most likely act in the same molec-
ular pathway, hypothesised to be involved in actin localisation or
hyphal morphogenesis.'®

In contrast to Qols or DMIs, where mutations causing the
resistance are known, the monitoring for metrafenone-resistant
strains remains difficult, as no quick PCR-based methods are
available.'®'83¢ |t has been hypothesised that metrafenone com-
promises hyphal tip organisation via disruption of signal trans-
duction, involving Rho or Ras GTP-ases.'”'® Our identification of
metrafenone-resistant strains provides a valuable tool for studying
the possible mechanism of action also by transcriptome analysis
and using specific microsatellite markers.37-38

To our knowledge, this is the first paper to report the loss of
metrafenone efficacy in the field owing to resistance in E. neca-
tor. Previously, one E. necator metrafenone-resistant strain was
detected in a monitoring study in 2010; however, resistance of
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Table 3. Sporulation of Erysiphe necator strains on control and metrafenone-treated plants

Sporulation (conidia cm=2)

Metrafenone

Strain Control 125mgL™! 1250 mg L™’
1C 2694.05 (1341.83)2nsP 1954.94 (1215) a 758.64 (66.05) b
2C 5112.21(1622.79) a 0(0)b 0(0)b
3C 1227.32(839.33)a 0(0)b 0(0)b
4C 3736.81(2374.32) a 2677.56 (1864.2) ab 1106.15 (336.59) b
™ 1687.92 (1303.42) ns 1346.67 (1059.37) ns 1236.17 (1057.67) ns
2M 2696.87 (1303.33) a 2992.07 (1507.14) a 931.78 (735.28) b
3M 1460.06 (1029.66) ns 1966.89 (1325.06) ns 2773.22 (2529.84) ns
4M 1523.18 (497.11) ns 1272.06 (468.82) ns 1039.67 (721.71) ns
5M 1325.15 (1436.85) a 2416.44 (726.21) ab 973.17 (429.13) b
6M 2725.8(1070.9) ns 3488.3 (1337.86) ns 2337.69 (1129.79) ns
1F 1465.04 (1105.83) a 375.95(210.03) b 239.25(302.26) b
2F 1357.28 (1287.46) ns 683.75 8 (583.86) ns 940.36 (1014.41) ns
3F 960.11 (563.63) ns 517.3 (264.18) ns 778.37 (543.71) ns
@ The mean value followed by SD.
b Tukey’s post hoc test; means in a row with the same letters are not significantly different (P = 0.05); ns = not significant.

this strain decreased rapidly after several transfers, indicating
that adaptation was not stable or that the strain was a mix of
sensitive and adapted isolates, and that the sensitive isolates
increasingly dominated the population during propagation steps
in the following year.?® Further studies are needed to under-
stand the implications for metrafenone use in IPM programmes.
Reduced fitness has been observed in fungicide-resistant strains
of some pathogens;**4!" however, in most cases mutations con-
ferring fungicide resistance do not cause any obvious fitness
penalty.*># Study of the fitness of metrafenone-resistant strains
will be indicative of possible re-evaluation and decisions about the
use of metrafenone in grape-growing areas. E. necator populations
can vary from clonal to highly genetically diverse and randomly
mating.**~% Populations with mixed mating (sexual and asexual),
high genetic flow, large effective population size and high muta-
tion rates have higher potential for breaking down the resistance.*’
The analysis of E. necator population structure and the genetic
diversity of resistant strains could highlight the association of cer-
tain haplotypes with resistance traits, and contribute to under-
standing whether the resistant strains have the potential to spread
in the pathogen population.

ACKNOWLEDGEMENTS

The authors would like to thank Dr Erica Debenedetti for her help
with laboratory-based experiments.

REFERENCES

1 Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC and Mil-
groom MG, Grapevine powdery mildew (Erysiphe necator): a fasci-
nating system for the study of the biology, ecology and epidemiol-
ogy of an obligate biotroph. Mol Plant Pathol 13:1-16 (2012).

2 Glawe DA, The powdery mildews: a review of the world’s most famil-
iar (yet poorly known) plant pathogens. Annu Rev Phytopathol
46:27-51 (2008).

3 Reuveni M, Activity of trifloxystrobin against powdery and downy
mildew diseases of grapevines. Can J Plant Pathol 23:52-59 (2001).

4 Fernandez-Cornejo J, Environmental and economic consequences of
technology adoption: IPM in viticulture. Agric Econ 18:145-155
(1998).

5 Caffi T, Rossi V, Legler SE and Bugiani R, A mechanistic model simulat-
ing ascosporic infections by Erysiphe necator, the powdery mildew
fungus of grapevine. Plant Pathol 60:522-531 (2011).

6 FRAC Code List 2014: Fungicides Sorted by Mode of Action (Includ-
ing FRAC Code Numbering). [Online]. FRAC (2014). Available:
http://www.frac.info [1 February 2015].

7 FRAC Pathogen Risk List. [Online]. FRAC (2014). Available: http://www.
frac.info [1 February 2015].

8 Pearson RC, Benomyl-resistant strains of Uncinula necator on grapes.
Plant Dis 64:677 (1980).

9 Garibaldi A, McKenzie LI and Gullino ML, Comparsa in Italia di una
popolazione di Uncinula Necatrix (Schw.) Burr. che presenta ridotta
sensibilita verso alcuniinibitori della biosintesi degli steroli. Giornate
Fitopatologiche: Protezione delle Piante, Qualita, Ambiente, Pisa, Italy,
pp. 143-150 (1990).

10 Délye C, Laigret F and Corio-Costet MF, A mutation in the 14
alpha-demethylase gene of Uncinula necator that correlates with
resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol
63:2966-2970 (1997).

11 Genet J-L and Jaworska G, Baseline sensitivity to proquinazid in Blume-
ria graminisf. sp. tritici and Erysiphe necator and cross-resistance with
other fungicides. Pest Manag Sci 65:878-84 (2009).

12 Wilcox W, Burr J, Riegel D and Wong F, Practical resistance to Qol
fungicides in New York populations of Uncinula necator associated
with quantitative shifts in pathogen sensitivities. Phytopathology
93:590 (2003).

13 Green EA and Gustafson GD, Sensitivity of Uncinula necator to
quinoxyfen: evaluation of isolates selected using a discriminatory
dose screen. Pest Manag Sci 62:492-497 (2006).

14 Miles LA, Miles TD, Kirk WW and Schilder AMC, Strobilurin (Qol) resis-
tance in populations of Erysiphe necator on grapes in Michigan. Plant
Dis 96:1621-1628 (2012).

15 Frenkel O, Cadle-Davidson L, Wilcox WF and Milgroom MG, Mecha-
nisms of resistance to an azole fungicide in the grapevine pow-
dery mildew fungus, Erysiphe necator. Phytopathology 105:370-377
(2015).

16 Leroux P and Walker A-S, Multiple mechanisms account for resis-
tance to sterol 14a-demethylation inhibitors in field isolates of
Mycosphaerella graminicola. Pest Manag Sci 67:44-59 (2011).

17 Hollomon DW, New modes of action contribute to resistance manage-
ment, in Fungicide Resistance in Crop Protection: Risk and Manage-
ment, ed. by Thind TS. CABI, Wallingford, Oxon, UK, pp. 104-115
(2011).

Pest Manag Sci 2016; 72: 398-404

© 2015 The Authors.

wileyonlinelibrary.com/journal/ps

Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.




@)
SCI

WWW.S0Ci.org

A Kunova etal.

18

19

20

Brent KJ and Hollomon DW, Fungicide Resistance in Crop Pathogens:
How Can it be Managed? Fungicide Resistance Action Committee
(Croplife International), Brussels, Belgium (2007).

OpalskiKS, Tresch S, Kogel K-H, Grossmann K, Kohle H and Hiickelhoven
R, Metrafenone: studies on the mode of action of a novel cereal
powdery mildew fungicide. Pest Manag Sci 62:393-401 (2006).

Schmitt MR, Carzaniga R, Cotter HVT, O'Connell R and Hollomon D,
Microscopy reveals disease control through novel effects on fungal
development: a case study with an early-generation benzophenone
fungicide. Pest Manag Sci 62:383-392 (2006).

35

36

37

Ogawa M, Nieto J and Ruggiero P, Pyriofenone: nuovo fungicida
antioidico per la difesa della vite. Giornate Fitopatologiche: Protezione
delle Colture, Qualita, Ambiente, Milano Marittima, Ravenna, Italy, pp.
201-206 (2012).

Dufour MC, Fontaine S, Montarry J and Corio-Costet MF, Assessment
of fungicide resistance and pathogen diversity in Erysiphe necator
using quantitative real-time PCR assays. Pest Manag Sci 67:60-69
(2011).

Wakefield L, Gadoury DM, Seem RC, Milgroom MG, Sun Q and
Cadle-Davidson L, Differential gene expression during conidia-

21 Felsenstein F, Semar M and Stammler G, Sensitivity of wheat pow- tion in the grape powdery mildew pathogen, Erysiphe necator.
dery mildew (Blumeria graminis f. sp. tritici) towards metrafenone. Phytopathology 101:839-846 (2011).

Gesunde Pfl 62:29-33 (2010). 38 Frenkel O, Portillo I, Brewer MT, Péros JP, Cadle-Davidson L and Mil-

22 Cortesi P, Bisiach M, Ricciolini M and Gadoury DM, Cleistothecia of Unc- groom MG, Development of microsatellite markers from the tran-
inula necator - an additional source of inoculum in Italian vineyards. scriptome of Erysiphe necator for analysing population structure in
Plant Dis 81:922-926 (1997). North America and Europe. Plant Pathol 61:106-119 (2012).

23 Townsend G and Heuberger J, Methods for estimating losses caused by 39 Stammler G, Semar M, Strobel D, Resistance management of
diseases in fungicide experiments. Plant Dis Rep 27: 340-343 (1943). metrafenone in powdery mildews, in Modern Fungicides and

24 Abbott WS, A Method of computing the effectiveness of an insecticide. Antifungal Compounds, Vol. VI, ed. by Dehne HW, Deising HB,
J Econ Entomol 18:265-267 (1925). Fraaije B, Gisi U, Hermann D, Mehl A etal. Deutsche Phytomedi-

25 Cortesi P, Ottaviani MP and Milgroom MG, Spatial and genetic anal- zinische Gesellschaft, Braunschweig, Germany, pp. 179-184, ISBN:
ysis of a flag shoot subpopulation of Erysiphe necator in Italy. Phy- 978-3-941261-13-6 (2014).
topathology 94:544-550 (2004). 40 Karaoglanidis GS, Thanassoulopoulos CC and loannidis PM, Fitness of

26 Rasband W, ImageJ 1997-2012. [Online]. US National Institutes of Cercospora beticola field isolates resistant and sensitive to demethy-
Health, Bethesda, MD (2012). Available: http://imagej.nih.gov/ij/ [1 lation inhibitor fungicides. Eur J Plant Pathol 107:337-347 (2001).
February 2015]. 41 Saito S, Cadle-Davidson L and Wilcox WF, Selection, fitness, and control

27 Schneider CA, Rasband WS and Eliceiri KW, NIH Image to ImagelJ: 25 of grape isolates of Botrytis cinerea variably sensitive to fenhexamid.
years of image analysis. Nat Meth 9:671-675 (2012). Plant Dis 98:233-240 (2014).

28 R:A Language and Environment for Statistical Computing. R Core Team, 42 Rallos LEE, Johnson NG, Schmale DG, Prussin AJ and Baudoin AB,
The R Foundation for Statistical Computing, Vienna, Austria (2013). Fitness of Erysiphe necator with G143A-based resistance to quinone

29 Faria JC, Jelihovschi EG and Allaman B, Conventional Tukey Test. outside inhibitors. Plant Dis 98:1494—-1502 (2014).

Universidade Estadual de Santa Cruz — UESC, llheus, Bahia, Brazil 43 Petit A-N, Vaillant-Gaveau N, Walker A-S, Leroux P, Baillieul F, Panon
(2014). M-L et al., Effects of fudioxonil on Botrytis cinerea and on grapevine

30 Cools HJ, Hawkins NJ and Fraaije BA, Constraints on the evolution of defence response. Phytopathol Mediterr 50:130-138 (2011).
azole resistance in plant pathogenic fungi. Plant Pathol 62:36-42 44 Cortesi P, Mazzoleni A, Pizzatti C and Milgroom MG, Genetic similarity
(2013). of flag shoot and ascospore subpopulations of Erysiphe necator in

31 Steel CC, Blackman JW and Schmidtke LM, Grapevine bunch rots: Italy. Appl Environ Microbiol 71:7788-7791 (2005).
impacts on wine composition, quality, and potential procedures 45 Brewer MT, Cadle-Davidson L, Cortesi P, Spanu PD and Milgroom MG,
for the removal of wine faults. J Agric Food Chem 61:5189-5206 Identification and structure of the mating-type locus and develop-
(2013). ment of PCR-based markers for mating type in powdery mildew

32 Jess S, Kildea S, Moody A, Rennick G, Murchie AK and Cooke LR, fungi. Fungal Genet Biol 48:704-713 (2011).

European Union policy on pesticides: implications for agriculturein 46 Cortesi P, Pizzatti C, Bertocchi D and Milgroom MG, Persistence and
Ireland. Pest Manag Sci 70:1646-1654 (2014). spatial autocorrelation of clones of Erysiphe necator overwintering as

33 Mutations Associated with Qol-Resistance. [Online]. FRAC (2006). Avail- mycelium in dormant buds in an isolated vineyard in northern Italy.
able: http://www.frac.info [1 February 2015]. Phytopathology 98:148-152 (2008).

34 Kunova A, Pizzatti C, Bonaldi M and Cortesi P, Sensitivity of nonexposed 47 McDonald BA and Linde C, Pathogen population genetics, evolu-
and exposed populations of Magnaporthe oryzae from rice to tricy- tionary potential, and durable resistance. Annu Rev Phytopathol
clazole and azoxystrobin. Plant Dis 98:512-518 (2014). 40:349-379 (2002).

wileyonlinelibrary.com/journal/ps © 2015 The Authors. Pest Manag Sci 2016; 72: 398-404

Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



