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Abstract

The International Agency for Research on Cancer recently released an assessment classifying red 

and processed meat as “carcinogenic to humans” on the basis of the positive association between 

increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for 

colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as 

n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert 

chemoprotective effects, and their molecular mechanisms have been the focus of research in the 

dietary/chemoprevention field. Using these bioactives as examples, this review surveys the 

proposed mechanisms by which they exert their effects, from the nucleus to the cellular 

membrane. In addition, we discuss emerging technologies involving the culturing of colonic 

organoids to study the physiological effects of dietary bioactives. Finally, we address future 

challenges to the field regarding the identification of additional molecular mechanisms and other 

bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal 

cancer.
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INTRODUCTION

According to the National Cancer Institute, colorectal cancer accounted for 8% of all new 

cancer cases in 2015, making it the fourth most common cancer diagnosed in the United 

States (82). In addition, colorectal cancer accounted for 8.4% of all cancer deaths in 2015, 

the second leading cause of cancer-related death in the United States. Although the rate of 

new colorectal cancer cases has been dropping on average by 3.1% each year over the last 

10 years, the death rates have not changed significantly over the same period (82). These 

statistics clearly highlight the importance of not only understanding the complex etiology of 

colorectal cancer, but also of developing effective prevention and treatment strategies for the 

disease.

The majority (95%) of colorectal cancers begin as noncancerous polyps of the intestinal 

epithelium on the inner lining of the colon or rectum that have accumulated oncogenic 

mutations over time (78, 203). Noncancerous polyps may become malignant and transform 

into adenomatous polyps if left undetected. Approximately 20% of colorectal cancer cases 

are attributed to patients with two or more first- or second-degree relatives with colorectal 

cancer (128, 184), suggesting that genetic factors play a minor role in the development of 

colon cancer. Various environmental factors contribute to the development of cancer. For 

example, of all cancer-related deaths, 25–30% can be attributed to tobacco, 30–35% are 

linked to diet, and 15–20% are due to infections (6). In particular for colon cancer, intestinal 

inflammation (e.g., Crohn's disease and ulcerative colitis) (53, 57) and obesity (19, 139) are 

additional risk factors that are associated with increased incidence of this form of cancer.

As mentioned above, epidemiological studies have established that diet can play a role in 

increasing the risk of developing colorectal cancer. In one study comparing US-born with 

foreign-born Japanese populations, the rate of colorectal cancer for US-born Japanese men 

was twice that of foreign-born Japanese men. Similarly, US-born Japanese women had a 

40% higher incidence compared to foreign-born Japanese women (59). This trend of 

increased colon cancer risk in association with migration to the United States from another 

country has been confirmed in other migrating populations (80, 118, 161). Furthermore, 

studies have documented a correlation between increased colon cancer incidence and per 

capita consumption of meat, animal protein, and total fat (8, 173). Overwhelming evidence 

indicates that the consumption of red and processed meat is associated with an increased risk 

of colorectal cancer (14, 16, 27, 40, 116, 147, 175, 178). Various mechanisms have been 

proposed to link red and processed meat to colorectal cancer (see Figure 1). The high level 

of the iron-porphyrin pigment, heme, in red meat has been associated with colorectal cancer 

in epidemiological studies (11, 117). Heme is poorly absorbed by the small intestine; 

therefore, dietary heme can accumulate in the colon (225), where it induces colonic injury 

resulting in hyperproliferation and hyperplasia (86, 87, 188), which may lead to the 

development of colorectal cancer. With the recent focus on the gut microbiota, it is not 

surprising to find that heme can alter microbial composition and facilitate the malignant 

transformation of colonic epithelial cells (84, 85). The second potential compound found in 

red meat that may increase colorectal cancer risk is heterocyclic amines (40, 79, 148). These 

compounds are generated when red meat is cooked at high temperatures (41, 91, 201) and 

are thought to be genotoxic once they enter the cell and are metabolized to compounds that 
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can interact with DNA to produce DNA adducts, inducing mutations in key oncogenic genes 

such as adenomatous polyposis coli (Apc), β-catenin, and K-Ras (201). A third class of 

compounds, N-nitroso compounds (NOCs), is also found in processed meat (121, 206). 

Although NOC can be endogenously synthesized from amines and amides with nitrosating 

agents derived from nitrites, the majority of exogenous exposure comes from the diet (83, 

127). These compounds can interact with DNA to promote oncogenic mutations in driver 

genes (95, 119). Similar to the links of heme and heterocyclic amine with colorectal cancer, 

epidemiological studies have found a link between NOC and colorectal cancer (47, 125, 

229).

The role of diet in promoting and preventing colorectal cancer can be context dependent, 

beneficial in one situation but detrimental in another context (101). One example of the dual 

modulatory role of diet in colorectal cancer is folate. This critical B vitamin is involved in 

the one-carbon transfer, where it is used as a substrate for the synthesis of nucleic acid 

purine bases and DNA methylation (61, 187). Thus folate plays an important role in 

regulating cell division, and folate deficiency is linked to many human health diseases, 

including congenital defects, adverse pregnancy outcomes, and cardiovascular diseases (198, 

212). On the basis of these findings, an effort has been made to increase the dietary intake of 

folate/folic acid through supplementation in the food system (158), resulting in a significant 

reduction in congenital defects, such as neural tube defect, by as much as 50% 

postfortification (219). In cancer, however, one therapeutic strategy may be to interrupt DNA 

synthesis in rapidly replicating cells to suppress tumor growth. Indeed, folate deficiency has 

been shown to suppress DNA synthesis in neoplastic cells (102, 104). Epidemiological data 

on folate, however, have suggested that a high level of folate is associated with a reduction 

in risk of colorectal cancer (73, 97–99, 179). Some clinical studies have also demonstrated 

efficacy (93, 154, 221), although other clinical studies have shown no or even detrimental 

effects of folate supplementation on colorectal cancer (37, 58, 124, 214). These results 

highlight the duality of folate in cancer prevention and promotion. It has been suggested that 

folate deficiency may increase the risk of neoplastic transformation in normal colonic tissue, 

but as the disease progresses, folate deficiency may be beneficial in stopping the progression 

of the malignant transformation (reviewed in 103). In contrast, folate supplementation may 

be necessary for inhibiting normal colonic tissue from malignant transformation but may be 

detrimental once adenocarcinoma foci have developed in the colon (101). Folate may play a 

role in colorectal cancer in a context-dependent manner.

Another compound that has gained considerable attention in preventing colorectal cancer is 

aspirin, with the US Preventive Services Task Force releasing its systematic evidence review 

concluding that aspirin appears to reduce the risk of colorectal cancer incidence (35). It is 

thought that aspirin and other nonsteroidal anti-inflammatory drugs inhibit 

cyclooxygenase-2 (COX-2), which is often overexpressed in colorectal cancer tissue (26). 

Even though it is one of the most promising chemopreventive agents, potential serious side 

effects including gastrointestinal bleeding (25, 199) and cardiovascular events (142, 170) 

make it less than an ideal agent. Thus the search for innocuous, bioactive compounds for 

chemoprevention remains important.
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Clearly, bioactive dietary compounds remain largely unexplored for their potential in 

providing a varied armamentarium for preventing the development of colorectal cancer 

(Figure 1). Long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs), such as 

eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA, 

22:6Δ4,7,10,13,16,19), the most notable bioactive components found in fish oil, have been 

shown to prevent multiple forms of cancer. The increased consumption of fish, n-3 PUFA, 

EPA, or DHA has been associated with a significant risk reduction for colorectal cancer (69, 

100, 105). Additional human studies have shown inverse relationships between intake of n-3 

PUFA and risk of colon cancer (143, 180, 204). A meta-analysis of prospective cohort 

studies and a 22-year prospective study both showed reduced risk of colorectal cancer with 

increased consumption of fish and fatty acids from fish (68, 77). Additionally, individuals 

with high serum levels of n-3 PUFA have a decreased risk of developing colorectal cancer 

(76, 108, 165). Other dietary bioactives, such as curcumin (diferuloylmethane), a yellow 

color pigment of turmeric (Curcuma longa Linn) extracts, have also shown promise in 

suppressing colorectal cancer in experimental models and placebo-controlled clinical trials 

(145, 192). Utilizing n-3 PUFA, curcumin, and fermentable fiber as examples, this review 

highlights some of the putative mechanisms by which dietary bioactives may be used to 

prevent colorectal cancer, from the cell membrane to the regulation of transcription (Figure 

2).

n-3 PUFA AND TRANSCRIPTIONAL MACHINERY

The bulk of dietary PUFAs is in the form of neutral fat or triglyceride and is well absorbed 

in the small intestine via emulsification, hydrolysis, and micelle formation (15). Following 

lipoprotein transport, PUFAs are incorporated into cell membrane glycerophospholipids by a 

remodeling pathway (Lands' cycle) to generate membrane asymmetry and diversity (194). 

This involves the concerted actions of phospholipases A2 and lysophospholipid 

acyltransferases.

Cell stimulation by a number of agonists triggers the formation of products of lipid 

hydrolysis, including DHA and EPA and their oxidative metabolites (63). These lipid 

mediators have been shown to interact directly with specific ligand-dependent nuclear 

receptors, including constitutive androstane receptor, hepatocyte nuclear factor 4 alpha 

(HNF4A), peroxisome proliferator-activated receptor gamma (PPARγ), pregnane X receptor 

(PXR), and retinoid X receptor alpha (RXRα) (157, 207). In this fashion, n-3 PUFA can 

regulate the function of nuclear receptors and impact transcriptional machinery. For 

example, DHA can bind and activate PPARγ, where it can transactivate genes associated 

with fatty acid transport and β-oxidation to control energy balance by regulating fatty acid 

homeostasis (163). Interestingly, impaired expression and function of PPARγ are associated 

with inflammatory bowel disease and colon cancer (52, 227). Therefore, one therapeutic 

application of n-3 PUFAs may be the activation of PPARγ and its associated fatty acid 

homeostasis pathways.

The liver X receptors (LXRs) are transcriptional regulators of cholesterol metabolism that 

control cholesterol uptake into the cell, its subsequent catabolism, and efflux out of the cell 

(176). This is noteworthy because cholesterol can control cell proliferation, and disruption in 
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cholesterol metabolism has been associated with the development of colon cancer (164, 172, 

228). LXRs also function by heterodimerizing with RXRα (176). The activation of LXRα 
by n-3 PUFA has been shown in preclinical studies to block proliferation of human 

colorectal cancer cells and to slow the growth of xenograft tumors in mice (123).

PXR (NR1I2) has been shown to regulate the expression of genes involved in the oxidation, 

conjugation, and transport of xenobiotics and to promote the metabolism, elimination, and 

detoxification of chemotherapeutic agents (167). It is noteworthy that the transcription of 

PXR increases in the presence of n-3 PUFA (114), and PXR can suppress the proliferation 

and tumorigenicity of colon cancer cells (151). The constitutive androstane receptor (NR1I3) 

is likewise transcriptionally increased by n-3 PUFAs in epithelial colorectal adenocarcinoma 

cells and similarly regulates genes involved in xenobiotic detoxification and energy 

homeostasis (114).

HNF4A maintains epithelial cell function and normal colon physiology via regulation of the 

balance between proliferation and differentiation, immune function, ion transport, epithelial 

barrier function, and oxidative stress (3, 22). P1-HNF4A, but not P2-HNF4A, expression is 

lost in colorectal carcinomas in humans, and it is predicted that treatments that increase 

nuclear P1-HNF4α protein levels, such as n-3 PUFA treatment, could help slow colon 

cancer progression (31, 150).

Since the original description of dietary fat as a regulator of gene expression more than a 

decade ago, many transcription factors have been identified as prospective indirect targets 

for n-3 PUFA regulation. For example, DHA can increase the activity of cyclic AMP 

response element-binding protein (CREB) binding protein, E1A-binding protein p300, and 

MYC and decrease the activity of nuclear factor-kappa B (NF-κB) (NFKB1) and signal 

transducer and activator of transcription 3 (STAT3) (157). However, DHA does not directly 

bind to this class of transcription factor. With respect to colon cancer, DHA exhibits a 

protective suppressive effect against hyperactivated STAT3 and may reestablish the 

equilibrium between STAT3 and PPARγ (42). The decrease in STAT3 activity may be 

associated with the ability of n-3 PUFA to trigger PPARγ-RXR heterodimers to localize at 

their cognate PPAR response elements and exchange corepressors for coactivators such as 

CREB binding protein and p300 (52).

The cytotoxic effects of DHA are also associated with signaling pathways involving lipid 

metabolism and endoplasmic reticulum (ER) stress. DHA can deplete free cholesterol in the 

ER, which leads to ER stress and growth arrest/apoptosis of metastatic tumor cells (92). It 

has been suggested that these alterations in the sterol content of the ER by DHA mediate 

growth partly by decreasing nuclear sterol regulatory element-binding protein, an important 

regulator of lipid homeostasis and cell growth regulation (185). Induction of ER stress 

mediators by DHA also promotes expression of protein kinase RNA-like endoplasmic 

reticulum kinase (PERK), which in turn increases translation of activating transcription 

factors 3, 4, and 6 (92). Furthermore, an elevation in PERK activity can increase levels of 

ER protein GADD34 (PPP1R15A) and the proapoptotic transcription factor DDIT3/CHOP 

along with its downstream target TRIB3 (197). The experimental details associated with 

differentially expressed target genes are described in a recent review (207).
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Colon adenocarcinomas exhibit defective expression of the APC gene, which is a critical 

regulator of the Wnt signaling pathway. This and other developmental pathways play an 

important role in both genetic (familial) and sporadic epithelial cancers (71). From a 

chemoprevention perspective, in vivo studies demonstrate that fish-oil-derived n-3 PUFAs 

suppress the formation of intestinal tumors in mice and humans with a defective APC allele 

(36, 218). The downstream APC signaling oncogenic transcription factor MYC is an 

important regulator of cell proliferation, and the lack of MYC expression is associated with 

a reduced number of intestinal adenomas (156). Interestingly, patients with an amplified 

MYC gene and wild-type p53 have a greater response to anticancer therapies (7). In colon 

cancer cells, DHA increases the level of MYC, which is believed to induce a 

chemoprotective, proapoptotic phenotype (20).

DHA can inhibit NF-κB activity (217). This is relevant because NF-κB mediates signaling 

pathways that control the transcriptional activation of genes important for the regulation of 

many cellular processes and is aberrantly activated in many types of cancer (130, 138). n-3 

PUFA treatment inhibits the expression and activity of NF-κB in many cell types; however, 

the exact mechanism is not fully understood (197). This has implications in chronic disease 

management because the DHA-mediated decrease in NF-κB activity has been shown to 

sensitize tumor cells to gamma-irradiation and promote the induction of apoptosis (227).

Curcumin also has been shown to inhibit cell proliferation, invasion, migration, 

angiogenesis, and inflammation and to induce cell cycle arrest and apoptosis in various 

cancers, such as breast, cervical, oral, gastric, melanoma, pancreatic, colon, and prostate (2, 

74, 96). It exhibits its anticancer effects in part by regulating genes involved in cellular 

signaling pathways, including NF-κB, protein kinase B (Akt), mitogen-activated protein 

kinase, p53, and other pathways (152). Curcumin inhibits gene expression of epidermal 

growth factor receptor (EGFR) in human colon cancer cells (32) and also binds to the active 

sites of 5-lipoxygenase and COX-2 and inhibits their activity (169). It is noteworthy that 

curcumin modulates COX-2 and inducible nitric oxide synthase (163), similar to the effect 

induced by synthetic nonsteroidal anti-inflammatory drugs but without the side effects 

associated with these pharmaceutical agents (60).

EFFECTS OF n-3 PUFA, FIBER, AND CURCUMIN ON NONCODING 

MICRORNAs

High-throughput noncoding microRNA (miRNA) profiling studies have linked aberrant 

expression of miRNAs to the development of colon cancer (159, 196). For example, miR-21, 

a well-described “oncogenic” miRNA, is positively correlated with colorectal cancer 

metastasis (195). Elevated expression of miR-21 has been reported in breast (223), 

glioblastoma (67), pancreatic (140), and colon (9, 45, 216) cancers. The antiapoptotic 

properties of this miRNA target several tumor suppressors, including PTEN, PDCD4, BCL2, 

TIMP3, TGFβR2, SPRY3, and RECK (9, 120, 195, 216). Additionally, dysregulation of 

miRNA editing has been linked to aberrant EGFR signaling, which interacts with argonaute 

2, thereby perturbing miRNA processing from precursor to mature miRNAs (48, 193). The 

fact that DHA antagonizes EGFR (209), which can modulate miRNA maturation through 

Hou et al. Page 6

Annu Rev Nutr. Author manuscript; available in PMC 2016 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phosphorylation of argonaute 2 (48, 193), implicates a potential regulatory molecular 

mechanism involving fish oil and miRNAs. This epigenetic mechanism of action highlights 

a potential regulation of miRNAs by bioactive dietary components, and further study is 

needed to validate it.

The effects of n-3 PUFA on carcinogen-induced miRNA expression profiles during the early 

stages of colon tumorigenesis in rat colonic mucosa have been previously examined (44–46). 

The data indicate that translational alterations are far more extensive relative to 

transcriptional alterations in mediating malignant transformation. In contrast, changes in 

transcription are more extensive relative to translation in mediating the effects of diet. 

Therefore, during the early stage of colonic neoplasia, diet and carcinogen appear to 

predominantly regulate gene expression at multiple levels via unique mechanisms. Table 1 

summarizes specific miRNAs modulated by a fish oil diet with respect to their validated 

mRNA target genes. miR-18a, miR-19b, miR-27b, miR-93, and miR-497 exhibited a 

coherent response at the total and polysomal mRNA levels by fish oil feeding. miR-132, 

miR-146b, miR-192, miR-206, and miR-218 were increased by fish oil feeding, with inverse 

relationships with their target genes. Specifically, azoxymethane treatment did not affect 

let-7d, miR-15b, miR-107, miR-191, and miR-324-5p expression in the fish-oil-fed animals. 

DHA in human colorectal adenocarcinoma cells modulated miR-141-3p, miR-221-3p, 

miR-192, miR-30c, miR-1283, let-7f, miR-181a, and miR-1 (72). Furthermore, DHA 

treatment of gastric cancer cells increased miR-15b and miR-16, resulting in a 

downregulation of Bcl-2 and the induction of apoptosis (202).

A diverse population of microbiota colonizes the human gastrointestinal tract. The colon 

contains approximately 1011 cells per gram of contents, representing the densest population 

of microbes in the healthy adult (51). These predominantly anaerobic microbial populations 

are metabolically active, producing many metabolites that can exert both protective and 

pathogenic effects on the host. Some protective metabolites produced by the microbiota 

include short-chain fatty acids, such as acetate, butyrate, and propionate. A range of gut 

microbial structural components and metabolites directly interacts with host intestinal cells 

and stroma to influence nutrient uptake and epithelial resilience (75). For example, we and 

others have proposed that n-3 PUFA and butyrate, a four-carbon short-chain fatty acid 

produced during anaerobic fermentation of dietary fiber by endogenous bacteria in the 

colon, interact to profoundly suppress colon cancer (30, 110, 111). Dietary fish oil and the 

fermentable fiber pectin can act synergistically to protect against colon carcinogenesis 

primarily by enhancing apoptosis (110) (Figure 3). Table 2 summarizes animal and cell-line 

studies examining the synergism between n-3 PUFA and pectin or its fermentation product, 

butyrate.

The effects of dietary fish oil and pectin on miRNA expression during the early stages of 

colon tumorigenesis in preclinical models have been examined (46, 190). Table 1 

summarizes specific miRNAs modulated by a combination fish oil and pectin diet with 

respect to their validated mRNA target genes. Surprisingly, miR-21 was decreased by the 

combination diet compared to the control diet (189, 190). This is noteworthy because, as 

previously noted, miR-21 is a well-known oncogenic miRNA, and its validated targets, 

PDCD4 and PTEN, are known tumor suppressor genes (9, 135, 229). Compared to the fish 
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oil diet, miR-26b, miR-30b, miR-98, miR-130b, miR-182, miR-200c, and miR-203 were 

uniquely increased by fish oil and pectin combination feeding. Their validated targets in 

Table 1 are known to promote tumorigenesis.

In colon cancer, curcumin has been shown to modulate tumor suppressor genes and 

transcription factors. In RKO and HCT116 colon cancer cells, the expression of miR-21, 

which correlated with the inhibition of activator protein-1 binding to its promoter, was 

reduced following treatment with curcumin. Consequently, cell proliferation, tumor growth, 

invasion, and in vivo metastasis were suppressed while the expression of the tumor 

suppressor PDCD4, a target of miR-21, was upregulated (141). In another study, curcumin 

induced cell cycle arrest and apoptosis in TE-7 human esophageal cancer cells through 

downregulation of Notch-1-specific miR-21 and miR-34a and upregulation of tumor 

suppressor let-7a (200). Curcumin also inhibited the growth of RKO and SW480 colon 

cancer cells through induction of reactive oxygen species and repression of specificity 

protein (Sp) transcription factors through downregulation of miR-27a, miR-20a, and 

miR-17. These miRNAs regulate the Sp repressors zinc finger and BTB domain-containing 

proteins 4 and 10 (ZBTB4 and ZBTB10) (65). This regulation has important implications 

because Sp proteins are transcription factors that regulate genes involved in cell death and 

angiogenesis and are often overexpressed in tumors (1, 24). Moreover, curcumin is known to 

modulate DNA methylation in colorectal cancer cells (122), and recent advances in 

microarray and sequencing technologies have reported miRNA genes that are silenced by 

methylation in cancer (126). It has also been suggested that DHA enhances cell 

permissiveness to curcumin uptake (4, 137). Therefore, a diet containing both n-3 PUFA and 

curcumin may suppress colon cancer by acting on different molecular targets. An interesting 

future frontier will be the pursuit of epigenetic molecular complexes targeted by a 

combination of pleiotropic chemoprotective bioactive dietary compounds. This approach 

will likely avoid problems commonly associated with drug rejection.

Adult stem cells of the colon are of particular interest because they sustain self-renewal and 

are targets for cancer-initiating mutations (133, 220). Perturbations in adult stem cell 

dynamics are generally believed to represent an early step in colon tumorigenesis. Recently, 

several studies have demonstrated the role of miRNAs in the maintenance of colon cancer 

stem cells. For example, repression of the translation of select miRNAs in stem cells and 

differentiated daughter cells has been shown to be a means of regulating stem cell renewal 

and differentiation (56, 66, 94). Although evidence supports the beneficial effects of certain 

dietary components on suppression of colon cancer cells (46, 190), a comprehensive, 

comparative analysis of the effects of these dietary agents on colonic stem cells has not yet 

been conducted (189).

n-3 PUFA, DNA METHYLATION, AND HISTONE MODIFICATIONS

In addition to regulating transcriptional machinery and the expression of miRNAs, dietary 

bioactives can also exert chemoprotective effects through DNA modification. Genes are 

silenced by covalently adding a methyl group to cytosine, typically occurring in CpG 

dinucleotide islands and island shores (89). Typically, in the context of cancer, 

hypermethylation occurs at tumor suppressors, whereas hypomethylation occurs at tumor 
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promoters. Another possibility of change in methylation is the presence of alternative RNA 

transcripts, as shown for the PIP5K1A locus in colon cancer (89). Several studies have 

shown that fish oil modulates the DNA methylation status of gene promoters. For example, 

in a high-fat-diet study of mice, fish oil supplementation abolished the decrease in Pparg2 
promoter methylation in skeletal muscle, thereby suppressing the increase in Pparg2 
expression (5). Another study has shown that EPA can decrease methylation at the CCAAT/

enhancer-binding protein promoter for C/EBPβ and C/EBPδ to increase their expression in 

U937 leukemia cells (23). Interestingly, we have demonstrated that n-3 PUFA/DHA and 

pectin/butyrate reduce cancer risk in part via changes in the promoter methylation state of 

apoptosis-related genes, leading to induction of proapoptotic gene expression and increased 

apoptosis in colonocytes (33, 34). Similar to results in mouse models, in clinical studies n-3 

PUFA has been shown to influence DNA methylation. In one study of the Yup'ik Alaska 

Natives, DNA methylation of 27 CpG sites was differentially regulated by n-3 PUFA (10). 

These findings highlight the effects of n-3 PUFA on regulating gene expression through 

DNA methylation in both preclinical and clinical studies, although more research is required 

to pinpoint the exact mechanisms by which n-3 PUFA alters the DNA methylation 

landscape.

Another epigenetic modification that can regulate gene expression is histone modification, 

which is composed of an array of posttranslational alterations of the histone tail that is 

associated with active and repressed gene expression. For example, histone H3 lysine 4 

trimethylation is associated with active gene transcription, whereas H3 lysine 9 

trimethylation is associated with repressed gene expression (18). We have demonstrated 

using rat colonic epithelial cells that there are differences in histone modification and proto-

oncogene expression between proximal and distal colon (208). Studies are in progress to 

determine the effect of dietary fat and fiber composition on global histone posttranslational 

epigenetic programming in preclinical models of colon cancer.

The interaction of dietary fat and fiber-derived compounds in the colonic lumen can 

substantially impact the metabolism and kinetics of the colon epithelial cell population and 

suppress inflammation and neoplasia (29, 109, 210). For example, butyrate, formed via fiber 

fermentation, has pleiotropic effects in the colon (49, 81), acting as a principal energy source 

and a survival factor for normal colon cells while exerting antiproliferative, differentiation-

inducing, and apoptosis-inducing effects in cancer cells (21). In addition to the regulation of 

basic cytokinetic processes, butyrate has also been shown to affect cell adhesion, 

morphology, invasiveness, metastasis, oxidative metabolism, and angiogenesis, as well as 

the activity of different enzymes and transcription factors. These effects are attributed in part 

to the function of butyrate as a histone deacetylase inhibitor, which mechanistically links it 

to gene expression (183).

ADDITIONAL MECHANISMS BY WHICH NUTRITIONAL BIOACTIVES EXERT 

CHEMOPROTECTIVE EFFECTS

The review thus far has focused on the binding of bioactive dietary compounds to 

transcription factors, or regulating transcription indirectly by regulating miRNA or DNA 
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methylation. However, n-3 PUFA and its metabolites, as well as other amphiphilic dietary 

compounds such as curcumin, can modulate the function of membrane-associated receptors 

and exert additional effects on oncogenic cellular signaling.

The cellular plasma membrane is a heterogeneous composition of lipids and proteins. These 

lipids have many different head groups (glycerophosphocholine versus sphingomyelin), tail 

lengths (16:0 versus 18:0), and saturation indices (16:0 versus 16:1). Although membrane 

proteins have many different characteristics, such as transmembrane, lipid anchoring, and 

outer versus inner leaflets, recent studies have highlighted that these lipids and proteins are 

not just randomly distributed but rather are exquisitely organized. In fact, receptor activation 

can even be controlled by local spatial heterogeneity in ligand concentrations (136). 

Ultimately, most signals are propagated by the formation of signaling membrane domains 

composed of lipid-lipid, lipid-protein, and protein-protein interactions of differing size 

scales, such as micrometer (immunological synapse) and nanometer (Ras-Raf) platforms.

One view is that these membrane proteins exist in a balance of clustered and nonclustered 

states. The composition and organization of the membrane as well as the influence of 

cytoskeletal protein-protein interactions can stabilize these domains, favoring a shift of 

equilibrium to a clustered state. Interestingly, clustered proteins are not always efficient 

signaling domains because these clusters must be arranged in a particular conformation and 

be composed of the appropriate binding partners to propagate the signal (12, 132, 144). 

These membrane domains can be stabilized by transbilayer interactions between outer and 

inner leaflet lipids as well as the cytoskeleton (168).

Multidrug-resistance cancer cells have unique plasma membrane lipid composition and 

organization, specifically increased sphingomyelin and rigidity (213, 224). Increased rigidity 

is associated with increased lipid rafts, which typically facilitate efficient cellular signaling. 

It appears that these multidrug-resistance cells have remodeled their membrane to be in a 

state that is more receptive to activation. The plasma membrane, which is considered the 

outermost part of the cell, must receive and process extracellular signals. Because n-3 

PUFAs such as DHA and EPA are physically incorporated into membrane phospholipids 

(Figure 4a), their main effect may originate at the membrane. Other compounds, such as 

curcuminoids, however, are not a physical part of the membrane. Instead, these compounds 

can intercalate into the membrane, where they can influence lipid-lipid and lipid-protein 

interactions (Figure 4b) (88). Effects of small-molecule agonists and antagonists can 

typically be predicted by structure-activity relationships, highlighting binding regions 

between proteins and said molecule. Unfortunately, it is very difficult to predict the effects 

of membrane-targeted dietary bioactives because the interaction involves modeling lipid and 

protein biophysics.

A criticism related to the physiological effects of dietary agents is that the bioavailability of 

most bioactive dietary compounds is very low and therefore membrane enrichment is low. 

However, from the standpoint of membrane biophysics, even small mole percentage 

increases of compounds can have drastic effects on biophysical properties of membranes 

(134). The magnitude and directionality of these effects depend on biophysical properties of 

the compounds themselves as well as those of the membrane. The colon is unique because 
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many compounds that are not “bioavailable” and, therefore, not found in circulation are still 

bathing the colonic epithelium from the luminal side. Therefore, as opposed to the blood 

pathway shown in Figure 4a for PUFA effects on cell membranes, curcumin acts through an 

intestinal pathway, with the curcuminoid bioactive, for the most part, escaping absorption in 

the small intestine and being delivered to the colon intact (90), where it can become 

incorporated into membranes of the colonic epithelium and exert its physiological effects 

(Figure 4b). In comparison, fermentable fiber acts through a microbial pathway (Figure 4c), 

being converted to its bioactive form, butyrate, by the action of intestinal microbiota in the 

lumen of the colon.

NOVEL TECHNIQUES TO STUDY NUTRIENT-GENE INTERACTION IN 

COLON CANCER

The intestinal epithelium is one of the most rapidly renewing tissues in vertebrate organisms. 

Self-renewal of the colonic epithelium is driven by the proliferation of stem cells and their 

progenitors located in crypts. In 2009, Sato et al. (182) established a long-term primary 

culture to generate epithelial organoids (enteroids) with crypt- and villus-like epithelial 

domains representing the complete census of progenitor and differentiated cells, mimicking 

the situation encountered by cells in the intestinal crypt niche (Figure 5). Later, they adapted 

the culture conditions to grow similar epithelial organoids from mouse colon and human 

small intestine and colon. The three-dimensional culture system of the native human colonic 

epithelium recapitulates the topological hierarchy of stem cell–driven tissue renewal, 

opening the methodological door for ex vivo studies designed to examine the effects of 

bioactive dietary compounds on colonic crypt metabolism (153).

From the perspective of membrane-derived bioactives, it has been shown that prostaglandin 

E2 supports the growth of chicken embryo intestinal organoids in three-dimensional culture 

(160). Interestingly, we have provided evidence that exogenous prostaglandin E3, derived 

from n-3 PUFA, has diminished ability to support colonic stem cell expansion in mouse 

colonic organoids relative to prostaglandin E2, derived from n-6 PUFA, a known promoter of 

colon tumorigenesis (54, 191). The ability of bioactive compounds to alter colonic stem cell 

lineage and proliferation in this three-dimensional organoid culture system ex vivo strongly 

suggests that primary intestinal organoid cultures have widespread application for 

elucidating the molecular mechanisms of nutrient action on gut biology.

Evidence suggests that targeting cancer cell energy metabolism might be an effective 

therapeutic approach for selective ablation of malignancies. The Seahorse Extracellular Flux 

Analyzer is a novel platform designed to perform metabolic profiling of mitochondria, cells, 

or tissue. Using the Seahorse Analyzer, we have demonstrated that select bioactives known 

to affect gastrointestinal function and cancer risk can alter colonic mitochondrial function, 

both in vivo in crypts and in ex vivo organoid culture, by increasing respiration-induced 

proton leak, thereby inducing apoptosis, a marker of colon cancer risk (55).

The organoid culture system is applicable to basic and translational research. By using either 

CRISPR-Cas9 or lentivirus, Matano et al. (131) engineered diverse oncogenic mutations in 

organoids derived from normal colon, facilitated by selective culture conditions that 
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encouraged the maintenance of the mutations. During tumorigenesis, niche factors often 

become dispensable, leading to a less stringent culture condition for cancer organoids as 

compared to wild-type organoids. Established cancer organoids can be xenotransplanted to 

recapitulate histopathology of the parental tumor from which they are derived. Cancer 

organoids reflect genetic lesions and gene expression patterns, opening up the possibility of 

in vitro drug testing for the prediction of clinical treatment response in patients (181).

An elegant model for examining changes in the colonic epithelium due to various 

intervention therapies is the noninvasive monitoring of gene expression in exfoliated 

colonocytes. Our group has developed methodology to extract host mRNA from stool 

samples for the purpose of RNA sequencing to examine gene expression profiles of the host 

organism (107). Indeed, we have demonstrated that the effects of chemotherapeutic diets on 

epithelial cell expression can be monitored noninvasively throughout the tumorigenic 

process (33). Because the sample is easily acquired, repeated sampling over time or after 

repeated treatments is possible, such as in a crossover intervention study. With this method, 

conflation of host transcriptome profiles with changes in microbiome can be achieved (50, 

186).

FUTURE CHALLENGES

Although this review has focused on the pleiotropic mechanisms by which n-3 PUFA may 

be chemoprotective against colon cancer, two systematic reviews of n-3 PUFA on cancer 

risk qualitatively concluded that there is inadequate (129) or limited (70) evidence to suggest 

an association between long-chain n-3 PUFA intake and colorectal cancer risk. This 

discrepancy may be due to the source of n-3 PUFA, from fish oil, purified EPA, DHA, or a 

combination of the two n-3 PUFAs. This can result in variable ratios of EPA and DHA, and 

the administration of different doses. Consistent use of n-3 PUFA formulation, with 

particular attention to the ratio of EPA and DHA, as well as the standardization of the dose, 

may help resolve the discrepancy in the efficacy of n-3 PUFA in preventing colorectal 

cancer. Furthermore, work from our group suggests that the combined effects of n-3 PUFA 

in fish oils and highly fermentable fibers may act synergistically to enhance the 

chemopreventive potential, in part, by increasing apoptosis (Figure 3 and Table 2) (28, 33, 

39, 109–111, 149, 177, 211). These results are in agreement with a recent prospective nested 

case-control study demonstrating significant colorectal cancer risk reduction among Seventh 

Day Adventist pescovegetarians, whose diets are high in both dietary fiber and n-3 PUFA-

rich fish (HR: 0.57; 95% CI: 0.40, 0.82) (149). We postulate that the failure to address an 

interaction between dietary fat and fiber and their subtypes may explain why the interactive 

chemoprotective effects of n-3 PUFA and fermentable fiber have been obscured in 

prospective cohort studies.

Although this discussion has focused on n-3 PUFA and some of the nutrient-nutrient 

interactions, other diets may be chemoprotective against colorectal cancer as well. Indeed, 

the so-called Mediterranean diet, consisting of a high intake of vegetables, fruits, nuts, and 

olive oil, and a low consumption of red meat, may be beneficial in preventing colorectal 

cancer (174). It has been shown that Mediterranean countries have decreased colorectal 

cancer rates compared to Western countries (38, 205). Bioactive dietary molecules found in 
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vegetables and fruits, such as epigallocatechin gallate in green tea (222), proanthocyanidins 

in apples and cocoa beans (146), genistein in soybeans (166), and sulforaphane in 

cruciferous vegetables such as broccoli (64), have also emerged as bioactive dietary 

compounds that may exert chemoprotective effects against colon cancer (Figure 1). More 

research on these and other emerging compounds is required to fully elucidate their 

chemoprotective efficacy.

Butyrate and propionate, produced in the colon by fermentation of dietary fiber by microbes 

in the human colon, are histone deacetylase inhibitors, regulating host transcriptome at the 

epigenetic level (21, 183). Not surprisingly, diet can change the microbial population in the 

colon (43, 215), and recent studies have begun to profile the changes to the microbiota 

associated with n-3 PUFA intake (155, 226). The continued study of how dietary bioactive 

molecules alter the microbiota as a chemoprotective strategy is needed for a full 

understanding of the dietary-host-microbiome nexus.

The overwhelming majority of colorectal cancers are initiated by activating mutations/

deletions in the Wnt pathway (13, 106, 171). From a physiological standpoint, the Wnt 

signaling pathway is essential for the maintenance of the intestinal stem cell niche (112, 113, 

115, 162). Therefore, environmental factors, which are capable of modulating Wnt 

signaling, will likely have a unique and central role in the physiology and pathology of the 

intestinal stem cell. A growing body of literature supports the hypothesis that dietary 

bioactive compounds (e.g., n-3 PUFA, folate, fermentable fiber) can modulate Wnt signaling 

by suppressing colonocyte nuclear β-catenin levels (17, 62). Nonetheless, our understanding 

of the mechanisms by which nutrient-gene interaction influences stem cells and colon cancer 

is still poorly developed. Therefore, certain issues in regard to colonic stem cells need to be 

addressed. For example, are the stem cell number and location fixed? Do these change 

during malignant transformation? Can a chemoprotective diet influence these events? These 

questions and others proposed in this review highlight that the interplay between diet and 

chemoprevention has not been fully explored and that more questions remain to be 

addressed in order to fully understand how diet can be used in the prevention of colon 

cancer.
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Glossary

Apc adenomatous polyposis coli gene

NOCs N-nitroso compounds

COX-2 cyclooxygenase-2

PUFAs polyunsaturated fatty acids

EPA eicosapentaenoic acid
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DHA docosahexaenoic acid

PPARγ proliferator-activated receptor gamma

PXR pregnane X receptor

RXRα retinoid X receptor alpha

LXRs liver X receptors

NF-κB nuclear factor-kappa B

STAT3 signal transducer and activator of transcription 3

ER endoplasmic reticulum

PERK protein kinase RNA-like endoplasmic reticulum kinase

EGFR epidermal growth factor receptor

miRNA microRNA

Sp specificity protein
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Figure 1. 
Effects of diet on promoting and preventing colorectal cancer. Compounds found in the diet 

have been linked to the development of colorectal cancer through the induction of DNA 

adducts, leading to mutations in oncogenic genes and promoting hyperproliferation and 

hyperplasia. Compounds found in many fruits, vegetables, and fish can counteract cancer-

promoting compounds in a pleiotropic manner and therefore should be incorporated in a 

healthy human diet. Abbreviation: EGCG, epigallocatechin gallate.
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Figure 2. 
Potential mechanisms by which bioactive dietary molecules mediate chemoprotective effects 

in the nucleus. Bioactive dietary molecules such as EPA, DHA, and curcumin can activate 

transcription factors that regulate chemoprotective genes or inhibit transcription factors that 

drive oncogenesis. These molecules can also affect miRNA silencing as well as alter 

posttranslational modification of histones. Abbreviations: ac, histone acetylation; DHA, 

docosahexaenoic acid; EPA, eicosapentaenoic acid; me, histone methylation; miRNA, 

microRNA; p, histone phosphorylation; ub, histone ubiquitination.
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Figure 3. 
Proposed mechanisms by which the interaction of dietary long-chain n-3 polyunsaturated 

fatty acids from fish oil and butyrate from bacterial fermentation of dietary fiber may reduce 

colon tumorigenesis. Butyrate induces colonocyte apoptosis via a nonmitochondrial, Fas-

mediated, extrinsic pathway. Docosahexaenoic acid (DHA) and butyrate, in combination, 

synergistically perturb intracellular Ca2+, stimulating mitochondrial Ca2+ uptake. This 

directly or indirectly decreases cytosolic Ca2+ and promotes store-operated channel (SOC)-

mediated entry via plasma membrane channels. Mitochondrial Ca2+ accumulation 

subsequently triggers the opening of the permeability transition pore (PTP) and release of 

proapoptotic molecules, such as cytochrome c, and other factors, such as apoptosis-inducing 

factor (AIF) and second mitochondrial activator of caspases (smac/Diablo). Together, these 

effects culminate in the induction of procaspases and downstream caspases (Casp) that 

execute cellular apoptosis. Abbreviations: Apaf1, apoptotic protease-activating factor 1; Cyt-

c, cytochrome c; EndoG, endonuclease G; SERCA, sarcoendoplasmic reticulum Ca2+ 

ATPase.
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Figure 4. 
Multiple pathways for the delivery of dietary bioactives to colonocytes. (a) Blood pathway. 

Polyunsaturated fatty acids are delivered to colonocytes and other cell types, such as T cells, 

through the bloodstream after digestion and absorption from the small intestine into the 

portal vein. In the colonocyte, the fatty acids are incorporated into phospholipids in the 

plasma membrane. Abbreviation: DHA, docosahexaenoic acid. (b) Intestinal pathway. 

Curcumin is poorly bioavailable and hence is transported, intact, to the colon, where it can 

intercalate between phospholipids in the plasma membrane of colonocytes. (c) Microbial 

pathway. Pectin is not digestible by human enzymes and therefore transits to the colon, 

where gut microbes ferment it to produce butyrate, which is rapidly taken up by colonocytes.
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Figure 5. 
Culturing of colonic organoids. Colonic crypts, isolated from the colon by ethylenediamine 

tetra-acetic acid (EDTA) treatment, are cultured in Matrigel 3D matrix in media containing a 

mixture of recombinant growth factors. All cell lineages in the crypt are recapitulated in the 

developing organoid.
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Table 1

miRNAs differentially regulated by DHA, fiber, or curcumin in the colon

Bioactive component Differentially regulated genes Validated mRNA targets Cell line/organism Target mRNA-involved pathway Reference

n-3 PUFA miR-18a Runx1 Rat colon ERK-MAPK, Wnt/β-catenin, 
PTEN, apoptosis, EMT

190

miR-19b Arid4b, Arpc3, Hipk3

miR-27b Cxcl12, Runx1

miR-93 Sqstm1, Stat3, Vegfa

miR-497 Bcl2, Bcl2ls, Eln

miR-132 Arhgap32, Btg2, Ep300, 
Foxo3, Kdm5a, Mecp2, 
Mmp9, Nr4a2, Paip2, 
Ptbp2

miR-146b Nfkb1, Sirt1

miR-192 Zeb2

miR-206 Bdnf, Fstl1, Gja1, Hdac4, 
Hhip, Id1, Id2, Id3, Igsf5, 
Mmd, Notch3, Pax7, 
Pola1, Ptplad1, Spry1, 
Timp3, Utrn

miR-218 Onecut2

let-7d Sept3 46

miR-15b Bcl2, Ccne1

miR-107 Bace1, Serbp1

miR-191 Mxi1, Riok3

miR-324 Smo

miR-1 Calm1, Calm2, Gata4, 
Hdac4, Igf1, Mef2a

Human colorectal 
adenocarcinoma 
cells

EMT, cancer cell migration, 
invasion, tumor suppressor

72

miR-30c Ccne2, Celsr3, Egfr, 
HSPA4, Mdm2, Mtdh, 
Runx1, Smad1, Snai1, 
Timp3, Twf1, Vimentine

miR-141 Cdh11, Dlx5, Elavl4, 
Klf5, Mapk14, PTEN, 
Slc25a3, Stk3, Zeb1, 
Zeb2

miR-181a Acvr2a, Bcl2, Cbx7, 
Cd69, Egr1, Gata6, Hoxa, 
Msx2, Rgs4, Runx1, 
Tbr1, Tcra, Tgfbi, Tox

miR-192 Zeb2

miR-221 Arnt, Bnip3, Cdkn1b, 
Ddit4, Kit, Psmd9, Timp3

miR-1283

let-7f

miR-15b Arl2, Bcl2l2, Dedd Human gastric 
cancer cells

202

miR-16 App, Arl2, Bcl2, Bcl2l2, 
Cadm1, Ccnd1, Ccne1, 
Ccnt2, Cd40, Fgf2, Jag1, 
Jun, Mdm4, Slc6a4, 
Vegfa,Wnt3a
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Bioactive component Differentially regulated genes Validated mRNA targets Cell line/organism Target mRNA-involved pathway Reference

n-3 PUFAs plus 
pectin

miR-16 Arl2, App, Bcl2, Ccnd1, 
Jag1, Jun, Mdm4, Vegfa, 
Wnt3a

Rat colon Adenocarcinoma, mTOR, PI3K/
AKT, apoptosis, EMT

190

miR-21 Eif4e3, Fasl, Peli1, 
Pdcd4, Pten, Reck, 
Smad7, Spry1, Spry2, 
Tgfbr3, Tnfaip8l2, 
YOD1, Yy1

miR-26b Lef1, PDE4B

miR-27b Cxcl12, Mef2c, Pparg, 
Runx1, Smad3, Smad4, 
Smad5

miR-30b Aicda, Snai1

miR-93 Sqstm1, Stat3, Vegfa, 
VSIVgp2

miR-98 Acvr1b, Il6, Mmp11

miR-130b Meox2, Tgfb1

miR-182 Adcy6, Clic5, Fbxw7, 
Foxo3, Tbx1

miR-200c Bmi1, Flt1, Mapk14, 
Nog, Reln, Sox2, Vldlr, 
Zeb1, Zeb2, Zfpm2

miR-203 Cav1, Ctnnb1, Rbm44, 
Snora62, Trp63, TCF4, 
Vcan, ZNF148

miR-206 Adar, Bdnf, Clcn3, 
Eif4e3, Fn1, Fstl1, Fzd7, 
Gja1, Hdac4, Hhip, 
Hmgb3, Id1, Id2, Id3, 
Igsf5, Meox2, Mmd, 
Nfat5, Notch3, Pax7, 
Pdcd10, Pola1, Ptplad1, 
Rarb, Sh3bgrl, Spry1, 
Smarcb1, Smarcd2, 
Timp3, Utrn

Curcumin mir-21 AP-1, Eif4e3, Fasl, 
Pdcd4, Peli1, Pten, Reck, 
Smad7, Spry1, Spry2, 
Tgfbr3, Tnfaip8l2, 
YOD1, Yy1

Human colorectal 
adenocarcinoma 
cells

Apoptosis, proliferation, 
inflammation, Wnt, EGFR

141

mir-34a Actb, Bcl2, Bcl6, Ccnd1, 
Dll1, Foxp1, Gas1, 
Notch-1, Pofut1, 
Ppp1r10, Sema4b, Sirt1, 
TGIF2, Trem2, Vcl, 
Vegfb

Human esophageal 
cancer cells

200

mir-17 Specificity protein 
transcription factors, 
Bcl2l11, Mapk14, Rbl2, 
Sqstm1, Stat3, Tgfbr2

Human colon 
carcinoma cell

65

mir-20a App, Bmp4, Ep300, 
Fgf10, Hbp1, Mapk14, 
Osr1, Pten, Shox2, 
Sqstm1, Stat3, Tbx3, 
Tgfbr2, Trp53inp1, 
ULK1, Vegfa, Zbtb7a, 
Zfpm2

mir-27a Alp, Bmp2, Bmpr1a, 
Creb1, Fbxw7, Il10, 
Odc1, Ppara, Pparg, 
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Bioactive component Differentially regulated genes Validated mRNA targets Cell line/organism Target mRNA-involved pathway Reference

Prdm16, Runx1, Runx2, 
Smad9, Spp1, Srm, 
Tcirg1

Abbreviations: EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition; ERK, extracellular-signal-regulated kinase; 
MAPK, mitogen-activated protein kinase; PTEN, phosphatase and tensin homolog deleted on chromosome 10; PUFAs, polyunsaturated fatty acids.

Annu Rev Nutr. Author manuscript; available in PMC 2016 September 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hou et al. Page 35

Table 2

n-3 Polyunsaturated fatty acids and butyrate act synergistically in the colon

Cell-line experiments

Cell line Treatment and duration End point Reference

YAMC 0–200 mM DHA for 72 hours plus 0–10 mM 
butyrate for the final 6–24 hours

Mitochondrial Ca2+ and apoptosis 
(nucleosomal fragmentation assay)

111

HCT-116 50 mM DHA for 72 hours plus 5 mM butyrate for 
the final 12 hours

Apoptosis (TUNEL assay) 110

Animal studies

Animal Diet component (% by weight) AOM (mg/kg body weight) End point

Rat 11.5% fish oil plus 6% pectin 15 mg/kg × 2 injections miRNA quantification

Rat 11.5% fish oil plus 6% pectin 15 mg/kg × 2 injections miRNA quantification

Mouse 11.5% fish oil plus 6% pectin 15 mg/kg × 4 injections miRNA quantification, 
apoptosis, ACF

Abbreviations: ACF, aberrant crypt foci; AOM, azoxymethane; DHA, docosahexaenoic acid; miRNA, microRNA.
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