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Epidural spinal stimulation has shown effectiveness in recovering the motor function of
spinal cord transected rats by modulating neural networks in lumbosacral spinal segments
[1, 2]. The state-of-the-art neuromodulation implant [3] reports a 4-channel stimulator with
wireless data and power links for small animal experiments, yet weighs 6g and has a volume
of 3cm3. It is preferable that the implant package has a comparable size to its bioelectronics
and a high-density stimulator to support stimulation with high spatial resolution.
Furthermore, the epidural electrode should be soft and flexible because a mechanical
mismatch exists at the tissue-electrode interface [1]. Unlike other implant/SoCs that
stimulate with pre-loaded patterns [4-5], the implant for motor function recovery should be
capable of adaptively adjusting its stimulation patterns at run time in response to the
subject’s varying physiological states [2]. Measuring the electrode-tissue impedance is also
critical to ensure safe stimulation. Deriving the equivalent circuit model of the electrode-
tissue interface determines the safe stimulation boundary (i.e. pulse width and intensity) to
ensure the electrode overpotential is within the water window [6]. However, an SoC
implementation of this function has not been reported.

Figure 22.2.1 illustrates the implantable system performing simultaneous stimulation and
full-duplex data telemetry using a rat model. The rat carries a rendezvous device that
wirelessly powers the implant and links the implant and a remote device (e.g. smart phone).
The implant is miniaturized to 0.5cm3 and 0.7g. A thin (8um), flexible polyimide based
platinum electrode array is placed into the epidural space, and EMG (electromyography)
wire electrodes (AS632 Cooner wire, Chatsworth CA) are sutured onto leg muscles.

The core of the implant is a mixed-signal, multi-voltage SoC performing high-voltage (HV)
160-channel current stimulation, 16-channel recording, and 48-channel bio-impedance
characterization with fully integrated power/data telemetry (Fig. 22.2.2). Improved upon [7],
a power converter generates 4 different voltages to power the implant, with added capability
of adjusting the supply voltages for stimulators (+ 6/8/10/12 V) to accommodate various
bioimpedances. A new quasi full-duplex data transceiver links the SoC and the rendezvous
device at 2Mb/s. The NECSIS (Neural Command Signal Interface System) controller
determines the implant operation based on the received commands (CMDs). Stimulation of
160 channels is achieved by 40 stimulation current drivers, each with a 1:4 Demux [7]. For
impedance measurement, 12 out of 40 Demux inputs are selectively connected to the 16:1
MUX made of HV transistors, allowing 48 electrodes to be characterized. HVY MUX is also
connected to the power converter outputs and two of the MUX inputs are reserved for
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inertial and temperature sensors. This SoC supports chip clustering using a 2-bit 1D control.
By sharing the same coils, a four-SoC cluster can provide 640-channel stimulation, 64-
channel recording, as well as 192-channel impedance characterization.

Figure 22.2.3 shows the operation of the quasi full-duplex data link and its implementation.
Realizing a high data rate reverse link with a power coil is disadvantageous because high
wireless power transfer efficiency and high Qfactor requirements limit the data rate. A low
Q data coil is thus used for both the forward and reverse links. In the reverse telemetry, the
SoC transmits the recorded data in packets separated by programmable time gaps. Each
packet contains a header, digitized data, and an end marker. Once the rendezvous device
recognizes the end marker, it can send a CMD to the SoC within this time gap (Fig. 22.2.3
bottom panel). The SoC consists of a DPSK receiver for its good immunity to interference
[7] and a LSK transmitter for low-power consumption (< 4uW). The test result shows both
forward DPSK and reverse LSK signals can co-exist on the same coil without contention.
The LSK signal may result in error bits at the DPSK-demodulated output, but they fail the
CMD header check and are discarded.

Characterizing bio-impedance across a broad spectrum requires sophisticated equipment and
is time-consuming, but doing so at a fixed frequency provides limited information. We
propose and implement a hardware-efficient time-domain method to characterize the
Randles cell electrode model. First, a biphasic, low-intensity current stimulus with inter-
pulse delay is applied to an electrode. Then, by measuring the electrode overpotentials Vg,
V1, and Vy, tissue resistance (Rg), double layer capacitance (Cq;), and charge transfer
resistance (RcT) are accordingly derived. Low-intensity stimulus ensures RcT does not
complicate the Cq; computation. Inter-pulse delay provides a passive discharge period for
Rt acquisition (Fig. 22.2.4 top). In the circuit implementation, both recording and
impedance characterization circuits share the same ADC, whose input voltage is confined by
voltage-clamp diodes. A Stim_flag bit is inserted into the serialized ADC output to denote
the stimulation onset. The impedance characterization module then searches for Vg, V4, and
V,, based on the Stim_flag bit and the given stimulation parameters (Fig. 22.2.4 bottom
panel).

Figure 22.2.5 illustrates the prototype employing thin film polymer process with a special
bump pad design. An 8um thick polyimide substrate with an epidural electrode array serves
as an interposer to connect coils, passive components, wire electrodes, and the CMOS pads
via gold bumps. The prototype integrates 172 epidural electrodes, 4 EMG wire electrodes, 2
coils, 6 0201-SMD capacitors, and the SoC into a 0.7g, 0.5cm3 package. Cyclic voltammetry
characterization shows the fabricated epidural electrode has a charge storage capacity of
6.74uC. The electrode /n-vivo test results demonstrate < 1.5kQ impedance standard
deviations during the 52-day post-surgery period.

Figure 22.2.6 shows the SoC test results, its highlighted features, and the /n-vivo EMG
recording when stimulating the lumbosacral region of the spine in both normal and spinal
cord transected rats. Stimulation-induced EMG middle responses and spontaneous onset of
motor unit are observed in the leg muscles of the normal rat. Stimulating the paralyzed rat
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results in consistent EMG patterns required for standing. A stronger stimulation current is
applied on the paralyzed rat as its brain-spinal network is injured.

This SoC is implemented in HV 0.18um CMOS with an area of 5.7.4.4mm?. The table of
comparison with prior works is shown in Fig. 22.2.7. This SoC implant targets motor
function recovery after spinal cord injury. Its versatile functionalities and highly compact
form factor (0.5cm3 and 0.7g) also make it applicable in future implants for various medical
applications.
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Figure22.2.2.

System diagram of the SoC. Power converter, data transceiver, NECSIS controller,
stimulators, and impedance characterization circuits are all integrated in the SoC. The SoC
and the external device are linked inductively.
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Schematic of the quasi full-duplex transceiver
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In-situ Bio-impedance Characterization
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Recorded in situ electrode overpotential from paralyzed rat
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Thin Film Polymer Packaging Prototype
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Figure22.2.5.
Thin film polymer packaging prototype.
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Results and Summary
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Figure 22.2.6.
Experimental results and SoC performance summary.
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[3] 4] [5] This work
g g Peripheral Spinal
Application target BEEe Cortex Cortex coril
No. of stim. channels 4 10 8 160
Stim. mode Current Current Voltage Current
MaxowrebQui) | guny 4.1/6 0.23/5 0.5/7
resolution (bit)
Stim. freq (Hz)/ 0.15-8.3k/ 15.4/1 60-220/ Up-to 20k
PW(ms) 0.01-12.8 (fixed) 0.04-0.44 /0.01-8
Residual Yes/
. N/A N/A N/A electrode
charge cancellation :
grounding
No. of recording 4 8 16
channels
. 54/ 60-74/ 40-62/
Gala{dH)y BW:(Hz) o 0.64-6k |  0.5-3k 57k
ADC ENoB (bit) recording 8 6.5 8.5
Noise (1 rms)/NEF/ design o376 | 1.9772.97 7.68/6.2
power (uW/Ch) 16 8.6 /54
Full-fuplex N
data telemetry e S Yes
Forward data rate b
(Mbs) 0.175 0.1 0.1 2 (DPSK)
Reverse data rate
(Mbls) N/A 0.8 2 2 (LSK)
Impedance 48 Ch.,
pecance N/A N/A N/A Randles
characterization
cell model
Power telemetry Yes Yes Yes Yes
CMOS process (nm) 800 HV 180 180 180 HV
1.8/ 1/ +1.8/
Supply voitage (V) Z10° | se(siim) | 4.5 (Stim) | £6-+12 (Stim.)
o s 735x68 | 2x2 |306x253| d44x57
(mm X mm)
Performance metric® 0.014 3.15 4.34 28
N 3,
Topaont: size (ome ) 36 N/A N/A 0.5/0.7¢

weight (g)
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