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Abstract

The recent revision of the classification of the epilepsies released by the ILAE Commission on 

Classification and Terminology (2005–2009) has been a major development in the field. Papers in 

this section of the special issue were charged with examining the relevance of other techniques and 

approaches to examining, categorizing and classifying cognitive and behavioral comorbidities. In 

that light, we investigate the applicability of graph theory to understand the impact of epilepsy on 

cognition compared to controls, and then the patterns of cognitive development in normally 

developing children which would set the stage for prospective comparisons of children with 

epilepsy and controls. The overall goal is to examine the potential utility of other analytic tools 

and approaches to conceptualize the cognitive comorbidities in epilepsy. Given that the major 

cognitive domains representing cognitive function are interdependent, the associations between the 

neuropsychological abilities underlying these domains can be referred to as a cognitive network. 

Therefore, the architecture of this cognitive network can be quantified and assessed using graph 

theory methods, rendering a novel approach to the characterization of cognitive status. In this 

article we provide fundamental information about graph theory procedures, followed by 

application of these techniques to cross-sectional analysis of neuropsychological data in children 

with epilepsy compared to controls, finalizing with prospective analysis of neuropsychological 

development in younger and older healthy controls.
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1. Introduction

As noted in the Introduction by the editors of this special issue of Epilepsy & Behavior, 
there has been spirited debate concerning the benefits and drawbacks of the new approach to 

classifying the epilepsies released by the ILAE Commission on Classification and 

Terminology (2005–2009). While concerned with the classification of the epilepsies 

themselves, this system, and the classification systems before it, have had significant 

implications for the way cognitive and behavioral comorbidities in epilepsy are 

conceptualized. This is because of the longstanding tradition of examining comorbidities in 

line with contemporary classification of epilepsy syndromes. While a reasonable approach, 

there is growing appreciation that forces other than epilepsy syndrome may be important 

factors underlying the expression of cognitive and behavioral comorbidities. In that light, 

papers in this section of the special issue were charged with examining the relevance of 

other techniques and approaches to examining, categorizing and classifying cognitive and 

behavioral comorbidities.

In this contribution we investigate a novel approach to characterizing the impact of 

childhood epilepsy on the global landscape of cognition, defined by the interaction of 

multiple cognitive domains. Given that different cognitive domains are inter-dependent with 

each other [1], the associations between the neuropsychological abilities underlying these 

domains could be referred as a cognitive network. Thus, the architecture of the cognitive 

network can be quantified and assessed using formal methods to determine network 

conformation, i.e., graph theory.

Graph theory is a versatile tool that can be used to probe the topology of any system that can 

be identified as a network. This methodology has been applied to investigations of 

electrophysiological and imaging networks, as well as examination of brain structures, that 

have revealed global disruption in brain architecture and function in patients with epilepsy 

[2-7]. Large scale structural morphometrical brain changes have been correlated with 

specific cognitive deficits in epilepsy [8-9]; however, to date, there have been few 

examinations of neuropsychological measures considered as a cognitive network themselves 

using graph theory [10-11].

Graph theory, in essence, can provide a measure of the architectural organization of 

cognitive function, as defined by the network formed by the interrelationships between 

multiple cognitive abilities and domains. As such, graph theory is an expansion on 

conventional statistical approaches such as factor or clustering analyses because it permits 

the evaluation not only of grouping of cognitive modules, but also the participation of 

cognitive functions/domains within the entire cognitive architecture. For this reason, 

cognitive networks may provide novel insights into the cross-sectional status and 

longitudinal changes in cognitive structure, especially in regard to the abnormal 

conformation that may be driven by pathological that may be driven by pathological 
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processes. Even though cognitive networks are not individualized measures (i.e., they arise 

from group wise correlations) they can be used to infer how individual test metrics may be 

related to the overall cognitive network under investigation. We wish to emphasize that the 

cognitive network we will be investigating is based on the specific tests that comprise a 

conventional neuropsychological battery; therefore, it should not be confused with well-

known anatomical/functional cognitive-related brain regions.

Here we will first provide some fundamental information about graph theory procedures, 

followed by application of these techniques to neuropsychological data in children with 

epilepsy compared to healthy controls, followed by examination of natural occurring 

prospective changes in the cognitive networks of normally developing control participants.

2. Graph Theory

Graphs are mathematical representations of complex networks in the form of nodes (e.g., 

brain regions, cognitive tests) and edges or links (connections or correlations between 

nodes). Therefore, graph theory is the study of such graphs. There are different kinds of 

graphs that can be constructed, however, the most common ones in the field of neuroscience 

are binary and weighted graphs, either undirected (symmetric) or directed (non-symmetric). 

Directed graphs are those that convey causality or directionality of effect. For example, 

directed graphs could be constructed to investigate temporal causality in functional 

connectivity studies in order to understand the origin and propagation of a temporal signal 

[12]; therefore, graphs are non-symmetric (the value of the link or edge from node A to B is 

not the same as the one from B to A). Undirected graphs are those that reflect the 

relationship between different nodes or regions without any regard to direction (e.g. 

covariance analyses of brain structure or function); therefore, these graphs are said to be 

symmetric (the value of the link from node A to B is the same as the one from B to A). 

When the type of graph is chosen, it can then be investigated using the natural weights of the 

connections (i.e. correlation coefficient in a fMRI analysis) or by binarizing the matrix (1 if 

there is a connection, 0 if there is no connection between a pair of nodes) at a given 

threshold or range of thresholds (see below). The type of graph to use is based on the data 

and hypotheses of the study under consideration.

The nodes in a graph in the neurosciences could be anatomical regions based on various 

brain atlases (e.g. AAL, Freesurfer’s Desikan Killiany or Destrieux atlases), or functionally 

defined areas [13]. The connections between nodes in functional MRI, DTI, or high-

resolution structural MRI could convey a network of functional associations, white matter 

connectivity, or regional covariance (i.e. volumetric analyses), respectively. The nodes and 

edges form a NxN matrix or network, in which N is the number of defined nodes. Once 

nodes are defined and a graph is obtained, thresholding should be performed in order to 

remove spurious connections. The main types of thresholding are statistical or topological. 

Statistical thresholding is based on the significance of the connections between nodes, while 

topological thresholding is based on the strength of the connections between nodes. There 

are two main ways of performing topological thresholding: either by performing absolute 

thresholding versus proportional thresholding. In the former, every connection is included in 

the graph if it is greater than the specified correlation value, while in the later only the 
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strongest links (higher weight) within the chosen percentage value would be included in the 

graph. For example, in an undirected network (symmetric matrix) of N number of nodes, the 

total possible number of edges or connections would be N(N-1)/2. This means that for a 

network of 100 nodes, a proportional threshold of 10% would show 495 edges out of the 

4,950 possible connections in the fully connected network. Since proportional thresholding 

provides the same number of links given the same number of nodes under study, group 

analyses can be possible. For the remainder of this discussion we will be referring to 

topological thresholding by performing proportional thresholding, unless stated otherwise. 

Graph theory measures can be acquired at a certain threshold or over a range of threshold 

values also known as the sparsity value, density, or cost.

2.1 Graph theory measures

Once a graph is calculated, different measures can be obtained in order to investigate its 

properties, which include metrics of segregation, integration, and centrality. A graph that 

shows segregation is one that allows for subgraphs to exist, which might represent 

specialized processes taking place within the network. An integrated graph is one that is 

capable of interchanging information between regions in an efficient manner. Centrality 

measures explain those nodes that play an important role in the configuration of the graph 

[14]. Some of the most common graph measures that investigate such properties are 

described below:

Characteristic path length—The characteristic path length is a measure that reflects the 

average separation between two nodes in the network [15]; therefore, a measure that 

provides information about the level of integration in the graph. However, this measure 

diverges when nodes in the network are disconnected (have no neighbors), which usually 

happens at low graph densities. Given that global measures (i.e., global measures of 

integration) should be acquired over a range of graph densities in order to be certain that the 

results are not driven by the chosen threshold, results from this metric could be introducing 

confounding information (if nodes are disconnected). Therefore, for this work we are using 

the harmonic mean instead (see below).

Harmonic mean and global efficiency—Harmonic mean, Hm is a measure of global 

integration in the graph. It is defined as the inverse of the global efficiency, E, which is the 

average of the inverse of each of the shortest paths (direct connections between nodes) in the 

network [16]. The lower the values of Hm the higher the integration of the network, therefore 

the higher the graph efficiency. Given that Hm is calculated as the inverse of the global 

efficiency, which only considers connected nodes, this measure does not suffer from 

divergence as the characteristic path length.

Local clustering coefficient and local efficiency—The local clustering coefficient is 

a measure of local segregation in the network. It is defined as the ratio of the number of 

connections between each node’s neighbors to the total number of connections that would 

exist between them [15], therefore it lies between 0 and 1, with 0 representing no 

connections between a node’s neighbors and 1 having all possible connections. However, 

local efficiency is a measure based on the shortest paths between each node’s neighbors, 
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which reflects how efficient is the communication between the immediate neighbors of a 

node [16].

Average clustering coefficient and transitivity—The average clustering coefficient is 

defined as the sum of the local clustering coefficient of each node divided by the total 

number of nodes in the network. Nodes with a lower number of connections with other 

nodes (lower degree) would have a higher probability for its neighbors to be connected to 

each other, which would lead to an average clustering coefficient driven heavily by 

contributions of lower degree nodes. To avoid this, transitivity can be used instead of average 

clustering coefficient to obtain a more accurate measure of global segregation. Transitivity is 

a measure that reflects how clustered a network is. It is calculated as the ratio of “triangles” 

(closed connections between three nodes) to “triplets” (connections between three nodes) in 

the network [17-18], therefore it lies between 0 and 1, with 1 indicating a fully clustered 

network.

Modularity index and community structure—The modularity or community structure 

of a network is the configuration of such network into segregated communities that 

contribute to the same processes. Unlike the other measures, modular/community structure 

is statistically estimated instead of computed exactly [19]. The modularity index is a 

measure of the goodness of the subdivision of the graph into communities; the higher its 

value, the stronger the modular structure of the graph [20]. Modular structure in a functional 

network is of great importance because it not only allows for specialized processes to 

happen but also provides functional containment of community perturbations that would be 

easily spread to the rest of the network otherwise. Therefore, it is a measure of network 

robustness [21].

Centrality measures—The degree of a node is the classic measure of centrality, and it 

reflects the number of connections the node has while ignoring its weight [22]. A node with 

high degree is said to have many neighbors or adjacent nodes; therefore, having high local 

influences. Another measure of centrality is the eigenvector centrality, which is a measure 

indicating the quality of connections in a node. A node with high eigenvector centrality is 

one that connects mainly to nodes with high degree or high eigenvector centrality 

themselves [22]. This measure is different from degree centrality in which two nodes could 

have the same degree but not necessarily the same EC given that this measure depends on 

how connected the neighbors of a node may be. This is an important measure to evaluate 

those nodes that connect to other highly connected nodes. Other relevant measure of 

centrality would be the subgraph centrality, which evaluates the number of closed walks 

(loops) in which a node participates while assigning higher weighting to subgraphs formed 

by fewer nodes [22]. Nodes with high subgraph centrality tend to “give” and “receive” 

information in an efficient manner. Finally, the betweenness centrality (BC) is a measure of 

the importance of a node in the communication of a network [20] since it is based on the 

number of shortest paths in which a node participates. Measures of centrality provide 

information about the importance of a node in the network of interest; therefore, a node with 

high centrality can be considered a hub of the network (see below).
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Network hubs—The hubs of a network are the most important nodes for the configuration 

of a network [20], and can be calculated using different centrality measures or combinations 

of different measures (i.e. degree and participation coefficient [23]). For this discussion, 

however, hubs would be identified as nodes with high BC values.

3. Network Analysis and Graph Theory Applications

Graph theory analyses of brain-related networks have led to possible investigations of 

whole-brain functional connectivity (fMRI), white-matter connectivity (DTI), and gray 

matter covariance analyses (GM) in both healthy and populations with a CNS disease or 

disorder [9, 24-25]. Therefore, this method has the capacity to investigate the brain at its 

different levels as a whole. Recently, this methodology has been extended to investigate the 

interrelationship of different cognitive tests between healthy and epilepsy pediatric 

participants [11], which proved the versatility of this methodology solely based on cognitive 

measures themselves.

3.1 Graph theory and cognition

It is well known that neuropsychological status can be adversely affected in the childhood 

epilepsies, even among the so-called benign idiopathic epilepsies. In such cases intelligence 

is typically average but with abnormalities in specific areas of cognitive ability including 

language, memory, executive function or processing speed [26]. Prospective investigations 

tracking children from the time of onset and diagnosis indicate that cognitive differences can 

be present at or near the time of diagnosis with these differences typically maintained over 

time, without evidence of progressive decline or significant improvement out to five years 

later [27-28].

These cognitive patterns have been developed and characterized by analysis of individual 

test scores, combinations of test scores, or factor scores at baseline and prospectively in 

some studies. While cognitive differences between participants with epilepsy and normally 

developing children can be identified and tracked over time with sophisticated test batteries, 

unclear, however, is how these diverse cognitive abilities and domains interact with one 

another in the epilepsy and control participants, if the interrelationships are different, and if 

so, in what ways. Also unclear is how these cognitive interrelationships and networks may 

change over time with maturation. Increasing chronological age is of course associated with 

the development and specialization of discrete cognitive skills (e.g., executive functions in 

adolescence) in the context of maturational brain changes; cognitive abilities increase from 

infancy to adulthood, however, depending on people’s skills they either decline or stay the 

same.

One approach to examine the network of cognitive abilities and their integration is by using 

graph theory techniques. As noted previously, these analytic approaches have been utilized 

in neuroscience research in epilepsy, but rarely has cognition been the sole focus of 

examination.

In a recent publication from our group, we investigated the cognitive networks of children 

with idiopathic epilepsy compared to a normally developing group of children without 
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epilepsy [11]. Table 1 presents the neuropsychological measures that were administered to 

the cohort representing measures of intelligence, academic achievement, language, memory, 

executive function and processing speed.

To begin, Figure 1 presents the adjacency matrices for the control participants (Figure 1, 

left) and children with idiopathic epilepsy (Figure 2, right) [11]. It can be appreciated that 

groups present specific differences in cognitive correlations. For example, control subjects 

presented high correlations between tests of coding (speed) and inhibition (tests 10 and 21, 

respectively, from Table 1) while children with epilepsy presented stronger cross-

correlations between tests of intelligence, language, and academic achievement (the first 

nine tests from Table 1). In order to acknowledge topological group differences, the 

community structure of cognitive graphs was calculated (Figure 2). As can be seen, the 

control group showed higher modular organization than the children with epilepsy. This can 

be observed in the separation that exists between nodes in healthy controls while children 

with epilepsy had nodes that were closer together and therefore presenting reduced modular 

organization (Figure 2, right).

In the above analysis [11] the age of participants ranged from 8 to 18 years; however it is 

possible that these cognitive interrelationships might be affected by the chronological age 

and developmental stage of the participants at the time of assessment. Given that different 

chronological ages and stages are accompanied by varying cognitive sophistication, and that 

cognitive organization could be influenced by it, it would be reasonable to expect age-related 

differences in cognitive network topology. Therefore, we expanded the work of Kellermann 

et al [11] using our control participants and dividing the group at its median age (11.8 years) 

in order to examine cognitive networks at a younger (below median age) and older (above 

median age) age of development. Furthermore, we investigated cognitive networks at two 

time points — two years apart — in order to examine prospective changes in the 

development of cognitive networks over time as a function of initial age. Complete details of 

the methodology can be found in the supplemental file 1.

To investigate network integration and segregation in these healthy children, calculations of 

the harmonic mean and transitivity, respectively, were undertaken. Statistical testing was 

performed using Student’s t-test and correcting for multiple comparison using Bonferroni 

correction. From baseline to follow-up, the younger healthy participants demonstrated 

increases in Hm being significant at each density level (Figure 3A). Thus, a less efficient 

global network configuration with increased connection path length appeared over the 2 

years. In contrast, the older healthy participants showed a significant reduction in Hm from 

baseline to follow-up at each density level (Figures 3B), which denoted that path length 

shortened over time with a more efficient network structure. Thus, a more integrated and 

efficient cognitive network developed over 2 years in the older but not younger healthy 

children.

In terms of transitivity, the younger healthy participants demonstrated a reduction from 

baseline to 2-year follow-up that was significant at each density level (Figure 4A), while the 

older participants had higher clustering values at follow-up that were significant over the 

density range below 20% (Figure 4B).
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The community structure of both young and older healthy participants at each time point 

was calculated (Figure 5) in order to qualitatively visualize developmental group differences. 

Differences could be easily discerned between groups whereby the older healthy participants 

seemed to present the most efficient developmental change, which could be appreciated in 

the modular arrangement of nodes. However, cognitive networks of younger healthy 

participants did not seem as organized as might be anticipated. The modularity index reflects 

such qualitative results in which older controls presented a significant increase while 

younger controls presented similar values of modularity index at each time point (figure 1S 

in the supplementary file 2).

In Figure 5, the bigger spheres represent the hubs of the network based on BC, which are 

those tests that facilitate the interactions between other nodes. The change in the number of 

hubs between baseline and follow-up in the group of young healthy participants was more 

dynamic than in the group of older healthy participants, again as might be expected. The 

younger group started with two hubs in language based abilities (spelling and naming) 

(SPELSTN and EVTSTN) at baseline and increased to five at follow-up, consisting of 

expressive and receptive language (BNTTOT, EVTSTN, PPVTSTN), memory (WLLSS), 

and nonverbal intelligence (IQBDS) (Figure 5A-B). The older group of healthy participants 

had three hubs at each time point but the membership of the hubs changed over time with 

baseline hubs consisting of executive function and speed (INHSS, COLSS, WORDSS) and 

follow-up hubs comprised of language, nonverbal intelligence, and memory (EVTSTN, 

IQMRS, WLLSS) (Figure 5C-D).

In summary, younger healthy participants presented a different number of hubs accompanied 

by a change in their number at the different evaluations, while older participants presented 

the same number of hubs at both time-points although the membership of hubs differed to 

some degree across evaluations as well. The combination of no change in the number of 

hubs with a change in their membership observed in older participants represents a less 

dynamic development in the local aspects of cognitive topology compared to younger 

participants, as expected.

4.0 Limitations and Future Directions

While the application of graph theory to neuropsychological data in epilepsy is novel and 

potentially informative, several conceptual and practical issues should be kept in mind. 

Comparing the work of Kellerman et al [11] with this analysis it is evident that investigation 

of cognition at different developmental stages might render a different/clearer depiction of 

cognitive development. For example, younger control participants present less defined 

modular structure at baseline than older controls, therefore our previous analysis [11] on 

controls may be driven by the older subjects. As is most often the case, here we are 

presenting and discussing group profiles, within which there is much individual variability. 

Further examination of this individual variability, as well as determining whether there are 

groups of individuals (or phenotypes) with similar cognitive networks would be both 

theoretically interesting and clinically interesting and meaningful.
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In addition, an important conceptual point is that, unlike most uses of graph theory, the 

nodes in this case are scores on cognitive tests, which themselves are comprised of 

perceptual, cognitive, and output (speech, motor) components associated with complex brain 

implementation. Traditionally, most graph theory applications start with measures that have, 

to varying degrees of granularity, temporal and spatial grounding in the brain (e.g., EEG 

electrodes, clusters of BOLD activity, gray matter volume, white matter tracts). These nodes 

are generally not considered to be further composed of spatially distributed brain networks 

(although one could argue that they could be). In these methods there is an implicit 

assumption of parallelism. That is, the spatial representation and connections depicted by the 

graph theory measures have parallel representations in the brain at either a structural or 

functional level. A reverse inference process is then undertaken to define the cognitive 

activity involved. In the case of neuropsychological test performance as nodes, the nodes 

themselves are implemented by spatially distributed networks in the brain. Accordingly, the 

normal assumption of parallelism between graph theory measures and brain network 

organization appears to be lost. In the case of neuropsychological test scores, where a node 

has a known cognitive purpose/function, graph theory provides a forward inference process 

to define what must solely be considered the network organization properties of test 

measurements.

Another consideration is that neuropsychological data are unlike other outcome measures, 

such as structural imaging processed through a standard package (e.g., FreeSurfer) where a 

fixed set of output measures is available internationally for analysis — a common language 

so to speak. Neuropsychological assessment is quite different from that state of affairs. 

While there is general appreciation of the important common domains of cognition (e.g., 

intelligence, language, perception, memory, executive function, sensorimotor abilities), 

within those domains there is a wide range of available measures with no “gold standard”, 

further confounded by language and cultural differences internationally. This lack of a 

common core set of “output measures” for cognition will likely serve to limit progress and 

contribute to heterogeneity in findings until a common set of measures are widely used (e.g., 

NIH Toolbox).

The results presented here provide the broadest overview of cognitive networks and their 

changes overtime in children with epilepsy compared to controls. The neuropsychology of 

epilepsy literature traditionally has been extremely interested in how variations in the 

disorder (e.g., seizure frequency and severity; age of onset and duration; medication type, 

number and dose) affect mentation generally or specific cognitive domains in particular 

(e.g., memory). These factors were not examined here and represent opportunities for further 

research going forward as is the opportunity to examine how controlling for overall 

intelligence may impact the networks represented.

4. Conclusions

Traditional analyses of neuropsychological data when comparing groups of interest (e.g., 

healthy control versus neurological disorder group) consist of direct comparisons of each 

metric between groups in a pairwise corrected fashion, comparison of impairment indices 

(number or percent of impaired scores in an administered test battery), reduction of test 
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batteries to factor scores and group comparison of those metrics, and other approaches. It 

has been known for decades that there is a “positive manifold” across these measures 

(positive correlations), but there has been little examination, especially within epilepsy 

research, of the presence and nature of the interrelationships between these test measures 

and how such interrelationships differ between groups, both cross-sectionally and 

longitudinally.

This application of graph theory techniques to cross-sectional neuropsychological data in 

children with epilepsy and prospective analysis of neuropsychological data in healthy 

participants provide a new avenue to characterize and understand the impact of epilepsy and 

its treatment on cognitive networks and “circuitry development”, something heretofore not 

undertaken given the inherent limitations associated with traditional psychometric analyses 

of human cognitive data. Thus, it is fair to suggest that presentation and comparison of 

standard test metrics does not convey the dynamic and changing complexity in the 

interrelationships among discrete cognitive skills, the maturation of the cognitive network 

over time, and the differences between groups in these metrics. From a neuropsychological 

perspective, the children with epilepsy are “maintaining” their overall cognitive skills but in 

a very different fashion compared to controls. These changing dynamics in cognitive 

networks over time surely has a neurobiological contribution and a future challenge is to 

relate developments in the cognitive network to alterations in brain networks and lack 

thereof. And most pertinent to the topic of this special issue, how will these 

conceptualizations of cognition and cognitive change “map” onto the classification systems 

of epilepsy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human cognition is composed of several interdependent cognitive 

domains.

• Associations of underlying neuropsychological abilities can be 

considered a cognitive network.

• Cognitive status based on domain interactions can be assessed using 

graph theory.

• Controls demonstrate higher cognitive modularity than children with 

epilepsy.

• Orderly age-dependent development of cognitive networks in controls 

can be shown.
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Figure 1. Adjacency matrices
Adjacency matrices demonstrating the cross-correlations between scores in 

neuropsychological tests for controls (left) and patients (right). Neuropsychological tests are 

numbered in accordance with Table 1. Reproduced with permission.
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Figure 2. Community structure of cognitive landmarks
Two-dimensional graph representation illustrating the spatial relationship between cognitive 

tests in controls (left) and children with epilepsy (right). The spatial distribution of nodes 

was calculated using the force-atlas graph algorithm, where nodes that demonstrated 

stronger connections are located closer in space, whilst nodes with fewer connections tend to 

drift away. Nodes with a similar color belong to the same domain. Reproduced with 

permission.
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Figure 3. Harmonic mean at baseline and follow-up evaluations
Harmonic mean for (A) young and (B) older healthy participants at baseline (blue) and 

follow-up (red).

*Significant difference between time points (corrected for multiple comparisons).
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Figure 4. Transitivity at baseline and follow-up evaluations
Transitivity in (A) younger, and (C) older healthy participants at baseline (blue) and follow-

up (red).

*Significant difference between time points (corrected for multiple comparisons).
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Figure 5. Community structure at baseline and follow-up evaluations
Community structure for young and older participants at baseline (A, and C, respectively) 

and at follow-up (B, and D, respectively). Again, the spatial distribution of nodes was 

calculated using the force-atlas graph algorithm, where nodes that demonstrated stronger 

connections are located closer in space, whilst nodes with fewer connections tend to drift 

away. Nodes with a similar color belong to the same module, whereas each modules is 

composed of nodes with the highest connectivity strength between in-module nodes, and the 

lowest association with the nodes outside a module. Bigger circles represent the hubs of the 

network.
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Table 1

Neuropsychological Test Battery

Abbreviation Test name Cognitive ability

1 IQVOCS WASI Vocabulary Verbal intelligence

2 IQBDS WASI Block Design Nonverbal Intelligence

3 IQSIMS WASI Similarities Verbal intelligence

4 IQMRS WASI Matrix Reasoning Nonverbal intelligence

5 PPVTSTN Peabody Picture Vocabulary Test Language (word recognition)

6 EVTSTN Expressive Vocabulary Test Language (word naming)

7 READSTN WRAT-IV Reading Word recognition

8 SPELSTN WRAT-IV Spelling Spelling

9 ARITSTN WRAT-IV Arithmetic Arithmetic calculation

10 IQDSYMS WISC-IV Digit symbol Speed

11 WLLSS Children’s Memory Scale-III Verbal memory

12 WLDSS Children’s Memory Scale-III Verbal memory

13 CPOMT Continuous Performance Test-II Executive function (attention)

14 CPCOMMT Continuous Performance Test-II Executive function (attention)

15 CPRTBLKT Continuous Performance Test-II Executive function (attention)

16 LETFLUS D-KEFS Letter Fluency Language (lexical fluency)

17 CATFLUS D-KEFS Category Fluency Language (semantic fluency)

18 CATSWS D-KEFS Executive function (category switching)

19 COLSS D-KEFS Color-Word Speed

20 WORDSS D-KEFS Color-Word Speed

21 INHSS D-KEFS Inhibition Executive function (response inhibition)

22 CORSORS D-KEFS Card Sorting Test Executive function (problem solving)

23 BNTTOT Boston Naming Test Language (naming)
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