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Abstract

Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and drug 

delivery pathways that are closely associated with treatment response, metastatic spread and 

prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, Pulsed and 

Oscillating gradient MRI for Assessment of Cell size and Extracellular space (POMACE), and 

demonstrate its feasibility in a mouse tumor model.

In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine 

glioma model (n=8). Since the complete diffusion time-dependence is in general non-analytical, 

the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable 

spheres (radius Rcell, intracellular diffusivity Dics) surrounded by extracellular space 

(approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE 

parametric maps (ECS, Rcell, Dics, Decs) were compared with conventional diffusion weighted 

imaging metrics, electron microscopy (EM), alternative ECS determination based on effective 

medium theory (EMT), and optical microscopy performed on the same samples.

It was shown that Decs can be approximated by its long-time tortuosity limit in the range [1/(88 

Hz) - 31 ms]. ECS estimations (44±7% in vivo and 54±11% ex vivo) were in agreement with 

EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical 

microscopy. Cell sizes (Rcell=4.8±1.3 in vivo and 4.3±1.4 μm ex vivo) were consistent with EM 

measurements (4.7±1.8 μm).

In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors 

using the proposed POMACE method. Our experimental results support that POMACE provides a 

way to interpret the frequency- or time-dependence of the diffusion coefficient in tumors in terms 

of objective biophysical parameters of neuronal tissue, which can be used for non-invasive 

monitoring of preclinical cancer studies and treatment efficacy.
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INTRODUCTION

Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and 

drug delivery pathways that are closely associated with treatment response, metastatic 

spread and prognosis (1–4). In particular, the extracellular space volume fraction (ECS) has 

been recognized as a strong biomarker for tumor response and treatment efficacy (1). 

Similarly, differences in cell size can reflect various cancer types (5) or apoptosis following 

treatment (6). However, very few methods provide an accurate estimation of the ECS (7) or 

dimensions of the relevant cellular structures at the microscopic scale. In addition, many of 

these approaches involve radioactive extracellular tracers, optical imaging or iontophoresis 

(7–9), which are invasive and cannot be translated to clinical cases.

Diffusion MRI has been recognized as a potentially powerful non-invasive tool to probe 

tumor microenvironment (10–12), but the apparent diffusion coefficient (ADC) remains only 

a qualitative marker for cellularity (11,13). Since a diffusion measurement at a fixed 

diffusion time is affected by multiple factors, such as cell size, cell density, composition of 

the extracellular matrix, and compartmental diffusivities, recent work have focused on 

temporal diffusion spectroscopy (i.e. time-dependent diffusion) combined with tissue 

modeling (14,15) to gain insight on the ECS and cell size. This approach was successful in 

identifying cortical areas of various cellularity ex vivo (16), and recognizing apoptotic from 

healthy cells in vitro (17). However, to date, there has not been any report on characterizing 

the tumor cell size and ECS volume fraction in vivo and ex vivo using temporal diffusion 

spectroscopy.

The time-dependence of the diffusion coefficient indicates the presence of barriers that 

restrict the otherwise free diffusion. The relationship between diffusion time dependence and 

the size of the restricting compartment has been studied for the brain (14,18–20) and muscle 

tissues (21–24). The characteristic time for restrictive effects is τR ~ L2/D, where L is a 

typical distance water molecules travel to encounter the barriers and D is the diffusivity of 

the bulk fluid. For cancer cells, with radius ~ 4 μm and D ~ 1.5 μm2/ms, the effects of 

restriction is expected to be observed when diffusion time is about τR ~ 10 ms. This means 

that diffusion times ranging from a substantially shorter than 10 ms to a substantially longer 

than 10 ms are required to study restricted diffusion in cancer cells. It is not trivial to achieve 

this particular range of diffusion times using either pulsed gradient spin echo (PGSE) or 

oscillating gradient spin echo (OGSE) diffusion experiment alone on conventional 

preclinical hardware. Hence, we consider a combination of both sequences in this study.

PGSE and OGSE-based diffusion inside simple structures, such as impermeable cylinders 

and spheres, have been investigated earlier (14,25). Recent studies have used these 

geometrical models to assess the degree of vasculature of various tumors (26), or identify 

cancer cells of different sizes in vitro (27) or in vivo following chemotherapeutic treatment 
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(25). However, the functional dependence of the extracellular diffusivity at low frequency is 

non-analytic due to the disordered arrangement of restrictions, and is thereby fundamentally 

distinct from that in regular geometries (24). Simple Gaussian diffusion models are in 

general inadequate for quantifying tissue properties whenever the measurements are mostly 

sensitive to low frequencies or long times (19,20). In addition, even in the simplest models, 

the large number of parameters required to model the tumor microenvironment affects the 

fits robustness, making these studies very sensitive to a priori assumptions or knowledge on 

the underlying microstructure, which can be very disordered and/or spatially heterogeneous 

in the case of aggressive tumors (28–30).

In this study, we introduced a novel data acquisition and analysis framework referred to as 

Pulsed and Oscillating gradient MRI for Assessment of Cell size and Extracellular space 

(POMACE) and investigated the feasibility of using POMACE to estimate the extracellular 

space volume fraction and cell size of brain tumors in vivo and ex vivo. ECS measurements 

from in vivo and ex vivo POMACE experiments were compared with an alternate ECS 

estimation method based on effective medium theory (EMT). In addition, optical 

microscopy was performed on the same samples, and Electron Microscopy (EM) was 

performed for the assessment of cell radius on the same cell line. The scope of our study was 

limited to solid tumor tissue and it did not include normal brain tissue that requires different 

geometrical considerations and experimental conditions.

THEORY - POMACE

1. Diffusion model of tumor microstructure

In the POMACE framework, we assume the simplest case of a tumor microstructural model 

in which the diffusion MR signal S can be expressed, in absence of exchange, as the sum of 

signals from intra- and extra-cellular spaces, Sics and Secs, respectively;

[1]

In general, tissue complexity manifests itself in the non-Gaussian diffusion (31,32), 

characterized by the presence of the higher-order terms in the cumulant expansion of MR 

signal S (33),

[2]

where D and K represent the diffusion and kurtosis coefficients (34), and by the time-

dependence of all the cumulants: D(τ), K(τ), … (35). The requirement to use short diffusion 

times in this study limits the range of practically achievable b-values to under 1 ms/μm2, 

even with OGSE sequences and on preclinical scanners with strong gradient inserts 

compared to clinical scanners. For such low b-values, second and higher order terms of the 

cumulant expansion are negligible (33). As a result, for each diffusion time τ (or 
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equivalently, oscillation frequency ω ~ 1/τ), the total diffusion MR signal can be adequately 

described by a single diffusion coefficient equal to the weighted average of both diffusion 

coefficients:

[3]

The lowest order approximation of this cumulant expansion (also known as DTI regime) 

(14,25,36) was previously shown valid in this range of b-values and for this tumor model 

(37).

Furthermore, the cell membrane is considered impermeable in the range of diffusion times 

used in this study (τ <31 ms). It allows one to assume no exchange of the water molecules 

between the intracellular and extracellular spaces, cf. Eq. [1]. This hypothesis is supported 

by previous studies of intracellular water residence time that reported 400 ms for human 

breast tumors (38), 317±17 ms for fixed human myelogenous leukemia K562 cells (39), 

344±1.3 ms in viable human brain tumor (40) and 146–714 ms for tumor cells undergoing 

apoptosis (41). The range of relatively short diffusion times probed in this experiment is 

selected intentionally in order to neglect the influence of membrane permeability on time-

dependent diffusion.

2. Intracellular compartment

Here we represent cancer cells by identical spheres of radius Rcell, and free intracellular 

diffusivity Dics. In the DTI regime, the signal attenuation inside impermeable spheres due to 

diffusion-encoding gradients Sics = exp(−b · Dapp(Rcell, Dics)) was derived for cosinusoidal 

OGSE (14) and PGSE (25), and successfully applied to cellular and nuclear (42) as well as 

axonal size estimation (43). For an integer number of oscillations:

[4]

where δ is the gradient duration, Δ the inter-gradient duration and  represents 

the characteristic diffusion time for a cell. For a spherical geometry, μn is the nth root of the 

function ∂j1(μ)/∂μ, where j1(μ) = (sin(μ) − μ · cos(μ))/μ2 is the spherical Bessel function of 

the first kind, which is equivalent to the formulation in (14). For OGSE, the diffusion time 

can be approximated by π/2ω.

Using the same formalism, the formula for spherical attenuation with PGSE is given by:
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[5]

originally derived by Murday and Cotts (25). For PGSE, the inter-gradient duration Δ is 

identified as the diffusion time τ.

Eq. [4] scales as DOGSE(ω) ~ ω2 in the very long time limit (ω → 0). In the short time limit 

(ω → ∞), it behaves as ω−1/2 in agreement with (44,45). Such trend of time-dependent 

intracellular diffusivity is illustrated in Fig. 1A. It can be noted that the frequency range of 

the long and short time regimes depends on the particular cell size and intracellular 

diffusivity. For instance, Fig. 1A demonstrates that OGSE diffusion data with Rcell = 1 μm 

are in the long time regime for fOGSE = [100–200] Hz, whereas those with Rcell = 4 μm and 

beyond are in the short time regime.

3. Extracellular compartment (general case)

The time-dependence of diffusion in the ECS depends on the multiple pathways available to 

water molecules, which in turn depends on the specific geometrical arrangement and 

packing disorder of cells (24). How each of these parameters impact the ECS diffusion is 

unknown. Depending on the range of diffusion times/frequencies probed in the study, 

different assumptions can be made to properly model the tumor microenvironment. In 

addition, ECS short/intermediate/long time regimes do not necessarily match those defined 

for the intracellular compartment.

3.1. Short time regime (τ ~ ω−1 ≪ τR)—The Mitra (or short time) limit (44,46) 

characterizes the time/frequency regime where the mean displacement of water molecules 

labeled using magnetic field gradients is negligible compared to the distance between 

restrictions imposed by the micro-environment (i.e. cell membranes). The universal form of 

the OGSE diffusion coefficient in this regime, valid for both intra- and extracellular spaces, 

is characterized by a linear relationship with ω−1/2 (45). For a cosinusoidal waveform, the 

analytical expression of the OGSE-measured diffusion coefficient D(ω) is fully described by 

the medium free diffusivity D0 and the surface-to-volume ratio of the restrictions S/V 
(44,45), such that:

[6]

for isotropic diffusion in d=3 dimensions relevant for glioma in the gray matter. Here ω is 

the oscillation frequency (ω = 2πfOGSE), and c(N) is a correction factor monotonically 

decreasing with the number of oscillations N (47), 
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 (where C(x) and S(x) are the Fresnel 

functions) such that c(∞) = 1.

3.2. Long time regime (τ ~ ω−1 ≫ τR)—Based on the micro-structural organization, it is 

possible to grasp a functional form of the ECS diffusion in the very long time limit (Fig. 1B, 

left column). For OGSE, since short-range disorder is more likely to characterize relatively 

dilute structures such as cancer cells lacking any particular long-range order, the diffusion 

coefficient can be expressed as  in d dimensions (see Fig. 2A in 

(24)). For PGSE, it was previously shown (24,48) that, in 3 dimensions, the extracellular 

D(τ) increases in the long time limit (τ → ∞) with the inverse of time, as in:

[7]

where A is a structure-dependent positive parameter independent of diffusion time τ. Based 

on Eq. [5], the functional form of Eq. [7] is also valid at long times for the intracellular 

compartment, with D∞ = 0.

3.3. Intermediate time regime—While the molecular restrictions inside impermeable 

spherical boundaries can be quantified for any oscillation frequency (14), there is to date no 

analytical solution for the diffusion in the ECS at intermediate times/frequencies (Fig. 1B, 

second column). As a result, modeling the diffusion coefficient outside the very short/long 

time regime is not trivial. Depending on the oscillation frequency range and cellular size, the 

time-dependence of the overall diffusion coefficient can be dominated by each of the two 

compartments (intra- or extracellular). Boundaries between short and intermediate (ω1), and 

between intermediate and long time regimes (ω2) are related to the free/restricted 

diffusivities  and characteristic packing correlation length lc and cell size Rcell (lc 

≳ Rcell), as in ω1 = D0,ecs/Rcell and , such that ω1 ≳ ω2, Fig. 1B. The extent of 

this regime depends therefore on the particular packing arrangement of the medium (lc vs. 

Rcell).

4. Extracellular compartment (approximation)

The PGSE/OGSE time/frequency range sensitizes MR acquisitions to specific diffusion 

lengths (i.e. cellular sizes). While diffusion in small structures is highly restricted (Fig. 1A, 

Rcell≥1 μm) in the range [50–225] Hz accessible with our scanner, this domain is well 

adapted to capture major time-dependent changes inside larger cancer cells (Fig. 1A, Rcell = 

4 μm). Outside the ECS short time regime (i.e., fOGSE < 88 Hz (37)), Decs cannot be 

described analytically. However, relatively small change in Decs, compared to that in Dics, is 

expected for diffusion times longer than the characteristic time scale τR, as depicted by the 

double arrow in Fig. 1B. A similar situation was highlighted by a recent simulation study in 

one dimension (Fig. 1C in (24)). In 3 dimensions, due to the many pathways accessible to 

water molecules around “compact” restrictions such as spherical cells, and due to relatively 

low cellular packing in brain gliomas (ECS ~ 40–50 %, see (1)), we expect an overall small 

difference between  and its free value D0,ecs. (The EMT estimate, discussed around Eq 
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[9] below, yields  for ECS occupying 50% of the volume, suggesting the 

overall drop from D0,ecs to  of about 30%.) These observations suggest that the overall 

diffusion coefficient time-dependence, in the range [1/(88 Hz) - 31 ms], mainly originates 

from the intracellular compartment. Hence, we hypothesized that the diffusion in the ECS, 

Decs, can be practically viewed as time-/frequency-independent outside the short time 

regime (i.e., fOGSE < 88 Hz) and thereby can be approximated by its tortuosity limit 

. The diffusion-weighted extracellular MR signal is then given by Secs = 

exp(−bDecs). As explained earlier, this assumption is not trivial and its validity will be 

investigated further with our experimental data in this study. While  provides an inferior 

bound for Decs, a superior bound can be derived from the Mitra regime, as Eq. [6] still holds 

for fOGSE = 88 Hz (26).

5. POMACE parameter estimation

The proposed POMACE model has four parameters (ECS, Rcell, Dics, and Decs) to 

characterize tumor microstructure. Note that this model is based on the geometrical 

considerations relevant to tumor cells, not normal brain tissue, as described above. Among 

the four parameters, we can utilize an additional relationship between ECS and Dics in the 

short time regime. For OGSE, it was previously shown that the Mitra regime is reached in 

the GL261 mouse glioma model for oscillation frequencies fOGSE above 88 Hz, as illustrated 

in supplementary Figure S1: above that threshold, the S/V estimation based on Eq. [6] is 

independent of temperature as it reflects purely geometric restrictions (37). Since D(ω) 

varies linearly with ω−1/2 in each compartment (intra-/extracellular) in this short time 

regime, the functional form given by Eq. [6] remains valid for the weighted average D 
defined in Eq. [3] and, in particular, for its asymptotic limit D0 at infinite frequencies. Then, 

our system of equations simplifies to:

[8a]

[8b]

[8c]

The estimation of the POMACE model parameters is performed in two steps: (1) estimate 

D0 and S/V from the OGSE data in the short diffusion time via Eq. [6]; (2) estimate the four 

model parameters (ECS, Rcell, Dics, and Decs) by fitting Eq. [8b/c] to the PGSE and low-

frequency OGSE data with Eq. [8a] as a constraint for ECS and Dics, using a fixed D0,ecs (as 

described in Methods section).
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6. Alternative ECS estimation via the Effective Medium Theory

Using the Effective Medium Theory (EMT), the long time limit of the diffusion coefficient 

D∞ was derived for packed erythrocytes surrounded by extracellular space (49). In the 

approximation of impermeable membranes, the link between D∞ and ECS (equation [2] 

from ref. (49)) becomes independent of the sphere radius Rcell and simplifies to:

[9]

where D0,ecs is the free diffusivity in the ECS in the absence of restrictions. The EMT value 

 and the EMT-based ECS estimates (via Eqs. [7] and [9]) will be compared to the Decs 

and ECS fit estimates based on the system of equations [8], under the same hypotheses of 

impermeable membranes and free extracellular diffusivity values (2.7/1.94 μm2/ms in 

vivo/ex vivo). Compared to POMACE, the EMT framework is expected to provide a more 

robust ECS estimation, due to the small number of parameters to fit, at the expense of cell 

size information.

METHODS

Noise propagation study

A noise propagation study was performed to assess the uncertainty in POMACE model 

parameter estimation. DWI data were generated based on Eqs. [3–6], and Gaussian noise 

was added to the diffusion coefficient estimation (SNR=25/50/100, two data-points per time/

frequency, n=600). The influence of initial guess was minimized by starting from the true 

parameter set used to generate the data. Estimation of the model parameters from the low 

frequency OGSE and PGSE noisy data was performed with and without the additional 

constraint in Eq. [8a].

Animal model

Female C57BL/6 mice (n=8, 6–8 weeks) were used to generate murine orthotopic glioma 

models. GL261 cells (n=106), suspended in 5 μL phosphate buffered saline (PBS), were 

injected into the subcortex (2.5 mm depth) using a Hamilton syringe (1 μL/min) (36). All 

mice were treated in strict accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals, and the experimental procedures were performed in 

accordance with the Institutional Animal Care and Use Committee at the New York 

University School of Medicine.

In vivo imaging protocol

MRI experiments were conducted using a 7T Biospec micro-MRI system (Bruker Biospin 

MRI, Ettlingen, Germany) equipped with a Bruker BGA-9S gradient coil (750 mT/m 

gradient strength). All mice were scanned once between 2 and 4 weeks after tumor 

implantation. Animals were imaged using an in-house built quadrature Litz coil. Mice were 

anesthetized and positioned inside a custom-built mouse mold (50). A bite bar and head 

strap were used to ensure minimal motion during the scan. Respiration and temperature were 

closely monitored and kept stable (60±10 bpm and T=35±1°C) throughout the entire MR 
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session. General anesthesia was maintained using 1.5% isoflurane in air. In vivo DWI 

consisted of OGSE and PGSE measurements, probing four diffusion times Δ = 6/9/16/31 ms 

for PGSE (δ=2/3 ms), and ten oscillation frequencies in the range [65–225] Hz for the fast-

ramp cosinusoidal OGSE (51) (total number of oscillations 2≤N≤10). Previous studies (37) 

revealed mono-exponential signal behavior, i.e., negligible Intra-Voxel Incoherent Motion 

effect, and isotropic diffusion in the tumor for b<0.4 ms/μm2 (=400 s/mm2). Hence, 

diffusion-weighting gradients were applied in only one direction (1, 1, 1), using b=[0, 0.2, 

0.4] ms/μm2. Scans were performed with a single slice positioned at the tumor center. The 

Spin-Echo EPI scan parameters were: TR/TE = 3000/70 ms, Bandwidth 300 kHz, 1 readout 

segment, number of averages NA=20, number of repetitions NR=2, pixel resolution 

0.25x0.25x1.5 mm, matrix 80x80, acquisition time 6 min per frequency/diffusion time, and 

total scan time 84 min. Diffusion times and oscillation frequencies were randomly sampled 

during the session. The whole series was repeated twice to monitor any changes due to 

temperature/motion. Representative images for OGSE EPI and corresponding diffusion 

coefficient maps (in vivo and ex vivo) can be found online (supplementary materials Fig. 

S2).

Ex vivo sample preparation

Mice were sacrificed following the in vivo imaging. Following transcardiac perfusion (PBS 

+ 4% PFA), the brains were extracted, preserved in multiple sucrose solutions and kept in 

optimal-compound temperature media using the protocol described in (36). After 

embedding, 5 μm and 100 μm thickness sections were cut for immunohistochemical (IHC) 

staining of GLUT1/hematoxylin and ex vivo MR imaging, respectively.

Prior to ex vivo imaging, brain sections were rehydrated in PBS for two hours and sealed 

between two coverslips (48). Provided proper sealing, previous ex vivo experiments using 

this particular setup and diffusion imaging protocol showed minimal tissue dehydration and 

MR distortion, very good stability of the samples during overnight scans and a good image 

reproducibility, both at room temperature and at 37°C (37).

Ex vivo MR coil and DWI protocol

A dual-coverslip histology coil was used for ex vivo scans (52). Each sample placed in the 

histology coil (n=8) was carefully positioned in the horizontal plane and kept at room 

temperature. The diffusion-weighting direction was set in the horizontal plane to minimize 

any coverslip-induced restriction effect. The ex vivo MR protocol was adjusted as follows: 

NA=40, NR=6, and total acquisition time 11 hours. Other than that, the scan protocol for ex 

vivo DWI scan was same as the in vivo scan as our pilot study found that the diffusivity 

changes between in vivo and ex vivo scans were well within the expected 30% change due 

to temperature decreased from 37 °C to 20 °C.

Local temperature was monitored using (i) a thermocouple placed next to the histocoil and 

(ii) repetitions of the diffusion protocol through the entire session, such that any drift in 

temperature would be detected via temporal changes of the measured diffusion coefficient. 

No drift was observed during ex vivo imaging, neither at scan nor session level. The imaging 

slice thickness (1.5 mm) was chosen larger than the sample thickness (0.1 mm) so that small 
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drifts perpendicular to the imaging plane would not impact MR measurements through the 

imaging session. In addition, EPI trajectories were re-acquired for each scan and the water 

frequency adjusted every hour to compensate for potential slow drifts of the water frequency. 

No tissue deformation was detected during the imaging session. B-values could not be 

adjusted (i.e. increased) for the decreased diffusivities expected during ex vivo scans at room 

temperature due to hardware limitations, resulting in a two-fold SNR decrease compared to 

in vivo scans.

Optical Microscopy

The same ex vivo samples used for MRI were immersed in PBS, mounted between two 

coverslips (n=8) and imaged with optical microscopy (Zeiss LSM510 confocal microscope), 

at x10 magnification, without staining. Depending on sample size, 18 to 90 images were 

acquired sequentially within a rectangular grid. High resolution images were stitched 

together using the “Stitching” Fiji plugin for ImageJ (53).

Electron Microscopy

One additional animal was sacrificed at Day 14 after tumor implantation. Its brain was 

perfused with PBS (30s) followed by a fixative solution (2% PFA, 2.5% Glutaraldehyde, 

0.1M sucrose) (one hour). After dissection of the brain, the tumor was extracted for further 

fixation (two hours, same fixative) and kept at 4 °C overnight. The sample was then rinsed in 

a series of PB (Na2HPO4+NaH2PO4) solutions (0.1 then 0.2M), fixed in osmium tetroxide, 

rinsed in double distilled water, dehydrated in a series of alcohol solutions (30 to 95%), and 

rinsed in ethanol then propylene oxide (PO). It was then left in a PO:EMbed812 solution 

(proportions: 1:1 for one hour followed by 1:2 overnight at 4°C). The next day, the sample 

was rinsed twice in a mixture of EMbed812 and anhydrides (two times two hours in fresh 

solution), then embedded at 65°C. After 4 days at 65°C, the sample was trimmed for EM 

gridding.

EM was performed on thin sections (70 nm) at x2560 magnification (0.013 μm in plane 

resolution). Sixty eight images were acquired within a grid covering 100x160 μm2. After 

stitching of high resolution images (53), 300 cells were identified, and 60 were randomly 

chosen for cell size estimation, leading to 95% confidence interval on the average cell radius 

below 0.5 μm. Due to their elliptical shape, the mean radius was estimated as half of the 

average of their large and small sides, as measured with ImageJ.

Data Analysis

Preliminary post-processing steps included co-registration of DWI scans using an in-house 

routine (Matlab, the Natick) in order to compensate for potential motion of the animal/

sample. Regions of Interests (ROIs) were manually drawn in all 8 mice to delineate the 

tumor inside the mouse brain on ADC maps derived at oscillation frequency fOGSE = 225 Hz 

that provided maximal contrast between tumor and normal brain. At voxel level, in vivo and 

ex vivo high frequency OGSE data (fOGSE > 88 Hz) were first spatially smoothed (3x3 

square kernel) and the diffusion coefficient D(ω) fitted to Eq. [6] in order to determine the 

free diffusivity D0 in the short time regime. The diffusion coefficient obtained with low-

frequency OGSE (fOGSE < 88 Hz) and PGSE (6 < τ < 31 ms) was then fitted at once to Eqs. 
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[8b] and [8c] in order to determine the structural parameters ECS and Rcell and the apparent 

extracellular diffusivities Decs inside the tumor. The intracellular free diffusivity Dics was 

fully determined by ECS, D0 and D0,ecs according to Eq. [8a]. The free extracellular 

diffusivity in the short time limit D0,ecs was fixed at 2.7 μm2/ms (90% of water free 

diffusivity at 37°C). Two tailed unpaired Student’s t-tests were performed to assess the 

difference in the mean estimates between in vivo and ex vivo data, due to potential 

differences in slice location and thickness (1.5 vs 0.1 mm for in vivo and ex vivo, 

respectively).

Spearman correlation coefficients were calculated between ECS, Rcell, Dics, Decs, and the 

diffusion values calculated at different diffusion times τ = ΔPGSE = 6/9/16/31 ms and 

oscillation frequencies fOGSE = 65/75/88/100/125/140/160/180/200/225 Hz. The data 

analysis was performed using in-house Matlab codes (Mathworks, Natick, MA).

Validation of the constant Decs approximation in the long time limit

Estimations inside spheres of various radii (based on Eq. [5]) suggest that the intracellular 

diffusion calculated for long times with PGSE ( ) has already reached its 

long-time limit. In this regime, the mean square displacement 〈 x2 〉 = 6 * D(τ) * τ is 

constant and the intracellular difusion can be approximated by Eq. [7] with  (Rcell = 4 

μm, R2=0.98). Would that limit be achieved for our PGSE measurements, Eq. [3] simplifies 

at infinite times with , and  provides a lower bound for the constant diffusivity 

Decs attributed to the ECS during the POMACE non-linear fitting to the PGSE and low-

frequency OGSE data.

As both the in vivo and ex vivo PGSE data adhere very well to the 1/t asymptotic 

dependence, these data were fitted to Eq. [7] at tumor level (n=8). Based on high coefficients 

of determination R2, D∞ was extracted and converted to  using the mean ECS 
estimation (based on Eq. [9]) inside the tumor.

In addition, Decs (f = 88 Hz) was calculated at tumor level (n=8) using Eq. [6] with D0,ecs 

=2.70 / 1.94 μm2/ms (in vivo / ex vivo) and S/V estimates in the short-time regime to 

provide a superior bound for Decs in the range fOGSE < 88 Hz. The independently obtained 

Decs (f = 88 Hz) and  distributions were compared using non parametric tests (Mann-

Whitney U test, n=8) in order to justify the use of a constant diffusion in the ECS in the 

range fOGSE < 88 Hz.

ECS estimation via the Effective Medium Theory

Monte Carlo simulations performed for various geometrical shapes in two dimensions (54) 

have shown that the two-dimensional analog of Eq. [9] holds well for low cell packing (ECS 
> 40 %); furthermore, the mean-field theory approach used to deriving this result is 

generally expected to hold better for higher spatial dimensions. Therefore, we believe its 

application to tumors prone to necrosis is at least minimally justified; ultimately, its results 

still need to be independently validated (as we do here by comparing it with the approach 

based on Eqs. [8]).
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PGSE-based D∞ extrapolations (from Eq. [7]) were performed at voxel level, converted to 

ECS maps using Eq. [9] with D0,ecs= 2.70 or 1.94 μm2/ms for in vivo or ex vivo (based on 

PBS measurements), respectively, and compared to the ECS estimates derived with 

POMACE using the combination of PGSE and low frequency OGSE data.

RESULTS

Uncertainty in parameter estimation

Noise propagation was used to assess the uncertainty in estimation of the POMACE model 

parameters. The four parameters (ECS, Rcell, Dics, and Decs) estimated by fitting the above 

model to the simulation data had bimodal distributions with their modes away from their 

nominal values (see blue distributions Fig. 2B–E). For Dics and Decs, the two modes 

correspond to the case where intra- and extracellular diffusivities are equal or when they are 

constrained by boundary conditions (Decs< 3 μm2/ms).

The approach of constraining ECS and Dics by fixing D0,ecs using Eq. [8a] during the 

estimation resulted in unimodal distributions of all four parameters with their modes close to 

the nominal values, (Fig. 2B–E, black distributions and red line). For SNR=50 (Fig. 2A, 

typical SNR for ex vivo experiments ~60), the median values of the four parameters (ECS, 

Rcell, Dics and Decs) were 4.5 %, 0.1 %, 1.8 %, and 7.2 % off from the nominal values and 

the coefficients of variation (CV = standard deviation/mean, or interquartile range/median) 

are 5, 8, 5, and 13 %, respectively. A two-fold increase/decrease in SNR (SNR=100/25, data 

not shown) resulted in an equivalent twofold decrease/increase on the CV compared to 

SNR=50, suggesting an increased precision on the estimation of in vivo parameters (typical 

in vivo SNR ~ 120) and validating this approach in vivo and ex vivo.

Characterization of tumor micro-environment (ECS, Rcell, Dics, Decs)

The time-dependence of the diffusion coefficient obtained in vivo with low-frequency OGSE 

data (fOGSE < 88 Hz) and PGSE data (Fig. 3A) was fitted to Eq. [8b] and [8c], respectively, 

in order to extract parametric maps of ECS, Rcell, Dics and Decs in the tumor (Fig. 3B–E, 

first line). For visualization purposes, the OGSE dataset was attributed to an equivalent 

diffusion time τeq = 1/4 fOGSE, as in (51). This process was repeated for the ex vivo 

experiment on thin brain sections inserted in the MR histocoil. Representative examples of 

ex vivo parametric maps are illustrated in Fig. 3B–E (bottom line). Regions of elevated ECS 
(>70%) are highlighted white in ECS maps (Fig. 3B).

The tumor area used for MRI analysis (number of voxels × in-plane spatial resolution) was 

respectively 7.0 ± 5.0 mm2 and 10.2 ± 7.5 mm2 for in vivo and ex vivo (n=8). The mean 

distributions of ECS, Rcell, Dics and Decs in the tumor are presented in Table 1. In vivo and 

ex vivo mean Rcell measurements were consistent with each other (4.8 and 4.4 μm). 

Individual voxel values ranged from 2.5 to 44 μm. A two-fold factor was found between 

Decs and Dics, in vivo and ex vivo. In addition, Dics and Decs were similarly affected by the 

lower temperature in ex vivo MRI (−16/−21 %). Differences between in vivo and ex vivo 

diffusivities were smaller than the differences expected due to temperature difference (−30% 
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in PBS), suggesting changes at cytoplasmic level. Interestingly, the ex vivo data provided 

higher ECS estimates (ΔECS=10 %, P<0.01) than the in vivo data acquired at 37 °C.

At tumor level (n=8), a small correlation was found between tumor size and mean cell radius 

(Spearman correlation coefficient ρ = 0.4), and between tumor size and cell radius standard 

deviation within the tumor (ρ = 0.65). The mean cell radius for small / large tumors (analysis 

area below / above 100 voxels, i.e. 6.25 mm2) was 3.8 ± 0.7 and 5.2 ± 1.8 μm, respectively.

Extracellular diffusivity in the long time regime

The long time limit is well characterized by a linear relationship between D(τ) and 1/τ (24). 

As illustrated in Fig. 4A–B, a very good agreement was found between the functional form - 

Eq. [7] - characterizing this regime and both the in vivo (Fig. 4A, R2=0.89±0.11) and ex 

vivo (Fig. 4B, R2=0.98±0.02) PGSE data. Based on this result, the extrapolation of the 

PGSE data to infinite diffusion times (D∞) provides an estimation  for the 

extracellular diffusivity at infinitely long times.

From the short-time regime, following Eq. [6], with surface to volume ratio S/V = 0.57 

± 0.05 // 0.34 ± 0.04 μm−1 (n=8) and D0,ecs = 2.70 // 1.94 μm2/ms (in vivo // ex vivo), we 

find Decs (f = 88 Hz) = 1.90 ± 0.09 and 1.64 ± 0.03 μm2/ms, in vivo and ex vivo respectively.

The comparison of the Decs, Decs (f = 88 Hz) and  distributions is presented in Fig. 4C. 

Based on the model-free extrapolation of the PGSE data,  was not found significantly 

different (Mann-Whitney U test, P=0.16) from Decs (f = 88 Hz) (Fig. 4C, 1.83 ± 0.09 vs. 

1.90±0.09 μm2/ms) in vivo. Similarly, no significant difference (Mann-Whitney U test, 

P=0.80) was found between the ex vivo Decs (f = 88 Hz) and  (Fig. 4C, right columns, 

1.64±0.04 vs. 1.60±0.18 μm2/ms). These results suggest that the true extracellular diffusivity 

is not varying much in our time- or frequency range (maximum 3% difference between the 

average Decs (f = 88 Hz) and ) and can be considered constant when modeling the tumor 

micro-environment in the diffusion time / oscillation frequency range used in this study: f < 

88 Hz and τ< 31 ms.

Correlation with Diffusion Metrics

Table 2 shows the correlation coefficients ρ between one of the POMACE parameters (ECS, 

Rcell, Dics, Decs) and conventional DWI metrics - D(ω) or D(t) at four different frequencies/

times as representative examples. The complete tables (14 frequencies / times, in vivo / ex 

vivo) can be accessed online in the supporting materials (Table S1–2). ECS was found 

mainly correlated with diffusion coefficients obtained with PGSE (Table 2, bold in first two 

columns), supporting the link between long time diffusion and cellularity. On the other hand, 

the correlation between Dics and D(τ) increased mildly as the diffusion time decreased / 

frequency increased (ρ =0.74/0.62 for fOGSE=225 Hz). Rcell and Decs were not found 

strongly correlated to any of the diffusion metrics.

EMT-based ECS mapping

The comparison of voxel-based ECS distributions is presented in Table 3. As illustrated in 

Fig. 5A & B, mean in vivo values of both models were 44 %. Coefficients of variation were 
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lower for EMT (CV = 11 vs. 16%), as reflected by more homogeneous ECS maps (Fig. 5B). 

Similar results were found with the ex vivo data (mean ex vivo ECS = 54 % vs. 56 %, CV = 

13 vs. 20 %). Both ECS metrics were found strongly correlated at voxel level (Fig. 5C, ρ 
=0.64 / 0.84, in vivo / ex vivo, blue / red) with a slope close to unity (Fig. 5C, dy/dx=0.87 vs. 

1.0, dotted vs. plain line).

Histology

Due to high heterogeneity within the tumor and mechanical distortions during tissue 

preparation, different features were observed in the brain sections used for ex vivo MRI 

compared to the adjacent sections used for immunohistochemistry (IHC) (5 μm thickness), 

making it non-trivial to directly correlate ECS maps with IHC. In some cases, areas of 

various cell density could be detected in the tumor, which appear to match with the pattern 

of ECS estimated using MRI. Due to the mismatch between IHC and MRI sections, optical 

microscopy was preferred to IHC for the validation of ex vivo ECS maps.

Optical Microscopy

Microscopy (Fig. 6A–C) was performed without additional staining on the same brain 

sections used for ex vivo MRI (Fig. 5A–B, ex vivo panel) in order to prevent mismatch due 

to tissue fixation, distortion, and slice thickness. As a result, microscopic images appeared 

blurry at cellular level, as several cellular layers (Rcell<10 μm) were superimposed within the 

100 μm brain section. At tumor level, a good correlation was found between the necrotic 

areas observed with microscopy (indicated by the black and white arrows in Fig. 6) and the 

locations of high ECS based on ex vivo MRI (white areas in Fig. 5A–B, ECS > 70%). 

Similarly, regions of low ECS appear to match areas of tumor infiltration in gray and white 

matter located near the rim of the tumors. These results, made possible via the use of an MR 

histocoil, could suggest that the ECS values obtained using the time-dependence of the 

diffusion coefficient accurately depict the structural organization of the tumor at cellular 

level.

Electron Microscopy

The tumor cell radius was measured using EM images (see Fig. S3A–B in supplementary 

materials). A representative raw EM image with corresponding cell delineation can be found 

online (supplementary materials, Fig. S3). From the 60 cells randomly chosen in the tumor, 

the estimated radius was 4.7 ± 1.7 μm (with 0.4 μm 95% confidence interval on the mean 

cell radius), which is in good agreement with the Rcell estimated using in vivo and ex vivo 

MRI (4.8 ± 1.3 // 4.3 ± 1.4 μm). Interestingly, both methods provided very similar results for 

the cell dimensions despite potential structural changes due to the different tissue fixation 

methods required prior to EM imaging or ex vivo MRI.

DISCUSSION

Our results demonstrate that the proposed POMACE framework can be used to gain insight 

into the tumor microenvironment. Using a simple model of impermeable spheres for cancer 

cells, the extracellular space and cell radius can be quantified and used to characterize the 

tumor microstructure. Our ECS measurements, in agreement with ECS literature in brain 
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tumors (see Table 1 in (1)), reflected the dramatic changes in ECS observed with optical 

microscopy on the same samples. In particular, micro-necrotic regions were easily detected 

using MRI. In vivo and ex vivo estimates of the cell radius were consistent, and in 

agreement with that measured in EM images of the same cell line, suggesting this method 

can be applied to estimate cell size in vivo non-invasively.

The approximation used to identify the ADC as the diffusion coefficient in Eq. [3] was 

checked retrospectively. Since Dics and Decs estimates are on the order of 1.0 and 2.7 

μm2/ms, a slight non-Gaussianity arises from the linear combination of MRI signals when 

b≠0. This can be calculated, numerically from the comparison of 

D=ECS*Decs+(1−ECS)*Dics with ADC=−log(Stotal)/b, or equivalently from assessing the 

second-order term (b2) in the Taylor expansion of the overall MRI signal: ΔD = (b/

2)*ECS*(1−ECS)*(Decs−Dics)^2, resulting in both cases in an overall 8% relative difference 

at b=0.4 ms/μm2. These errors were found below the accuracy of our diffusion 

measurements, which were on average and at voxel level 10 ± 9 %.

Realistic modeling of tumor tissue is complex. The functional form of the time-dependence 

of a diffusion coefficient depends on the particular packing and structural disorder of the 

medium (24,55,56), which is unknown. It is tempting to tackle this fundamental problem by 

probing the extremely short and/or long time limit, where the functional form of the time-

dependence is known. In those regimes, several physical parameters can in addition be 

neglected and/or simplified.

In the very short time regime, the cellular micro-architecture (including cell size, shape and 

packing) can be simply characterized by the surface-to-volume ratio S/V of the cell walls, 

and the diffusion time-dependence is fully expressed by two independent parameters: D0 and 

S/V (44,46). D0 represents the medium free diffusivity (in absence of restrictions) and S/V 
the purely geometrical restrictions. Although promising via its link to cellularity, the utility 

of this approach to characterize cancer remains to be investigated. The extension of this 

work to larger tumor cells, as described in (26), should be straightforward, as most of the 

time-dependence occurs at lower frequencies that are easily probed on preclinical scanners. 

In contrast, in healthy brain structures, such as gray or white matter, very high oscillation 

frequencies (fOGSE > 1kHz) are required to probe the Mitra regime due to smaller cellular 

sizes (19); feasible diffusion times using an MRI system similar to what used in our study 

correspond to the long time asymptotic approach of the tortuosity limit as both axons and 

dendrites are very narrow.

In the long time regime, the diffusion coefficient D(τ) in three-dimensional random media 

reaches towards its asymptotical limit D∞ as 1/τ; in our case, this behavior should describe 

the extra-cellular diffusivity. Since the intracellular diffusion becomes fully constrained by 

cellular membranes, the corresponding intracellular diffusivity approaches zero also as 1/τ. 
This justifies the usage of Eq. [7] to determine the overall tortuosity asymptote. Practically, 

in the absence of strong variations of the extracellular medium, numerous studies have used 

a PGSE-based ADC as a successful inverse surrogate for cell density (11,13,57).
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Here it is important to note that it is the three-dimensional random packing geometry that 

allows us to use the simple extrapolation formula [7] and to not model the time dependence 

in the extra-cellular space explicitly. Generally, one should be careful to investigate the role 

of time dependence in the extra-cellular space. For example, in the two-dimensional random 

packing geometry of diffusion transverse to axonal tracts, the corresponding extra-cellular 

diffusivity approaches its tortuosity limit much slower, as (ln τ)/τ (19), than the 1/τ approach 

(24) in the three-dimensional random geometry. As a result, diffusion time dependence in 

the extra-axonal space has been recently shown to provide the dominant contribution to the 

overall time dependence, and to strongly confound axonal diameter estimates (19,20). 

Recent study shows that including the extracellular diffusivity time dependence leads to 

axonal diameter estimates about 3–5 smaller than when the time dependence is not included, 

which in turn makes the estimated diameter values below the practical detection limit (58).

Approaching the long-time regime with PGSE was used here as a tool to (1) extrapolate 

towards the tortuosity limit D∞ which is, formally speaking, experimentally unreachable; 

and (2) validate the assumption of a constant diffusivity in the ECS in our range of times and 

frequencies. Note that the latter required only limited prior knowledge on cell size (Rcell < 8 

μm) in addition to the POMACE assumptions (impermeable membranes and free 

extracellular diffusivity = 2.7/1.94 μm2/ms in vivo / ex vivo). Results were highly 

encouraging, as a maximum 10% relative difference was found between Decs (fOGSE = 88 

Hz) and this long time limit . These small Decs changes outside the short-time regime 

were found consistent with EMT-based  estimates, following Eq. [9] and ECS literature 

in brain glioma (see Table 1 in (1)). Large ECS volume fractions (~50 %) lead indeed to 

elevated ratios , comparable with Decs/D0,ecs estimations from 

the short-time regime (Eq. [6]) using realistic ECS parameters (D0,ecs=2.7 μm2/ms, S/V=0.4 

μm−1) and oscillation frequency (Decs/D0,ecs = 0.76 at fOGSE = 88 Hz). Based on this, all of 

the time dependence of the diffusion coefficient in the range [1/(88 Hz) – 31 ms] was 

entirely attributed to intracellular restrictions, and ECS and Rcell unambiguously extracted 

from Eq. [8b–c]. For this purpose, estimations based on Eq. [8b] suggested that the diffusion 

times used in this study (6 < τ < 31 ms) were sufficient to consider that the long time regime 

was reached inside the cells (D linear with 1/τ).

In principle, if our time-independent approximation for ECS diffusivity does not hold, the 

time-dependence of the diffusion in the ECS would need to be accounted for when fitting 

D(ω)/D(τ). This can be problematic, as fits become extremely unstable when allowing for 

Decs to vary with frequency or time. For PGSE this is due to the very similar functional 

forms of intra- and extracellular diffusivities approaching the long time regime (see Eq. [7]). 

As a result, these compartments cannot be resolved in the absence of strong constraints. 

Another way to effectively constrain fitting is acquiring higher-order diffusion metrics such 

as kurtosis terms; however, this requires stronger diffusion weighting and extra scan time. 

Five-parameter models (combining OGSE at 40 and 80 Hz and a single PGSE with τ=52 

ms) were shown successful in identifying cell pellets of various size (Rcell=10/20 μm) (27). 

However, only relative ECS changes could be demonstrated in solutions of various but 

unknown cellular densities. Since their model assumes constant diffusivity in the ECS for 

PGSE, the ECS quantification accuracy would benefit from additional PGSE measurements 
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in this intermediate range. In general, the ECS diffusion time-dependence can only be 

neglected under certain circumstances (specific time range vs. cellular dimensions, low 

cellular packing, dimensionality of the problem – in particular, 3 dimensions is much more 

favorable in this respect than 2 dimensions), that must be thoroughly investigated and 

validated. In addition, for longer diffusion times, recent studies (39) suggest that the 

influence of cellular permeability on the measured diffusion coefficient cannot be neglected 

and should be accounted for in Eq. [4–5]. This constitutes a minor limitation to our study, as 

only the longest diffusion time (31 ms) was near the boundary of the range safe to assume 

cells can be considered impermeable (around one-tenth of the water residency time) (38–

41). With the multiple shorter diffusion times using PGSE, Δ=6, 9, and 16 ms, which are less 

likely affected by the exchange effect, we expect that the error induced by a potential small 

bias in the fit due to the measurement at Δ=31ms is not considerably large.

In general, particular caution was taken to ensure the validity of the many assumptions used 

throughout this study. In addition to pilot studies investigating IVIM effects and diffusion 

isotropy in the tumor, MR parameters were fixed when possible. Only the diffusion time / 

period and number of oscillations were allowed to vary during the experiment. Small and 

constant b-values ([0–0.4] ms/ μm2) ensured that the mono-exponential “DTI” regime was 

maintained and additional orders of the MR signal cumulant expansion (33) could be 

neglected for all diffusion times / frequencies. Similarly, TE and TR values were kept 

constant (70/3000 ms) to minimize the influence of potential different relaxation times in the 

two compartments.

Ex vivo diffusivities were found significantly smaller than in vivo, although the experimental 

difference (DPGSE, D0, Dics and Decs decreased by 15, 25, 20 and 16 %, respectively) did not 

reach the expected decrease due to temperature between 37 and 20 degrees (−30 %, as 

measured in PBS). Since cellular size were found similar in vivo and ex vivo, these changes 

must be explained by changes at microstructural level triggered during the fixation process 

and impacting cellular permeability and/or ECS content, such as the removal of small 

extracellular structures during the fixation process. It was beyond the scope of this study to 

determine the exact underlying changes caused by the tissue preparation for ex vivo 

experiment. However, because there can be substantial differences between in vivo MRI and 

histopathological assessment for the same reason, the ex vivo MRI experiment was included 

for cross-validation of the model with other ex vivo methods in this study.

The two approaches to quantify the ECS in vivo and ex vivo (low-frequency OGSE+PGSE 

vs. EMT) provided very similar results in the tumor. In addition, both methods matched well 

with the structural information extracted from the ex vivo microscopy data, suggesting both 

methods are suitable to extract the true extracellular fraction. EMT-based ECS maps were 

found in general more homogeneous, likely to be a result of the lesser number of fit 

parameters. However, combining diffusion at different scales (OGSE+PGSE) provided an 

additional estimate of the cellular radius Rcell, while D∞ extrapolation in the long time limit 

is - for impermeable structures - independent of cell size (49). In addition, the EMT assumes 

that the extracellular diffusivity D0,ecs is homogenous and unconstrained, while the 

“apparent” constant diffusivity Decs is allowed to vary in the other model. The latter could 

constitute an advantage in situations prone to changes in the extracellular medium, such as 
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post-injury states or ischemia (59). Here should be noted that, since both techniques make 

similar assumptions – the validity of which is discussed earlier -, they do not provide fully 

independent ECS estimation.

Both MRI-based ECS quantification approaches highlighted an increase of the ECS (average 

ΔECS=+10%) ex vivo. This result is counterintuitive, as brain structures (including the 

extracellular matrix) are known to shrink under the influence of tissue fixatives used for 

sample preparation (60). This cellular shrinkage process remains however small after PFA 

fixation (61) and tumor expansion could be facilitated by the skull removal and rehydration 

process, partially releasing tumor interstitial pressure. In addition, we cannot exclude partial 

removal of low packed cells during the fixation and sectioning process, explaining why our 

data did not support evidence of ECS shrinkage due to tissue fixation. Additional ex vivo 

measurements prior to tissue sectioning would help answer this question.

The validation of the ECS estimates was made possible by using a histocoil (52) allowing 

for the imaging of very thin brain slices (100 μm) that could be imaged using a different 

modality (optical microscopy in this case). In addition, sufficient SNR was maintained all 

around the sample (in vivo / ex vivo SNR = 120/60) to derive parametric maps despite a 

fifteen-fold decrease in slice thickness. Another utility of the histocoil lies in the possibility 

to perform ex vivo MRI at various temperatures. This can be used as an additional tool to 

probe different diffusion time regimes (37).

Despite providing the right order of magnitude for cell size, EM cell size measurements 

were only performed in one animal and limited number of cells (n=60), which might not be 

representative of the full cohort. In addition, the estimation method used in this study would 

lead to cell size underestimation for highly aspherical cells intersecting the EM imaging 

plane. To date, direct correlation of MRI and EM is not possible due to differences in slice 

thicknesses and tissue preparation, justifying this approach to estimate cell size. Since MRI 

estimates only pointed out a small difference in mean cell radius between small and large 

tumors (3.8 vs. 5.2 μm), any bias when comparing EM performed at 14 days and MRI 

estimates obtained between 14–28 days would remain small.

Kucheryavykh et al (62) reported that the radius distribution becomes larger at the later stage 

of tumor growth to (15–60 um in diameter). Similarly, Resende et al (63) reported that 

GL261 size was around 10–20 um in diameter at the early stage and increases to 14–52 um 

in the later stage of about 3 weeks post tumor implantation. These two studies were 

conducted with brain slices, whereas our study was based on the measurement of tumor in 

the intact brain. In this study, we found a weak correlation between tumor size and mean cell 

radius (ρ = 0.4) and a stronger correlation between tumor size and cell radius standard 

deviation within the tumor (ρ = 0.65), suggesting cancer cells could indeed become larger at 

later stage, but the mean cell radius remained on the same order of magnitude (Rcell = 3.8 

± 0.7 vs. 5.2 ± 1.8 μm for the small and large tumors). Despite this difference in 

experimental conditions, the estimated cell radius from our study is quite close to the ex vivo 

measurements that can be appreciated in supplementary Figure S3.
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The quantitative comparison of MRI- and IHC-based ECS estimates failed due to differences 

in structure between two consecutive brain sections of different thicknesses (100 vs. 5 μm). 

Although qualitative comparisons on several neighboring slices support the validity of MRI-

ECS measurement, a rigorous multimodal correlation can only be achieved via consecutive 

MRI and IHC of thin brain sections (5–10 μm). This would however degrade MR 

performances and generate additional diffusion restrictions in the sample. This problem can 

be solved using 3D ex vivo MRI followed by histology, provided the tissue integrity is well 

preserved during preparation and sectioning.

Although the ECS can also be estimated from DCE-MRI, the accuracy of ECS measurement 

in DCE-MRI can be affected by multiple factors, such as arterial input function, tissue Gd 

relaxivity, pre-contrast T1, RF coil sensitivity, and water exchange between vascular, intra- 

and extracellular compartments (64). It is beyond the scope of our study to include another 

MRI modality with its own uncertainty in measuring ECS. Future studies are needed to 

compare the POMACE-measured ECS with that of DCE-MRI.

Other diffusion models relevant for cancer studies have used the vascular compartment 

directionality (26), exchange rate (65) or micro FA approach (66) in order to characterize 

tumor microstructure, often at the expense of accurate extracellular space quantification. On 

the other hand, the present technique focuses on estimation of the cell size and extracellular 

space fraction, which has been recognized as a strong biomarker for treatment efficacy (1).

The proposed method in this study can be translated to clinical scanners with additional 

restrictions on the OGSE frequency range depending on the gradient hardware limitations. 

The geometrical model would also remain valid for various brain tumors as the size of 

human cancer cells are in the same order of magnitude as those of the murine glioma cells 

used in this study. The OGSE frequency and diffusion time ranges can be adjusted in order 

to optimize the measurement condition for the specific size of any particular cancer type. 

However, it should be stressed that the proposed method cannot be applied to the normal 

brain tissues even in the mouse brain, as some of the fundamental assumptions 

(directionality, cell size, geometry, packing density) used for our method may not be valid. 

Smaller neuronal structures require a substantially higher range of oscillating gradient 

frequencies to achieve sufficiently short time range to estimate S/V. A higher packing 

density in normal brain compared to glioma is another critical factor that affects the 

approximation of negligible diffusion time-dependence in the ECS. In addition, many of 

murine brain regions, including the cortical ribbon, have structural alignment that gives a 

rise to diffusion anisotropy. Hence, assessment of time-dependence of diffusion in normal 

brain tissue requires a considerably different approach than the method proposed in this 

study. In fact, one of the motivations for this study was to develop a specific measurement 

method appropriate for cancer cells given their differences from normal brain tissue.

The model analysis in the proposed method is based on the ADC values at individual 

diffusion times and oscillating gradient frequencies, such that it is not directly affected by 

many of the acquisition parameters. The most critical parameter for the model is the 

diffusion time and frequency range as it is supposed to include both short-time AND long-

time regimes for cancer cells. As long as the data acquisition includes multiple 
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measurements in these two regimes for our target tissue, we do not expect that the choice of 

individual diffusion times and frequencies would influence the outcome of the analysis. In 

this study, the diffusion times and frequencies were chosen to cover the whole available 

spectrum, thus ensuring maximal sensitivity to the diffusion time-dependence. Future study 

is warranted to further investigate and optimize the selection of the diffusion times for 

characterization of cancer cells.

In summary, it is possible to characterize the tumor microenvironment inside a loosely 

packed mouse glioma cells both in vivo and ex vivo, using the time-dependence of the 

diffusion coefficient and a simple model of impermeable spheres when appropriate diffusion 

times are used. The combination of PGSE and OGSE data and the proposed POMACE 

framework of analysis provide a quantitative means to estimate both the cell radius and 

extracellular space fraction, that can be used as non-invasive MRI markers to assess micro-

necrotic areas, modification of the extracellular matrix, tumor progression or treatment 

response.
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Abbreviations

ADC Apparent Diffusion Coefficient

CV Coefficient of Variation

DCE Dynamic Contrast Enhanced MRI

DTI Diffusion Tensor Imaging

ECS extracellular space

EM Electron Microscopy

EMT Effective Medium Theory

GL261 mouse Glioma 261

GLUT1 Glucose Transporter 1

IHC Immuno-histochemistry

PB(S) Phosphate Buffered (Saline) solution

PFA Paraformaldehyde
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POMACE Pulsed and Oscillating gradient MRI for Assessment of Cell Size and 

Extracellular space

PGSE/OGSEPulsed/Oscillating Gradient Spin Echo

ROI Region of Interest

S/V Surface-to-Volume ratio
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Figure 1. 
Frequency-dependent diffusion inside (A) the intracellular space for various cell radii 

(numerical calcul, Rcell = 1/4/10 μm, blue/green/black circles) and (B) extracellular space in 

the long / intermediate / short time regime. A. Oscillation frequencies fOGSE in the range [0–

225] Hz are best suited to detect time-dependent changes from the intracellular compartment 

in cancer cells (Rcell = 4 μm). B. The analytical expression for diffusion in the ECS in the 

intermediate time domain is in general unknown (second column). Outside the short-time 

regime (i.e. within the grey area), small time-dependent variations are expected from the 

extracellular compartment (double arrow), compared to intracellular diffusivity changes 

inside cancer cells (Fig. 1A, green).
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Figure 2. 
Time-dependent diffusion over-fitting with four independent variables. A. Combination of 

PGSE and OGSE data (light and dark gray) in the range [31 ms ; 225 Hz] based on Eq. [3–

6] and realistic estimates (ECS = 40%, Rcell = 4 μm, Dics/Decs=1/2 μm2/ms, D0,ecs = 2.7 

μm2/ms). When fitting four independent variables, small variations due to noise (blue 

circles, SNR=50, 2 time-points per time / frequency) lead to bimodal distributions (blue 

lines) of the estimated ECS fraction (B), cell radius (C), intra-(D) and extracellular 

diffusivities (E). The red lines correspond to the parameter nominal values. Alternatively, 

when Dics is fully constrained based on Eq. [8a] and OGSE data in the short time regime 

(fOGSE > 88 Hz), the distributions of the parameter estimates (black lines) are centered 

around the nominal values.
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Figure 3. PGSE and low frequency OGSE time dependence
A. In the tumor, PGSE (open circles) and OGSE data (closed circles) are fitted to Eq. [8b] 

and [8c]. The standard deviation over the ROI is indicated by the blue area. Parametric maps 

of ECS (B), Rcell (C), Dics (D) and Decs (E) inside the tumor in vivo / ex vivo (top / bottom 

line). White areas in ECS maps indicate regions of very low cellular density (ECS>70 %).
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Figure 4. Long time-dependence of the diffusion coefficient in the tumor
Both A. in vivo and B. ex vivo PGSE-based D(τ) decrease linearly with 1/τ. Standard 

deviations within the tumor ROI are represented by the blue / red areas. C. Comparison of 

the ECS diffusivities derived from the POMACE model (Decs, white) with values 

extrapolated from the PGSE data in the long time regime ( , grey), and from the short-

time regime at fOGSE = 88 Hz (black) for in vivo (left column) and ex vivo (right column) 

PGSE measurements.
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Figure 5. Comparison of ECS parametric maps
derived from A. the POMACE (Eqs. [8]) and B. EMT applied to the PGSE data (Eq. [9]) in 

three representative tumors. Areas of high ECS (>70%) are highlighted in white. C. At voxel 

level, ECS measurements appear strongly correlated in vivo (ρ =0.64) and ex vivo (ρ =0.84). 

The complete dataset (in vivo + ex vivo) is best fitted via the dotted line (slope=0.87). The 

unity line is plotted for visualization purposes.
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Figure 6. Optical microscopy
performed on brain sections (100 μm thickness) used for ex vivo MRI (corresponding to Fig. 

5A–B, ex vivo panel). Necrotic areas (black/white arrows) match the regions of high ECS 
(>70 %) estimated using MRI (Fig. 5). Similarly, regions of low ECS appear to match areas 

of tumor infiltration in Gray and White Matter.
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Table 1

In vivo (n=1056) and ex vivo (n=1073) fit estimates for the tumor environment. Only voxels with physically 

realistic values (Decs in [0–3] μm2/ms, Rcell in [0–10] μm, ECS in [0–100] %) were included in this analysis.

ECS [%] Rcell [μm] Dics [μm2/ms] Decs [μm2/ms]

In vivo 44 ± 7 4.8 ± 1.3 0.96 ± 0.21 2.06 ± 0.35

Ex vivo 54 ± 11 4.3 ± 1.4 0.76 ± 0.25 1.72 ± 0.25
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Table 3

Comparison of ECS distributions for the two models. Only voxels with physically realistic values (Decs in [0–

3] μm2/ms, Rcell in [0–10] μm, ECS in [0–100] %) were included in this analysis.

ECS [%] 2CM - Eq. [8] EMT, Eq. [9]

In vivo 44 ± 7 44 ± 5

Ex vivo 54 ± 11 56 ± 7

NMR Biomed. Author manuscript; available in PMC 2017 October 01.


	Abstract
	INTRODUCTION
	THEORY - POMACE
	1. Diffusion model of tumor microstructure
	2. Intracellular compartment
	3. Extracellular compartment (general case)
	3.1. Short time regime (τ ~ ω−1 ≪ τR)
	3.2. Long time regime (τ ~ ω−1 ≫ τR)
	3.3. Intermediate time regime

	4. Extracellular compartment (approximation)
	5. POMACE parameter estimation
	6. Alternative ECS estimation via the Effective Medium Theory

	METHODS
	Noise propagation study
	Animal model
	In vivo imaging protocol
	Ex vivo sample preparation
	Ex vivo MR coil and DWI protocol
	Optical Microscopy
	Electron Microscopy
	Data Analysis
	Validation of the constant Decs approximation in the long time limit
	ECS estimation via the Effective Medium Theory

	RESULTS
	Uncertainty in parameter estimation
	Characterization of tumor micro-environment (ECS, Rcell, Dics, Decs)
	Extracellular diffusivity in the long time regime
	Correlation with Diffusion Metrics
	EMT-based ECS mapping
	Histology
	Optical Microscopy
	Electron Microscopy

	DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3

