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Purpose: Current approaches using deformable vector field (DVF) for motion-compensated 4D-cone
beam CT (CBCT) reconstruction typically utilize an isotropically smoothed DVF between different
respiration phases. Such isotropically smoothed DVF does not work well if sliding motion exists
between neighboring organs. This study investigated an anisotropic motion modeling scheme by
extracting organ boundary local motions (e.g., sliding) and incorporated them into 4D-CBCT recon-
struction to optimize the motion modeling and reconstruction methods.
Methods: Initially, a modified simultaneous algebraic reconstruction technique (mSART) was
applied to reconstruct high quality reference phase CBCT using all phase projections. The initial
DVFs were precalculated and subsequently updated to achieve the optimized solution. During the
DVF update, sliding motion estimation was performed by matching the measured projections to
the forward projection of the deformed reference phase CBCT. In this process, each moving organ
boundary was first segmented. The normal vectors of the boundary DVF were then extracted and
incorporated for further DVF optimization. The regularization term in the objective function adap-
tively regularizes the DVF by (1) isotopically smoothing the DVF within each organ; (2) smoothing
the DVF at boundary along the normal direction; and (3) leaving the tangent direction of boundary
DVF unsmoothed (i.e., allowing for sliding motion). A nonlinear conjugate gradient optimizer was
used. The algorithm was validated on a digital cubic tube phantom with sliding motion, nonuniform
rotational B-spline based cardiac-torso (NCAT) phantom, and two anonymized patient data. The
relative reconstruction error (RE), the motion trajectory’s root mean square error (RMSE) together
with its maximum error (MaxE), and the Dice coefficient of the lung boundary were calculated to
evaluate the algorithm performance.
Results: For the cubic tube and NCAT phantom tests, the REs are 10.2% and 7.4% with sliding
motion compensation, compared to 13.4% and 8.9% without sliding modeling. The motion trajec-
tory’s RMSE and MaxE for NCAT phantom tests are 0.5 and 0.8 mm with sliding motion constraint
compared to 3.5 and 7.3 mm without sliding motion modeling. The Dice coefficients for both NCAT
phantom and the patients show a consistent trend that sliding motion constraint achieves better
similarity for segmented lung boundary compared with the ground truth or patient reference.
Conclusions: A sliding motion-compensated 4D-CBCT reconstruction and the motion modeling
scheme was developed. Both phantom and patient study demonstrated the improved accuracy and
motion modeling accuracy in reconstructed 4D-CBCT. C 2016 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4959998]
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1. INTRODUCTION

Verification of a moving target just before the treatment beam
delivery is a challenging task. The concept of 4D cone-beam
CT (4D-CBCT) offers a powerful tool to achieve this goal.
However, its clinical application is limited. One reason is
related to the limited number of projections within each
respiration phase. Under 1 min gantry scanning protocol,

around 670 projections were acquired for reconstructing 10-
phase 4D-CBCT.1,2 The projection number available at each
sorted phase is not sufficient for FDK to achieve a good
reconstruction, which leads to severe streaking artifacts on
the reconstructed image.

Recently, various 4D-CBCT reconstruction methods
have been proposed.1–15 One major category from these
methods is deformable vector field (DVF) based 4D-CBCT
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F. 1. Flow chart of the sliding motion-compensated 4D-CBCT reconstruc-
tion.

reconstruction,2,4,5,7,8,14 and it has shown a good capability
to obtain high quality 4D-CBCT. One method from
this category is called simultaneous motion estimation
and image reconstruction (SMEIR),14 in which the 4D-

DVFs are simultaneously updated along with the motion-
compensated reconstruction by a modified simultaneous
algebraic reconstruction technique (mSART). The DVFs are
directly obtained by matching the measured CBCT projection
and the forward projection of high quality reference phase
CBCT with motion compensation. Both phantom and patient
studies had demonstrated the ability of SMEIR on improving
the 4D-CBCT reconstruction quality as well as the lung
motion tracking accuracy. However, the original SMEIR
method does not consider the sliding motion between the
lung and thoracic cage. The optimization energy function
is designed based on an isotropic smoothing penalty term
for the DVF updating. However, organs can have anisotropic
motion, especially at the organ surface contacting sites such
as the lung-to-thoracic interface or lung-to-heart interface.
A uniform smoothing term design ignores the organ local
nonuniform motion such as sliding motion at the organ
boundary sites. The final estimated DVF solution may not
always achieve an optimized solution if the sliding motion at
the organ boundary sites is not properly modeled.

Sliding motion has been previously modeled to improve
the deformable registration accuracy in 4D-CT imaging.16–19

In this work, we take the sliding motion into consideration
for accurate 4D-CBCT reconstruction. Specifically, the DVF
smoothing term is redesigned and is divided into two parts: (1)
the inner organ smoothing part; and (2) the organ boundary
sliding modeling part. The isotropic DVF smoothing will be
performed at the organ inner sites, and the adaptive anisotropic
DVF smoothing will be performed at the organ boundary
sites to capture the sliding motion in the DVF. The sliding
motion at the organ boundary has also be considered in a

F. 2. (a) Initial static tube phase; (b) target phase (ground truth) in which the gray tube slides against the white tube; (c) deformed initial phase without sliding
consideration; (d) deformed initial phase with sliding consideration.
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T I. RE quantification between phantom results obtained with/without
sliding motion compensation.

DVF estimation with
sliding (%)

DVF estimation without
sliding (%)

Tube phantom RE 10.2 13.4
NCAT phantom RE 6.7 8.5

multiorgan meshing model20 in which motion fields were
defined on sparse mesh grids. In this work, the motion fields
are defined on each voxel with a dense representation. A
simple sliding digital cubic tube phantom is used to initially
test the effectiveness of this new regularization design. A
nonuniform rotational B-spline based cardiac-torso (NCAT)
phantom is used to further validate the algorithm. Two patient
data are also tested to demonstrate the effectiveness of our
algorithm.

2. METHODS AND MATERIALS
2.A. Overview of SMEIR algorithm

As mentioned in Ref. 14, the mSART reconstruction is
first applied by using all sorted 4D projections to achieve
a high quality reference motion-compensated phase (e.g.,
0% phase). Then the DVF estimation is performed for
each phase by matching the measured CBCT projection

of the target phase to the forward projection of the
deformed motion-compensated reference phase. Mathemat-
ically, let pt =
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where k is the iteration step, j is the voxel index of phase
0% while n is the voxel index of phase t; ain is the
intersection length of projection ray i with voxel n, which
is obtained by a ray-tracing technique;21 and d t→0

jn denotes the
element of the inverse DVF that deforms phase t to phase
0. The initial image µ

0,(0)
j is first reconstructed by the total

variation (TV) minimization22 reconstruction to achieve a
noise suppressed initial reference phase image (0% phase).
Equation (2) describes the forward deformation that deforms
phase 0 4D-CBCT to phase t. For projection matching, an
inverse consistent DVF estimation is applied by designing a

F. 3. (a) The initial phase for 45◦ sliding; (b) target phase for 45◦ sliding; (c) deformed initial phase without sliding consideration for 45◦; (d) deformed initial
phase with sliding consideration for 45◦.
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F. 4. NCAT phantom results obtained with and without sliding motion compensation. (a) 40% phase reconstructed results without sliding constraint; (b) 40%
phase reconstructed results with sliding constraint; (c) 40% phase ground truth; (d) ROI from (a); (e) ROI from (b); (f) ROI from (c); (g) lung–rib cage ROI
without sliding motion constraint; (h) corresponding ROI with sliding motion consideration; (i) corresponding phantom ROI.

symmetric energy function,
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where f1 and f2 denote the symmetric energy function; 0
stands for phase 0%, t stands for any other phase t; A
is the projection matrix; v0→ t denotes the forward DVF;
and v t→0 denotes the inverse DVF.
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corresponding regularization terms. The inverse consistent
constraint is shown in the last term of Eq. (3). β controls
the trade-off between the data fidelity term and smoothing
regularization term ϕ(v). In the original SMEIR method, we

assume the smoothness of DVF is isotropic everywhere, and
ϕ(v) is designed by

ϕ(v)=

v∈R3

3
i=1

3
j=1

(
∂vi
∂x j

)2

, (4)

where ∂vi/∂x j denotes the difference between neighboring
voxels for each DVF component along three directions.
A nonlinear conjugate gradient optimizer was used for
estimating the final DVF solution.

2.B. Sliding motion regularization design

As mentioned before, one limitation of the SMEIR
smoothing term is that the DVF smoothing is always isotropic
everywhere. However, sliding motion frequently happens at
the organ boundary sites. If we relied on isotropic DVF

T II. 4D Dice coefficients between NCAT phantom results obtained with/without sliding motion
compensation.

Phase index 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Average Dice

coefficient

Without sliding 0.989 0.981 0.970 0.950 0.923 0.915 0.913 0.962 0.968 0.978 0.955
With sliding 0.998 0.998 0.991 0.990 0.989 0.986 0.979 0.986 0.988 0.986 0.990
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F. 5. z-axis heart motion trajectories extracted from the NCAT phantom
ROI truth and the corresponding ROI images with and without sliding con-
straint.

smoothing everywhere, the local sliding motion will be
ignored in the final reconstruction results. To take the sliding
motion along organ boundaries into account, we redesigned
the regularization term in the DVF smoothing for those voxels
located at the organ boundary. The new anisotropic penalty
term ϕ(v) Ref. 23 was redesigned as

ϕ(v) = 1
2


l=x, y,z


x∈R


(
I−w (x)n(x)n(x)T )∇vl

+w (x)n(x)n(x)T∇v⊥l 
2

(5)

where I is the identity matrix, n(x) is the normal vector to the
lung organ boundary voxel x; vl is the lth scalar component
of DVF and v⊥

l
is the lth scalar component of the normal

directions to the organ surface DVF. Let nl (x) be the lth
normal scalar component, then v⊥

l
=
�
v(x)Tn(x)�nl (x). As

the normal directions to the organ surface are different for
different voxels, the sliding motion considered in this work
is in 3D. Each original organ boundary voxel is extended ±1
voxel to its neighborhood along the x, y , z directions, so
the thickness of the boundary is 3×3×3 voxels. Then each
organ boundary voxels is assigned with different weightings.
The weighting term w (x) is defined by w (x)= e−λd(x), with λ
being empirically set at 0.2 mm−1 for all simulated phantom
data and patient data in our study. With λ = 0.2 mm−1, we can
achieve clear and naturally smoothed boundary. Too large or
too small lambda values will make the boundary either blurred
or bumpy with disconnected points. d (x) is the distance to
the central voxel within each 3× 3× 3 boundary thickness
range. w (x) is 1 at the boundary central layer and decreases

with increased distance d (x). As the objective function is
minimized by the nonlinear conjugate gradient optimization,
the gradient of ϕ(v) is calculated by

∇vϕ(v)
=−


l=x, y,z
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div
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nnl

�
, (6)

where div denotes the divergence operator, el is the lth
canonical unit vector (e.g., ex = [1,0,0]T).

The segmentation of lung was performed by the -
software.24 A rectangular region of interest (ROI) box was
first defined manually to just include the lung region. Once the
ROI was defined, the lung region was extracted by carefully
tuning the intensity threshold. The boundary of lung was
identified by the active contour model and the segmented lung
was saved as mesh surface data. The surface voxel normal
vectors n(x) for each voxel were then extracted by MeshLab
software (meshlab.sourceforge.net) directly. The gradient and
divergence operation were calculated within the 3× 3× 3
neighborhood surrounding each voxel of interest.

2.C. DVF initial for optimization

The simultaneous sliding motion-compensated 4D-CBCT
reconstruction workflow chart is illustrated in Fig. 1. 10-
phase 4D-CBCT is first reconstructed by TV minimization
from corresponding projections after phase sorting. Then
demons registration25 is used to obtain the DVF initials
to start the motion-compensated reconstruction and inverse
consistent DVF optimization. The code used for demons
registration algorithm was downloaded from Ref. 26, where
the implementation was based on Ref. 27. If predefined DVFs
are not available (i.e., using zero DVFs in the first SART
reconstruction), an initially reconstructed reference CBCT
will be blurred. The following motion estimation step will fail
as we are comparing the forward projections of the reference
CBCT to measured projections of other phases during the
DVF estimation.

2.D. Evaluation criteria

2.D.1. Reconstruction accuracy

The relative error (RE) between the reconstructed 4D-
CBCT with sliding constraint and the ground truth or reference
was used to quantify the image reconstruction accuracy

T III. Motion trajectory error comparison.

Phase index 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
RMSE and
MaxE, mm

With sliding (mm) 0.00 0.00 0.00 0.76 0.82 0.00 0.83 0.00 0.00 0.00 0.47/0.83
Without sliding (mm) 0.61 0.00 0.62 4.51 7.32 5.60 1.51 0.75 0.84 0.00 3.48/7.32
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F. 6. Coronal and sagittal views of the first patient reconstruction using (a) and (d) FDK; (b) and (e) TV; (c) and (f) SMEIR without sliding; (g) and (i) SMEIR
with sliding motion compensation; (h) and (j) reference image from fully sample projections.

by defining

RE=

(µR(x)− µT (x))2(µT (x))2
×100%, (7)

where µT (x) is the phantom ground truth, µR(x) is the
reconstructed image.

2.D.2. Tumor motion accuracy

The tumor motion trajectory was extracted from the
reconstructed images and the ground truth. The root mean
square error (RMSE) and maximum error (MaxE) of the
estimated tumor position were analyzed to quantify motion
estimation accuracy with sliding motion constraint.

RMSE=


1
9
×

9
ph=1

(
PosRph−PosTph

)2
, (8)

where PosRph denotes the estimated image feature point position
for the ph-th phase and PosTph denotes the corresponding
position from the ground truth. MaxE is defined as the
maximum error of the tumor position extracted from all 9
phases.

2.D.3. Dice coefficient

We used the Dice coefficient to measure the segmented
lung boundary contours to see whether sliding motion-
compensated result has more contour similarity compared

Medical Physics, Vol. 43, No. 10, October 2016
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F. 7. (a) Reference image of the first patient; (b) reconstruction with sliding consideration; and (c) reconstruction without sliding consideration.

with the truth reference. Let A be the contour area obtained
from the result with or without sliding motion compensation,
and B is the contour from the truth reference. The Dice
coefficient s given by

s =
2 |A∩B|
|A|+ |B| . (9)

In our study, we use the voxel number within the organ contour
as a surrogate of the exact area.

3. RESULTS
3.A. Sliding cubic tube phantom

A simple digital sliding tube phantom (Fig. 2) was
simulated to validate the algorithm effectiveness. The sliding
tube phantom was designed with one cubic tube static while
the other one slides against the static one along 90◦ and 45◦.
The tube intensity changed gradually within the range of
0.015–0.019 mm−1 for the gray tube and 0.031–0.044 mm−1

for the white tube. The forward projections of the phantom
were generated with 20 views per phase for both of the initial
and target phases according to CBCT geometry. The sliding
motion for the moving tube is 15 mm. The simulated voxel size
is 2 mm, and the detector element size is 2 mm. The source to
detector distance is 1500 mm and source to isocenter distance
is 1000 mm in the simulated CBCT geometry.

Figures 2(a) and 2(b) show the initial and target 2 tubes
moving along the axial direction; Figs. 2(c) and 2(d) show
that when the DVF initial was used, the deformed initial phase
without and with sliding consideration. The results in Fig. 2
show that the sliding motion compensation helps to achieve
more optimized final reconstruction results compared with the
ground truth. The arrows in Figs. 2(c) and 2(d) indicate that
sliding motion constraint is capable to suppress the unsatisfied
image distortion artifacts at the motion caused right-angle
sites. The RE values are listed in Table I with 10.2% for the

image reconstructed by the considering sliding motion and
13.4% for the image reconstructed without this consideration.

We also tested our algorithm effectiveness to compensate
tube phantom sliding along other directions. Figure 3 shows
the tube phantom results when it slides along 45◦ in the images.
The results indicate that our algorithm is capable to avoid
undesirable smoothing on the sliding boundary and achieves
a more accurate deformation result.

3.B. NCAT phantom

After the effectiveness of sliding motion constrained algo-
rithm was testified by the sliding tube phantom, we continued to
use the NCAT phantom to further evaluate the performance of
our algorithm. 10 breathing phase of 4D NCAT were simulated
with a respiration period of 4 s. The maximum diaphragm
motion along superior–interior (SI) is 20 mm and the maximum
chest anterior–posterior (AP) motion is 12 mm. The projections
of 10 phases with 20 views per phase were used for the DVF
estimation and 4D-CBCT reconstruction. The phantom image
size is 256×256×150 with a voxel size of 2×2×2 mm3. The
projection size is 300×240×20 view per phase with projection
voxel size of 2×2 mm2.

Figure 4 shows the 40% phase reconstructed images
obtained with and without sliding motion constraint. As 40%
phase has the largest respiration motion compared with the
0% phase, sliding motion would be obvious between the 2
phases. Hence we choose 40% phase to validate our algorithm.
Figure 4(a) shows the 40% phase reconstructed images
obtained without sliding motion constraint; Fig. 4(b) shows
result with sliding constraint; Fig. 4(c) shows the correspond-
ing ground truth image; Figs. 4(d)–4(f) are the ROIs where
sliding motion happens. The ROIs show that the boundary
border (indicated by the arrows) has been better kept with
sliding consideration. Moreover, the vein (labeled by the
yellow dotted line) is more accurately reconstructed with the
sliding motion consideration. Figures 4(g)–4(i) show the ROIs

Medical Physics, Vol. 43, No. 10, October 2016



5460 Dang et al.: Simultaneous 4D-CBCT reconstruction 5460

T IV. RE and Dice coefficient comparison for patient study.

Reconstruction FDK TV SMEIR Sliding result

RE (%) 30.45 9.31 7.69 7.61
Dice coefficient 0.903 0.939 0.953 0.985

around the lung and rib cage. These results further demonstrate
that with sliding consideration [Fig. 4(g)], the rib positions
match better to the ground truth [Fig. 4(i)] than that in the
image without consideration sliding motion [Fig. 4(h)]. The
ROI’s RE quantification results are also listed in Table I, with
6.7% for image with sliding motion consideration, and 8.5%
for image without sliding consideration.

3.B.1. Dice coefficient

With the extracted lung boundaries from the ground truth
and those obtained with/without sliding constraint, the 4D
Dice coefficients with and without sliding constraint are
summarized in Table II. The results illustrate that the lung
boundary similarity obtained with sliding consideration is
consistently larger than that without this consideration. The
average Dice coefficient with sliding consideration was 0.988
compared with that of 0.955 without taking sliding into
consideration. This indicates that the sliding consideration
improved the organ contouring accuracy.

3.B.2. Motion trajectory

The 4D NCAT motion trajectory along the z-direction is ex-
tracted from the heart-to-lung sliding edge in the coronal views
(see Fig. 4). The positions of front edges (labeled by the dotted
line in the ROI in Fig. 4) are detected from a binary image by
setting a uniform threshold on each phase ROI. The detected
front edge positions are used to plot the motion trajectory.
Figure 5 indicates that the trajectory extracted with sliding
consideration matches with the ground truth much better than
that without this consideration. Especially at phases with

large motion such as 30%, 40%, and 50% phases, isotropic
smoothing leads to obvious improper boundary smoothing.
Table III further quantified the trajectory errors to illustrate
how sliding consideration helped to improve the motion
tracking accuracy. The errors with sliding consideration for
each phase were all less than 1 mm, while the errors obtained
without this consideration had much larger fluctuation. The
RMSE and MaxE for all the 10 phases with sliding motion
were 0.47 and 0.83 mm, respectively. These errors increased
to 3.48 and 7.32 mm when the sliding motion was not taken
into consideration during motion estimation.

3.C. Patient study

Projections of two lung cancer patients were used to eval-
uate the proposed sliding constraint reconstruction algorithm.
Under an IRB approved protocol (MD Anderson with IRB#
00-202), the patients were scanned with full fan mode for
4–6 min to acquire around 2000 projections, and these projec-
tions were sorted into 10 phases. When the number of average
projections per phase was around 200, TV minimization recon-
struction was performed to reconstruct the high quality 4D
images. However, in a routine CBCT scan, the acquisition time
is 1–2 min and the number of average projections per phase
is about 60 after phase grouping. Our goal is to enhance 4D-
CBCT acquired from a routine CBCT scan (1–2 min), where
projections are undersampled using conventional reconstruc-
tion algorithms. The patient data obtained with long acquisition
time offer the opportunity to reconstruct high quality reference
images from adequate projections at each phase. These high-
quality images were then considered as patient reference to
evaluate the images reconstructed by SMEIR from downsam-
pled projections (with the number of averaged projections per
phase 40) to simulate a routine 1–2 min CBCT scan.

We then performed FDK, TV, SMEIR, and our sliding
considered reconstruction for quantitative comparisons. Cor-
responding results are shown in Fig. 6. Figures 6(a)–6(c)
and 6(g) show the sagittal view of the reconstructed results

F. 8. Results (coronal views) for the second patient. (a) without sliding consideration; (b) with sliding consideration; (c) reference image; (d) zoomed ROI in
(a); (e) zoomed ROI in (b); and (f) zoomed ROI in (c). (See color online version.)
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F. 9. Patient result profile comparison for results obtained with and without
sliding consideration.

of the 1st patient via FDK, TV, SMEIR, and our sliding
considered method, respectively. Figure 6(h) is the reference
image reconstructed by TV from fully sampled projections.
From Figs. 6(d)–6(f), 6(i), and 6(j) show the corresponding
coronal view. In the sagittal views, the diaphragm boundary
(labeled by the red ellipse) obtained via SMEIR method is
slightly blurred if sliding is not considered. Moreover, in the
coronal views of the lung boundary-to-heart corner (labeled
by an arrow), the sliding results have the clearest boundary
compared with the reference. Figure 7 shows a zoomed region
around the lung–rib cage boundary for the 1st patient. The top
edge of the rib (indicated by an arrow) in the reconstructed
image with sliding motion modeling [Fig. 7(b)] is closer to the
reference [Fig. 7(a)] than that in the image without considering
sliding motion [Fig. 7(c)]. This example further demonstrates
the benefit of sliding motion modeling.

Table IV summarizes the RE of reconstructed images and
the Dice coefficient of the lung boundary. The RE and the
Dice coefficient indicate that sliding compensation achieves
better reconstruction and lung contouring results.

We continued to test our algorithm on the 2nd patient data.
The results are shown in Figs. 8 and 9. Figure 8 shows the
coronal views. The zoomed ROIs for the heart edge are also
shown in Figs. 8(d)–8(f). The arrows in the yellow ROIs show
that heart edge is better kept in Fig. 8(d) than that in Fig. 8(e)
as compared to the reference Fig. 8(f). We plot the profiles
along the dotted lines in ROIs 1, 2, and 3. And the results are
shown in Fig. 9. The profile comparison results indicate that
the sliding based cross boundary profile is much closer to the
reference profile compared with SMEIR based profile.

4. DISCUSSION AND CONCLUSION

In this work, we proposed a sliding motion-compensated
4D-CBCT reconstruction algorithm by modifying the DVF
smoothing at the organ boundaries. Previous publications16–19

on sliding motion modeling mainly focused on the deformable

image registration framework for two 3D volumetric images.
In our work, we take sliding motion modeling into 4D-CBCT
image reconstruction, where the DVF is estimated from 2D
projections directly. We validated our algorithm with a digital
sliding tube phantom, NCAT phantom, and two lung cancer
patients.

In the proposed strategy, segmentation of lung is needed
in order to identify the boundary region between lung
and thoracic cage. Thus, the segmentation accuracy will
influence the accuracy of motion estimation as well as the
final reconstructed image. It is noted that the segmentation
accuracy will also affect the Dice coefficient calculation. The
lung segmentation was performed by a thresholding-based
algorithm. For the NCAT phantom, it is easy to find a suitable
threshold value for accurate segmentation of the lung due to its
simple structure. The well extracted lung boundary facilitates
the corresponding normal vectors to match well with the
lung surface, and the sliding motion can be well corrected.
Therefore the NCAT phantom based results is good evidence
to demonstrate our method’s efficiency. While for the patient
data with abundant noise and artifacts, it is not straightforward
to find a good threshold that is capable to ideally extract the
lung boundary everywhere in the image due to its complex
structure. Careful tuning of the threshold in a trial-and-error
style was performed to decide the threshold for all the 10
phase lung boundaries in this work.

As our reconstruction is a iterative process, the correspond-
ing lung should be also segmented with each iteration to
update the lung surface. However, this breaks the automatic
iterative reconstruction too frequently as currently we are
using a semi-automatic segmentation. Practically, we only
updated the lung surface every 5 reconstruction iterations
instead of every 1 iteration as the change of boundary is not
dramatic between the two successive iterations. As shown in
Fig. 10, there is no visible difference of lung boundaries when
segmentation is performed every 5 iterations or 1 iteration.
Therefore, for practical consideration, we performed the lung
segmentation every 5 reconstruction iterations in this work.

Compared to the NCAT phantom results, our patient results
only show limited improvements. One possible reason is
that accurate sliding modeling depends on accurate lung
boundary segmentation. Compared to the phantoms, it is more
challenging to obtain accurate segmentation in patient CBCT
due to its complex structure and shading artifacts. In this work,
a thresholding-based method was used to segment the lung.
While the threshold was fine-tuned, the accuracy for lung
segmentation was still limited. More advanced segmentation
algorithms28,29 can be employed to improve the accuracy of
lung boundary segmentation. Another possible reason is that
the sliding motion between lung and thoracic cage is small for
the patients studied in this work. While the range of diaphragm
motion was 8 and 14 mm for patients 1 and 2, respectively,
the motion difference between the corner of diaphragm and
adjacent thoracic cage (i.e., sliding motion) was only 3 and
5 mm for patients 1 and 2, respectively.

Compared to the original SMEIR algorithm without model-
ing sliding motion, the requirement of lung segmentation in
the proposed algorithm will compromise the clinical workflow
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F. 10. Lung segmentation accuracy comparison: contour updating every 1 reconstruction iteration vs every 5 reconstruction iterations. (a) with updating by
every 1 reconstruction iteration, the contour obtained after 5 reconstruction iterations; (b) with updating by every 5 reconstruction iterations, the contour obtained
after 5 reconstruction iterations; (c) contour difference between (a) and (b); (d) with updating by every 1 reconstruction iteration, the contour obtained after 10
reconstruction iterations; (e) with updating by every 5 reconstruction iteration, the contour obtained after 10 reconstruction iterations; (f) contour difference
between (d) and (e).

and efficiency. More advanced automatic segmentation algo-
rithms28,29 need to be adopted to improve the segmentation
accuracy and workflow efficiency. Furthermore, due to the
modified design of the penalty term, the optimization for
minimizing Eq. (3) is also affected. While the convergence
of the presented algorithm is similar to the original SMEIR
algorithm where 200 total iterations in the DVF estimation
are adequate to achieve good convergence, longer computation
time is needed in the present algorithm. The computation time
for one iteration during the DVF optimization also increases
from 22 s of the original SMEIR to 25 s for the presented
algorithm to reconstruct an image of size 200× 200× 150.
Currently, DVFs for each phase were estimated sequentially
and we partially implemented the algorithm on a GPU card
(Geforce GTX 980, NVIDA, Santa Clara, CA). Only the
forward projection at one view angle was simultaneously
calculated on GPU. The computation efficiency can be
improved by (1) full GPU implementation and (2) running
DVF estimation for different phases in a parallel fashion on
multiple GPU cards.

In summary, we have proposed a sliding motion-compen-
sated scheme for accurate 4D-CBCT reconstruction. The
segmented lung boundary’s normal vectors are capable to
guide the adaptive local DVF smoothing. Hence lung’s
local anisotropic sliding motion is capable to be captured,
leading to more accurate reconstruction and motion tracking.
While further patient studies are needed, this algorithm
could improve the performance of 4D-CBCT in image-guided
radiation therapy.
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