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Abstract

Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects,
including craniofacial dysmorphology and cognitive impairments. It affects *1 in 100 children born in the United
States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the
mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-
induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine
ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and be-
havioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced
defects, yet little is understood about these gene–ethanol interactions. With a high degree of genetic amenability,
zebrafish is at the forefront of identifying and characterizing the gene–ethanol interactions that underlie FASD.
Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to
studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.

Fetal Alcohol Spectrum Disorders:
A Debilitating Disease for Patients and Society

Ethanol (alcohol, ethyl alcohol) is the most com-
monly consumed and abused drug. In the 1700s, when the

mass distillation of alcohol made large quantities of potent
alcohol readily available to the masses, alcohol abuse became
rampant in areas. At this time, some noted that the offspring of
women who consumed large amounts of distilled alcohol were
often small and feeble with a higher rate of infant mortality.1

Yet, two centuries would pass before the detrimental effects of
alcohol on embryonic and fetal development were appreciated.

The first documented clinical description of ethanol terato-
genesis in humans came in 1968, when a French physician noted
a set of abnormal features in children who were exposed to
alcohol before birth.2 Five years later, the terminology Fetal
Alcohol Syndrome (FAS) was coined to describe a character-
istic set of birth defects in children prenatally exposed to alco-
hol.3 In addition to verifying maternal alcohol consumption
during pregnancy, individuals must meet three criteria: growth
retardation, craniofacial malformations, and central nervous
system (CNS) abnormalities to be diagnosed with FAS.4 While
FAS is the most severe outcome of prenatal alcohol exposure, it
has become clear that it is not the only outcome.

Since 1973, it has been found that prenatal ethanol exposure
causes wide-ranging deficits with similarly wide-ranging ter-
minology. Newer terms include partial FAS, Alcohol-Related
Birth Defects, and Alcohol-Related Neurodevelopment Dis-

orders.4 These terms differ based on the type of deficits in-
volved (physical abnormalities versus CNS abnormalities) and
exemplify the variation that can result from prenatal ethanol
exposure.5 The terminology Fetal Alcohol Spectrum Disorders
(FASD) has been coined to define any defect caused by em-
bryonic or prenatal alcohol exposure.1,6–9

Due to the high prevalence of drinking, FASD is a wide-
spread disease in many ‘‘Westernized’’ nations.8 In the United
States alone, amounts of ethanol consumption during preg-
nancy vary greatly. For example, Flak et al.10 found that from
1991 to 2005, 12% of pregnant women reported consuming at
least a single drink of ethanol over the course of the previous
30 days. A study by Ethen et al.11 stated that during a similar
period, 1997–2002, more than 25% of pregnant women re-
ported drinking alcohol. This is likely an underestimate be-
cause more than 50% of women of childbearing age in the
United States consume ethanol and approximately half of
pregnancies are unplanned10 Based on these estimates, it is
possible that 1 in 100 births in the United States could result in
an FASD diagnosis.

More recently, data gathered from South Africa, Italy, and the
United States suggest FASD prevalence rates to range between
2% and 5%.8 These rates may still be underestimates since
pediatricians fail to frequently recognize FASD. Achieving re-
liable rates of FASD will require a detailed understanding of the
many defects that can be caused by embryonic alcohol exposure.

Among the most common and well-researched defects
associated with FASD are facial and neural defects. As noted
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earlier, facial and neural defects are required for a diagnosis
of FAS. In addition, maternal alcohol consumption is a risk
factor for orofacial clefting.12 Numerous structural defects of
the brain are found in children with FASD. This includes
changes to the brain shape and size, with individuals with
FAS showing a reduction in total size.9 In addition, prenatal
ethanol exposure has also been shown to reduce the size of
the cerebellum and to cause structural changes to the corpus
collosum.9,13

Furthermore, prenatal alcohol exposure is also the leading
cause of preventable intellectual disability,7 impairing both
cognition and behavior.9 Individuals with FASD suffer from
learning and memory impairments.14 Individuals with FASD
also frequently fail to consider the consequences of their
actions, are unresponsive to social cues, or lack the appro-
priate initiative to form and maintain reciprocal friend-
ships.15,16 The inability to attain appropriate social skills can
lead to a lack of social relationships, employment problems,
trouble with the law, inappropriate sexual behavior, suicide,
and depression.17,18

Anxiety, low self-esteem and relationship, and economic
hardships are all also associated with craniofacial mal-
formations adding to the burden of prenatal ethanol expo-
sure.19 Thus, FASD is one of, if not the most, prevalent birth
defects, leaving individuals with lifelong disabilities. Our
understanding of the causes of the defects associated with
FASD will require intensive research in both humans and
animal model organisms.

Models of FASD: Return of the Fish

Despite the inklings in the 1700s, it was not until this past
century that alcohol was clearly demonstrated to be a te-
ratogen. Perhaps the first evidence of this comes from a fish
model in 1910, where ethanol was shown to disrupt devel-
opment of several organ systems, including the brain, face,
and eyes of Fundulus heteroclitus.20 Despite this initial work,
aquatic models of FASD have lagged behind mammalian and
avian models in the latter half of the century. Much has been
learned from these other model systems and is reviewed
elsewhere.21–24 For the purpose of this review, we focus
primarily on the contributions of fish systems, particularly
zebrafish, to our understanding of FASD.

The zebrafish became a major model organism in the early
1980s, as a small group of researchers, led notably by George
Streisinger and Charles Kimmel, sought a model organism in
which to analyze genetics and morphogenesis during verte-
brate development (Reviewed by Grunwald and Eisen25).
Zebrafish was chosen, in part, due to their external fertiliza-
tion and high fecundity, as well as the optic clarity of the
embryos. Since then, many tools have been generated for
transgenesis and genetic manipulation in zebrafish. As a
disease of development, these very same characteristics and
tools make zebrafish an excellent model of FASD.

One of the challenges of establishing zebrafish as a model
system for FASD was determining physiologically relevant
dosages of ethanol. As detailed below, dosage regimens have
varied widely, from 0.12% to 10%, and those studies that
attempted to quantify tissue levels of ethanol also varied
widely in conclusion. Recently, a consensus has been reached
by groups of individual researchers using differing tech-
niques. Using enzyme-based assays, two separate laborato-

ries have reported the tissue levels of ethanol to be *31%–
35% of the concentration of ethanol in the media.26,27 Using
an Analox assay, a separate group approximated the tissue
levels to be 35% of the media levels.28 Our group used
Headspace Gas Chromatography and found tissue levels to be
*24%–37%, depending upon the age of the embryo, with
older embryos having lower tissue levels.29 One possible
reason for the early disagreement in tissue levels of ethanol
may be the very rapid rate at which ethanol levels equili-
brate,28–31 and therefore, extended or multiple washes would
result in an underestimation of the ethanol concentration.
Collectively, these studies indicate that the use of ethanol
concentrations at or above 2% in the media is likely to result
in suprapharmacological levels of ethanol.

Other potential variables that have been studied do not ap-
pear to have a substantial effect on tissue levels of ethanol.
Genetic background (AB, Tu, or fli1:EGFP) did not appear to
have a substantial impact on the tissue levels of ethanol.29

Specifically, consistent but nonsignificant effects were ob-
served with AB appearing to accumulate ethanol to a lower
extent than the other backgrounds.29 Similarly, the chorion
does not appear to be a major barrier to ethanol.28,29,32

However, the developing embryo can show varying etha-
nol sensitivities based on genetic backgrounds (Ekkwill, AB,
or Tu).33 Interestingly, the tissues most affected by ethanol
exposure varied among the different backgrounds with Tu
having the lowest survival rate, but being the most resistant to
craniofacial malformations. Work in different adult zebrafish
backgrounds (wild-type AB, wild-type long fin, wild-type
short fin, or Leopard danio) demonstrated that the back-
grounds exhibited different sensitivities to ethanol, while
tissue levels of ethanol were consistent across the back-
grounds.34–37 In addition, the outbred 5D background was
also sensitive to ethanol and this could be phenocopied by
knockdown of two different microRNAs.38 Thus, it appears
that the wide range of genetic and transgenic resources
available for zebrafish researchers will be readily and easily
applicable to studies of FASD.

Zebrafish Models of FASD

FASD is highly variable and extensive research has gone
into understanding the many abnormalities in ethanol terato-
genesis. Some of the more varied defects in FASD include
cardiac and eye defects. Moreover, the embryo appears most
sensitive during gastrulation when the progenitors of the CNS
and the face are being generated. Therefore, disrupting em-
bryonic development during these times can lead to the cardinal
features of FAS, growth retardation, facial dysmorphologies,
and CNS abnormalities.4 With or without these structural de-
fects, individuals with FASD also have behavioral and/or
cognitive impairments. Zebrafish have modeled these varied
and cardinal phenotypes associated with FASD.

Cardiac and eye defects are some of the most widely re-
ported defects in ethanol-treated zebrafish. For instance,
0.5% ethanol can cause significant increases in the occur-
rence of cardiac edema, reduction in heart volume, and re-
duced ventricular thickness.39 Slightly higher doses of 100 or
150 mM (0.6%–0.9%) can disrupt cardiac precursor migra-
tion, heart looping, and cardiac gene expression.40 The zeb-
rafish inner ear is disrupted in embryos treated with 2%
ethanol.41 Using the lateral line as a model of hair cells, Uribe
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et al.42 demonstrated a reduction in sensory hair cells in
embryos treated with 1% ethanol. Eye diameter and visual
acuity are reduced in embryos treated with 1.5% ethanol.43,44

A separate study suggested that the eye diameter was sensi-
tive to even 0.4% ethanol.45 The difference between these
findings is unclear, but may relate to genetic background as
Dlugos and Rabin45 used an outbred background and Bilotta
et al.43,44 used an unspecified background.

The earliest use of zebrafish in FASD research focused on
structural defects caused by ethanol. In modeling the similari-
ties of holoprosencephaly and some children with FASD,
Blader and Strähle32 discovered that treatment with 2.4% eth-
anol over a short time window, from dome to 30% epiboly,
resulted in cyclopic phenotypes similar to those observed in
wnt11 mutants, in which Wnt/PCP signaling is disrupted. The
phenotype observed strongly suggested that ethanol was dis-
rupting migration of the prechordal plate mesoderm during
gastrulation. Likewise, treatment with 3% ethanol at similar
times caused a split body axis, often associated with cyclopia,
and these defects associated with altered gastrulation cell
movements.26

Recent findings support the conclusion that ethanol alters
gastrulation cell movements. Genetic background plays a
significant role in the susceptibility to ethanol-induced cyclo-
pia, with the EK background displaying cyclopia in even 1%
ethanol.46 The Wnt/PCP pathway is critically involved in
gastrulation movements and genetically interacts with 1%
ethanol to produce cyclopia in vangl2 mutants,47 which also
have disrupted Wnt/PCP signaling. In addition, in the highly
ethanol-sensitive TL strain, 0.6% ethanol has been shown to
alter the movement of cells during gastrulation.40 These zeb-
rafish findings are consistent with characterizations in Xeno-
pus showing that ethanol exposure disrupts gastrulation.48

These ethanol-induced defects in gastrulation can result
in general growth retardation in zebrafish. Loucks and
Ahlgren49 demonstrated that zebrafish exposed to 1% or
1.5% ethanol had small, but significant reductions to the
overall size of the embryo. The effect of ethanol was more
substantial as higher concentrations of ethanol were tested50

and Ali et al.51 found that a 1-h pulse of 10% ethanol resulted
in smaller larvae with numerous structural defects. However,
given the kinetics and partitioning of ethanol, discussed
earlier, this treatment is likely to be far outside the physio-
logical norms in humans.

Different morphometric analyses have found that an ethanol
concentration of 1.5% or less results in changes to specific
facial measurements, presumably due to elevated levels of cell
death in the neural crest progenitors of the facial skeleton.28,52

However, in our analyses discussed below, we have found that
1% ethanol merely sensitizes embryos to craniofacial de-
fects,53 differences that may be due to genetic background.

Due to the large number of transgenic backgrounds avail-
able, new insights are being gained into how ethanol disrupts
neural development in zebrafish. Exposure to 1% ethanol re-
duces the number of elavl3-positive neural progenitors54 and
100 mM (0.6%) increases the branching of secondary motor
neurons and decreased the diameter of Mauthner axons.55 In
addition, Zhang et al.56 reported that 0.5% ethanol exposure
leads to disruption of the mid-hindbrain boundary. These and
other structural brain abnormalities have been found to have an
adverse relationship with cognitive function and behavior in
the clinical population.13,57 More recently, the zebrafish has

been shown to model some of the behavioral and cognitive
deficits of FASD.

Embryonic ethanol exposure impairs social behavior in
adult zebrafish.58–62 Zebrafish form social groups called
shoals.63 Research has demonstrated that a single 2-h expo-
sure to 1% ethanol (v/v) at 24 hours postfertilization (hpf) can
impair an individual’s response to a virtual shoal and between
groups of live zebrafish.58,59,61,62 These social impairments
are present in adult fish ranging in age from 4 to 24
months.58,59,61,62 Parker et al.60 examined the effect a 0.12%
developmental dose of ethanol (48 to 216 hpf—9 days) had
on individual and group shoaling behavior in 4-month-old
zebrafish. They found both the individual’s response to a
social cue (five live zebrafish) and group shoaling were im-
paired by embryonic ethanol exposure in adult zebrafish.60

The social impairments of FASD are not the only CNS im-
pairments zebrafish can be used to model.

Individuals with FASD are known to have deficits in
learning and memory14 and zebrafish have been shown to re-
capitulate some of these deficits.52,64,65 Associative learning in
adult zebrafish has been shown to be impaired by a 2-h ethanol
exposure starting at 16 hpf.64 Carvan et al.52 found adult
zebrafish that were exposed from 0 to 24 hpf to 0.06% and
0.18% ethanol took significantly more trial to predict the lo-
cation of a food reward. However, Bailey et al.66 found that
fish exposed to either 1% or 3% ethanol from either 8 to 10 hpf
or 24 to 27 hpf did not have impaired spatial discrimination.
Taken together, these results demonstrate that not only can
zebrafish be used to model the learning impairments of FASD
but also to show the variability of embryonic ethanol exposure.

Embryonic ethanol exposure increases maladaptive behav-
iors in zebrafish.60,66,67 Parker et al.60 reported that exposure to
0.12% ethanol from 48 to 216 hpf caused adult zebrafish to
spend significantly more time at the bottom of the tank com-
pared to untreated controls. This behavior is interpreted as
elevated anxiety. However, spending too much time at the top
of the water column can also be interpreted as a maladaptive
behavior.66,68 Exposure to 3% ethanol between 24 to 27 hpf
leads to a significant time spent in the top of the tank, sug-
gesting the acquisition of maladaptive behaviors.66 The ex-
posure regimens across these studies differ substantially,
suggesting that the timing, duration and length of exposure
may contribute to the variability in behavioral outcomes.

FASD affects individuals from childhood and throughout
adulthood.15 More recently, the effects of embryonic ethanol
exposure on larval behavior have been examined. Zebrafish
larvae demonstrate a rapid escape response/startle response
known as a C-start.69 Shan et al.55 exposed embryos from 5.25
to 10.75 hpf to ethanol concentration of 0%, 0.006%, 0.3%, and
0.6%, and measured C-starts among other criteria in 2-day-old
larvae. They found that ethanol-treated fish showed an increase
in abnormal C-starts and tail speed. Relatively low doses of
ethanol have been shown to induce hyperactivity in larval and
adult zebrafish, while higher doses have been shown to reduce
activity.70,71 Thus, ethanol concentration is an important vari-
able in the effect of ethanol on locomotion.

Insights into the Mechanisms of Ethanol
Teratogenicity from Zebrafish

Ethanol is a small molecule that will likely have many
pleiotropic effects. Thus, there is unlikely to be a single
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mechanism by which ethanol teratogenicity proceeds. Data
from zebrafish and other model organisms support this, with
several mechanisms that appear conserved across species be-
ing demonstrated. Ethanol-induced neural crest cell apoptosis
is a cause of facial defects in FASD. In both chicken and
zebrafish, Flentke et al. have shown that this ethanol-induced
death is calcium and CaMKII dependent.28,72 Collectively,
these findings suggest that the mechanisms of facial deformity
in FASD are conserved across vertebrates.

Across animal species, degradation of ethanol is a multi-
step enzymatic process, with each step a potential target of
ethanol sensitivity. Ethanol can also be degraded by re-
tinaldehyde dehydrogenases, which are necessary to con-
vert retinal to retinoic acid. Retinoic acid is critical for the
development of many organ systems, leading to the hypoth-
esis that ethanol is a competitive inhibitor of retinoic acid
synthesis.73,74 However, there is disagreement regarding how
ethanol may impact retinoic acid signaling. Napoli75 showed
that ethanol either upregulates or has no effect on retinoic
acid signaling, depending on tissue context. This work
demonstrates that retinoic acid has variable effects on ethanol
teratogenesis.

Specific to zebrafish, retinoic acid supplementation re-
stores proper facial development in fish treated with 100 mM
ethanol (0.6%).76 However, retinoic acid supplementation
fails to rescue microphthalmia in ethanol-exposed zebra-
fish.77 It is likely that the involvement of retinoic acid in
ethanol teratogenicity is cell-type specific, as Zhang et al.
also found retinoic acid failed to rescue eye development but
did restore mid-hindbrain development.56 The precise
mechanism by which retinoic acid may be involved in etha-
nol teratogenesis is unknown but it may relate to cross talk
with another signaling pathway, Sonic hedgehog (Shh),56

which is an indirect target of retinoic acid signaling.
Due to the similarity in phenotype of holoprosencephaly

and FAS, impairment of the Shh pathway has been postulated
as a cause of FAS.21 Loss of Shh signaling results in holo-
prosencephaly, which consists of neural tube defects, loss of
midline craniofacial structures, and neural crest-specific cell
death.78 Work in chicken, mouse, and zebrafish has shown
that ethanol exposure reduces Shh signaling leading to in-
creased CNCC death, as well as disrupted midline and eye
development.30,79–82 These ethanol-induced phenotypes can
be rescued by injection of shh mRNA.50 In addition to altering
retinoic acid signaling, one alternative (or additional) mech-
anism by which ethanol attenuates Shh is the disruption of
cholesterol modification of Shh needed for proper signaling,
as has been found in zebrafish.82 Further support for an in-
volvement of Shh signaling in ethanol teratogenesis comes
from genetic analyses (as we discuss in the next section).

Identifying Gene–Ethanol Interactions:
The Way of the Fish

There is strong and growing evidence for genetic risk
factors for FASD. Human twin studies show that monozy-
gotic twins are 100% concordant for FASD, while dizygotic
twins are only 64% concordant.83 Studies in mice, chick, and
zebrafish show that different strains have different sensitiv-
ities to ethanol-induced defects.33,34,84–86 However, direct
analysis of the genetic loci regulating sensitivity to ethanol-
induced birth defects is still in its infancy. Only a handful of

gene–ethanol interactions have been identified to date. A
detailed discussion of these interactions can be found else-
where,87,88 whereas here, we focus on findings in zebrafish.

The many genetic tools available in zebrafish have proven
successful in expanding our understanding of developmental
biology. While they have recently come under scrutiny,89 well-
designed experiments using morpholinos90 can speed genetic
analyses. Tilling projects, such as the Zebrafish Mutation Pro-
ject, have generated mutations in approximately 60% of the
predicted coding genes in zebrafish. Genome editing techniques,
such as CRISPR/Cas9, making it possible to directly target
nearly any gene of interest.91 Furthermore, forward genetic
screens are a mainstay of the zebrafish community, and we have
begun to take advantage of this technique to identify ethanol-
sensitive loci (our unpublished data). These tools are readily
applicable to studies of ethanol teratogenicity and have already
begun to inform our understanding of FASD.

Some of the early evidence for gene–ethanol interactions
in model organisms came from studies of the Shh pathway.
Using morpholino oligonucleotides against agrin, coding for
a membrane protein that mediates Shh signaling, Zhang et al.
found that ethanol genetically interacted with the Shh path-
way during eye development.26 Expanding on these studies,
the same group has shown that shha interacts with ethanol
disrupting GABAergic and glutamatergic neural develop-
ment.30 An interaction between ethanol and Shh pathway
members has been independently identified in mouse.92–94

Collectively, these studies provide strong evidence for an
evolutionarily conserved interaction between ethanol and the
Shh pathway.

Most studies of gene–ethanol interactions have been guided
by FASD phenotypes. However, the large number of readily
available zebrafish mutants allows for shelf screening to iden-
tify potentially unexpected gene–ethanol interactions. Initially,
we screened five mutant lines, smoothened (a Shh pathway
member), cyp26b1 (RA catabolizing enzyme), smad5 (bone
morphogenetic protein pathway member), gata3 (transcription
factor), and pdgfra (platelet-derived growth factor receptor) for
gene–ethanol interactions in craniofacial development. Of
these, only pdgfra interacted with ethanol and this interaction
was highly synergistic.53

In zebrafish, mice, and human, loss of pdgfra results in
cleft palate, and in model organisms, this has been shown to
be due to disrupted neural crest cell migration.95–98 When
treated with ethanol, pdgfra mutant zebrafish have massive
reductions of the entire craniofacial skeleton.53 In addition,
over two-thirds of pdgfra heterozygous embryos had cra-
niofacial defects. These ethanol-induced defects proved to be
due to elevated cell death. Pdgfra acts through the PI3K/
mTOR pathway to regulate cell survival, proliferation, and
growth,99,100 and we found that this pathway mediates the
pdgfra–ethanol interaction.53

Pdgfra function is conserved among zebrafish, mice, and
human94,96,97 and, in human, we identified single-nucleotide
polymorphisms in PDGFRA and PDGFRB that significantly
associated ethanol-induced changes in outer canthal width
and midfacial depth, respectively.53 This suggests that
growth factor signaling as a target of ethanol teratogenesis
and that studies in animal models can predict gene–ethanol
interactions in human FASD.

We built upon this initial shelf screen using zebrafish mu-
tants available from the Zebrafish International Resource
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Center (ZIRC). We screened 20 mutant lines, analyzing for in-
creases in cell death, deficits in neural development, and general
growth retardation in addition to craniofacial malformations.
From this screen, we identified five ethanol-sensitive mutant
lines, nearly doubling the number of known gene–ethanol in-
teractions.47 Spanning a wide range of cellular functions, the
genes include mars, a methionine-tRNA synthetase necessary
for protein translation; cell cycle components, hinfp and plk1;
foxi1, a transcription factor important in craniofacial develop-
ment; and the cell polarity gene, vangl2.

Embryos lacking mars develop mild viscerocranial defects
that are exacerbated in ethanol. In addition, the size of the eye
is reduced. Ethanol treatment results in exacerbation of the
microcephaly and microphthalmia phenotypes, as well as
loss of the lower jaw in hinfp mutants. Embryos lacking plk1
lose the entire viscerocranium as well as display defects to the
neurocranium. In addition, axonal projections are reduced,
and localized increase in cell death is observed. Ethanol
treatment leads to severe growth retardation, complete loss of
the craniofacial skeleton and axon projections, and extensive
cell death throughout the embryo. Necessary for develop-
ment of the posterior craniofacial elements, the hyosym-
plectic and ceratobranchials,101 foxi1–ethanol interactions
result in loss of these cartilage elements, mislocalized axon
projections, and reduced ear size.

Of these genes, vangl2 interacted most strongly with
ethanol. Developmentally, vangl2, is necessary for conver-
gent/extension of the body axis with loss resulting in a
shortened body axis and, at low incidence, synophthalmia.102

Ethanol exposure in mutants leads to loss of the posterior
viscerocranial elements, narrowing of the palate, and severe
synophthalmia, as well as disrupted axon projections. These
phenotypes were also observed in a small percentage of
heterozygotes. It remains to be seen if the vangl2 or any of the
other gene–ethanol interactions are conserved in humans.

Conclusions

FASD remains a significant problem in our society, im-
pacting on the lives of millions of people. Estimates place the
incidence of FASD at 10 in 1000 births, which still might be
an underestimate.103–106 Given that (1) more than 50% of
childbearing women report using ethanol,10 (2) nearly 50% of
pregnancies are unplanned,107,108 and (3) embryos are sensi-
tive to ethanol before a woman is typically aware of preg-
nancy, abstinence-based approaches are unlikely to eliminate
FASD. Thus, a complete understanding of the underpinnings
of FASD is critical to human health.

Animal studies have been invaluable in elucidating the
biochemical, molecular, and genetic events that lead to
FASD.21–23,109,110 Studies linking animal models with human
patients will be vital to advancing our understanding of FASD
and to identify potential therapeutic approaches to overcome
its catastrophic effects. Zebrafish is particularly well suited for
studying the pathology of FASD because of its high fecundity,
external fertilization, embryo transparency, rapid development
time, and genetic tractability. Due to the high degree of con-
servation of gene function across vertebrate species, studies
in zebrafish should greatly accelerate our understanding of
FASD.111–113 With its future bright, zebrafish is poised to
become one of the prominent model systems at the forefront
of FASD research.
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