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Abstract

Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades 

there have been major advances in understanding the biology of aging, and the development of 

nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting 

(IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences 

brain aging in many animal models and recent findings suggest that dietary interventions can 

influence brain health and dementia in older humans. The role of individual macronutrients in 

brain aging also has been studied, with conflicting results about the effects of dietary protein and 

carbohydrates. A new approach known as the Geometric Framework (GF) has been used to 

unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total 

energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate 

(LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal 

effect once macronutrients are taken into account. One of the primary purposes of this review is to 

explore the notion that macronutrients may have a more translational potential than CR and IF in 

humans, and therefore there is a pressing need to use GF to study the impact of diet on brain 

aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such 

studies might provide a new approach for dietary interventions for optimizing brain health and 

preventing dementia in older people.
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Old age is the leading risk factor for neurodegenerative disease. Targeting nutrient sensing 

pathways through calorie restriction (CR) and intermittent fasting (IF) have proven to be effective 

treatments to delay ageing, increase healthspan, and postpone the onset of neurodegeneration. 

Anti-ageing compounds and low-protein, high-carbohydrate (LPHC) diet ratios have improved 

lifespan but the effects on delaying symptoms of neurodegeneration are still not well understood.
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“Don’t dig your grave with your knife and fork.”

(English Proverb)s

1. Introduction

Old age is the major determinant of degenerative diseases of the brain that influence 

cognition including the various types of dementia (Mowszowski et al., 2010). There has 

been extensive research into these common diseases with a focus on establishing the 

etiology and developing therapies for their treatment and prevention (Partridge, 2014). This 

has generated profound insights into disease-specific cellular pathways, but the discovery of 

disease-modifying treatments has remained elusive. On the other hand, the relationships 

between aging biology of the brain and neurodegenerative diseases have been relatively 

understudied. In recent decades there have been major advances in the understanding of 

aging biology at the cellular and systemic levels, and the development of strategies that 

delay aging and the concomitant suite of age-related disorders and pathologies. In particular, 

there has been a concerted focus on the nutritional interventions that delay aging, especially 

calorie restriction (CR) and intermittent fasting (IF), and chemicals that act on the pathways 

that mediate the effects of nutrition on the aging process. More recent focus has been on 

altering dietary macronutrient ratios (Fat: F; Protein: P; Carbohydrate: C) and assessing the 

effects on lifespan and heathspan (Solon-Biet et al, 2014). Therefore, there is now the 

opportunity to consider whether those strategies that delay aging, and in particular 

macronutrient ratio modulation, might more generally impact brain aging and cognition, and 
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potentially provide novel approaches to preventing age-related neurodegenerative disorders 

such as dementia.

2. The aging brain

There is a continuum between normal aging and disease in terms of pathological and 

biochemical changes in many tissues. There are ongoing efforts to differentiate disease from 

normal brain aging in both qualitative and quantitative terms. Even so, there is general 

agreement that old age in both animals and humans is associated with changes in brain 

volume, microscopic morphology, neurotransmitters and various phenotypic measures of 

cognition and behavior. While such changes may not be severe enough to interfere 

substantially with activities of daily living, they can reduce performance and increase brain 

vulnerability to neurodegenerative disorders such as Alzheimer’s disease (AD) and 

Parkinson’s disease (PD) (Anderton, 2002).

Those features that are usually considered to be associated with aging rather than disease are 

summarized in Figure 1. In a non-pathological brain, it appears as if the most robust changes 

that take place are in the medial temporal lobe and prefrontal cortex, with an overall relative 

decrease in brain volume. The hippocampus and prefrontal cortex experience the most 

volume loss with age (Anderton, 2002).

It was previously thought that rapid deterioration in the extent of dendritic branching in 

apical and basilar dendrites takes place in the hippocampus (Brody, 1955). Now it is known 

that there is hippocampal and frontal cortex dendritic and synaptic stability when comparing 

middle aged to old subjects (Hanks and Flood, 1991). However, more robust changes take 

place in the prefrontal cortex, with reduced dendritic branching in the superficial cortical 

layer (Grill and Riddle, 2002). Given the critical role of dendritic branching patterns in 

higher cognitive function processes, this might contribute to the reduction in cognitive 

function that occurs during the aging process (Cubelos and Nieto, 2010).

Aged neurons in the hippocampus and prefrontal cortex have disruptions in calcium 

homeostasis, which may be secondary to an increased density of calcium channels 

(Anderton, 2002; Verkhratsky and Toescu, 1998). After depolarization, the neurons utilize 

potassium channels to repolarize and there is a brief after-hyperpolarization potential (AHP). 

The AHP in the hippocampus and prefrontal cortex is increased in amplitude in aged 

organisms, taking the neuron longer to reset to resting potential (Matthews et al., 2009). This 

coincides with a decrease in levels of brain derived neurotrophic factor (BDNF) which 

correlates with age-related cognitive deficits (Navarro-Martinez et al., 2015).

With aging, neuron-to-neuron communication in the hippocampus deteriorates which may 

be due to a dysregulation of genes that are responsible for synaptic protein synthesis (Ryan 

et al., 2015). This may partially account for cognitive deficits associated with aging. Indeed, 

a progressive loss of synapses has been observed in some regions of the aging human brain, 

with this commencing at about twenty years of age (Terry and Katzman, 2001). This is 

associated with increased inflammation and oxidative stress during later years (Johnson and 

Johnson, 2015).
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It should be noted that similar pathological features are evident in a normal aging brain 

when compared to a pathological brain (i.e., neurofibrillary tangles, senile plaques); 

however, these changes occur at a much faster rate in neurodegenerative conditions 

(Anderton, 1997). Transcriptome changes that take place in the aging human brain are 

similar to those that occur in the aging mouse brain, suggesting brain aging changes are 

conserved (Miller et al., 2010).

Age-related molecular and cellular changes in brain cells coincide with behavioral-cognitive 

changes, which have been observed in humans, monkeys, and rodents. The hippocampus and 

prefrontal cortex are heavily involved in spatial memory (Chersi and Burgess, 2015), and it 

is therefore not surprising that an increase in age coincides with a deterioration in spatial and 

associative memory (Weber et al., 2015). In addition to the hippocampus, the prefrontal 

cortex is crucially important for working memory, and is critical for high level cognitive and 

executive function (Stokes, 2015). It has been suggested that the deterioration of these two 

structures is largely responsible for the decline seen in cognitive function with age (West, 

1996).

3. Unraveling the relationships among calorie restriction, lifespan, 

healthspan, and cognitive health

Given there are consistent age-related changes in the brain, the question arises whether 

strategies that delay aging have any impact on brain aging. To date, the main interventions 

that delay aging are nutritional. The effects of nutrition on aging, health and lifespan have 

been recognized since the beginning of recorded history. Ancient philosophers and 

physicians like Galen, Plato, and Hippocrates realized that particular diets are beneficial for 

health and can add quality years to life (Schafer, 2005). Moreover it was recognized that 

restricting food intake can be beneficial for both health span and lifespan. Philippus 

Paracelcus (1493 – 1541), one of the three fathers of Western medicine, claimed that ‘fasting 

is the greatest remedy’ while the Venetian, Luigi Conaro (1466–1566) wrote ‘renew 

yourselves and fast’. The first scientific demonstration of the effects of food restriction on 

aging was by Clive McCay and colleagues in 1935. In this landmark study, Fischer rats were 

given fewer calories than their ad libitum-fed counterparts in order to delay growth, and they 

subsequently experienced longer mean and maximum life spans (McCay et al., 1935). This 

type of nutritional intervention, now called calorie restriction (CR) has been reported to 

increase lifespan and/or health and healthspan in many species, ranging from yeast to 

humans and is generally considered to be the primary experimental approach to delay aging 

in animal models (Everitt, 2010; Fontana and Partridge, 2015; Mercken et al., 2012; 

Nakagawa et al., 2012; Speakman and Mitchell, 2011).

The mechanisms for the effects of caloric restriction on aging have been extensively studied. 

The main focus of research has been the nutrient sensing pathways (mTOR, sirtuins, AMPK, 

IGF1/insulin) which respond to changes in circulating nutrients (amino acids, glucose) or 

intracellular metabolites that reflect cellular energy supplies (NAD+, AMP). These master 

switches regulate most of the cellular processes linked with aging including mitochondrial 

function, autophagy, oxidative stress, gene expression, and intracellular metabolism with 

Wahl et al. Page 4

Ageing Res Rev. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



downstream tissue-level effects such as inflammation and vascular pathology (Koubova and 

Guarente, 2003).

There are caveats related to the effects of CR. It has been argued that laboratory diet and 

conditions allow rodents to become obese (Mattson, 2014), thus accounting for the apparent 

metabolic benefits of CR. Genetic factors may have an impact on the outcomes of CR. In 

one meta-analysis (Swindell, 2012) of studies of CR in mice and rats from 1934 to 2011, it 

was concluded that not only is the effect of CR on lifespan less pronounced in mice 

compared to rats, but it can also shorten the lifespan in particular mouse strains, thus 

indicating a strong genetic component. Recently, a CR regimen implemented in Rhesus 
macaques at the National Institute on Aging (NIA) improved healthspan but did not improve 

survival outcomes (Mattison et al., 2012). This contrasted the results of a similar study 

completed at the Wisconsin National Primate Center where lifespan was increased (Colman 

et al., 2009). Although these two studies led to controversy surrounding the effectiveness of 

CR, it is likely that their different dietary components contributed to the results. Importantly, 

the control group of monkeys in the Wisconsin study was fed ad libitum, whereas the control 

group in the NIA study was fed two portioned meals daily; therefore, the body weights and 

fat mass of the control Wisconsin monkeys was significantly greater compared to the control 

NIA monkeys (Mattison et al., 2012).

Due to the positive effects that CR has on healthspan and lifespan, scientists have recently 

begun to unravel potential mechanisms by which CR positively affects brain health. One of 

the fundamental theories of how CR contributes to heightened brain function is that the brain 

may have evolved to function optimally when there is a moderate lack of food and therefore 

the individual must outwit competitors in the search for nutrients (Mattson, 2015; Mattson, 

2002). These challenges produce mild neuronal stress which engages signaling pathways 

that improve the ability of cells and organs to function optimally, and to resist age-related 

dysfunction and disease (Mattson, 2010, 2015).

Animal studies have shown that daily CR, intermittent fasting (IF), and alternate day fasting 

(ADF) not only modify the nutrient sensing pathways in the brain (Figure 2) but also 

increase synaptic plasticity, neurogenesis and neuroprotection (Fusco and Pani, 2013). CR 

and IF delay features of aging both on the microscopic and global levels (Pani, 2015). Some 

of the reported effects of CR and IF on the brain are summarized in Table 1.

CR and IF may enhance synaptic plasticity through an increase in BDNF with downstream 

effects on neuronal bioenergetics and protein synthesis (Zaptan et al, 2015). BDNF also 

plays a crucial role in neural precursor cells (NPC) which reside in the dentate gyrus of the 

hippocampus where they are critical to the formation of new neurons that integrate into the 

hippocampal circuitry and play roles in spatial pattern separation, a fundamental domain of 

learning and memory (Marosi and Mattson, 2014; Vivar and van Praag, 2013). It has been 

shown that IF increases the survival of newly generated neurons in the dentate gyrus of rats 

(Mattson et al., 2001). Interestingly, it has also been shown that CR increases levels of the 

nutrient-sensing protein FOXO3 which increases the production of NPC (Renault et al., 

2009). It is knows that CR decreases levels of circulating IGF-1, which is interesting 

considering IGF-1 plays important roles in neurogenesis and synaptic plasticity. The 
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mechanisms. Whilst a beneficial effect of CR on neurogenesis has been demonstrated in 

rodents, the results are still uncertain in non-human primates and humans.

Neuroprotective effects are also seen through improved mitochondrial respiratory activity 

(Cerqueira et al., 2012). This is partly due to the up-regulation of PGC1α, which is a master 

regulator of mitochondrial respiration and contributes to mitochondrial biogenesis and 

detoxification (Liang and Ward, 2006). Furthermore, the upregulation of PGC1α modulates 

the expression of Nitric Oxide (NO) which has antioxidant and protective properties in the 

endothelium and may contribute to the preservation of brain microvasculature (Borniquel et 

al., 2006; Bernier et al. 2016). Additionally, PGC1α is critical for the maintenance of 

dendritic spines in the dentate gyrus of the hippocampus, highlighting its importance in 

memory functions (Cheng et al., 2012). Finally, it does appear that CR preserves 

hippocampal grey matter volume in Rhesus macaques (Willette et al., 2013) along with the 

preservation in grey matter volume of subcortical regions (Colman et al., 2009). There have 

not yet been studies on grey matter preservation with CR in humans.

Of particular interest has been the effect of CR on a family of proteins known as sirtuins that 

are implicated in healthspan and longevity (Braidy et al., 2015). CR has been shown to 

increase the activity of sirtuin 1 (SIRT1) thus resulting in lower inflammatory cytokine 

activity, and enhanced dendritic outgrowth and plasticity (Maalouf et al., 2009; Ng et al., 

2015). SIRT1 is of particular interest because it is highly expressed in the hippocampus. 

Recently it was shown that SIRT1 knockout mice displayed worse cognitive abilities and 

spatial learning (Michan et al., 2010). SIRT1 also plays a key role in the reduction of brain 

inflammation. Activation of SIRT1 via resveratrol administration attenuated microglial 

inflammation in a mouse cell line, possibly through the modulation of several transcription 

factors including the pro-inflammatory cytokine NF-κB (Li et al., 2015).

Cognitive improvements have been demonstrated in rodents maintained on CR or IF diets. 

Numerous studies have shown that CR improves spatial, associative, working, and long-term 

memory in rodents. This has been demonstrated in a range of cognitive-behavioral tests 

including the Barnes maze, Morris water maze, and novel object recognition tests 

(Brownlow et al., 2014; Kuhla et al., 2013). CR enhances dendritic spine density in 

hippocampal dentate granule neurons which is associated with increased levels of BDNF in 

the hippocampus (Stranahan et al., 2009). Additionally, it was recently shown that 30% CR 

did improve some aspects of working memory in non-human primates but only on certain 

tasks (Dal-Pan et al., 2011). In humans the effects of CR on cognition and memory have thus 

far yielded mixed results. For example, Martin et al. suggested that a 6 month, 25% CR 

regiment produced no beneficial effect on verbal and visual memory in humans (Martin et 

al., 2007), whilst Witte et al. showed that a 3 month 30% CR program did improve measures 

of verbal memory in elderly patients (Witte et al., 2009).

ADF, the most commonly studied type of IF in rodents, has been reported to improve 

glucose metabolism and cardiovascular risk factors, and can protect cells against oxidative 

and metabolic stress (Castello et al., 2010; Longo and Mattson, 2014). For example, ADF 

reduces resting heart rate and blood pressure, increases heart rate variability, and improves 

cardiovascular stress adaptation in rats (Wan et al., 2003; Mager et al., 2006). In addition, 
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the hearts of rats and mice maintained on an ADF diet exhibit resistance to ischemia-

reperfusion injury in a model of myocardial infarction (Ahmet et al., 2005; Godar et al., 

2014). IF also increases the resistance of neurons to dysfunction and degeneration in 

experimental models of a broad range of neurological disorders including: a focal ischemia-

reperfusion model of stroke in rats and mice (Yu and Mattson, 1999; Arumugam et al., 

2010); an excitotoxin model of epilepsy in rats (Bruce-Keller et al., 1999); mitochondrial 

toxin- and genetic mutation-based rat and mouse models of Huntington’s disease (Bruce-

Keller et al., 1999; Duan et al., 2003); a mouse model of Alzheimer’s disease (Halagappa et 

al., 2007); a mitochondrial toxin- and genetic mutation-based mouse models of Parkinson’s 

disease (Duan and Mattson, 1999; Griffioen et al., 2010); and a rat model of bacterial sepsis-

induced neuroinflammation (Vasconcelos et al., 2014). The cellular and molecular 

mechanisms by which ADF may counteract aging processes and protect against age-related 

disease are being elucidated and involve stimulation of the production of neurotrophic 

factors and antioxidant enzymes, enhancement of mitochondrial function and autophagy, and 

suppression of neuroinflammation (Mattson, 2012). Recent studies of ADF and two days/

week fasting in human subjects suggest that IF also improves multiple health indicators in 

humans (Johnson et al., 2007; Varady and Hellerstein, 2007; Harvie et al., 2010).

4. Macronutrients, aging and the aging brain

There is minimal translational opportunity for daily CR for most humans who have 

essentially unlimited access to food and cannot sustain the rigors of voluntary CR. While 

some IF eating patterns are more readily incorporated into modern lifestyles (Mattson et al., 

2015), most successful clinical trials have focused on obese or above-average body mass 

index (BMI) populations (reviewed in Seimon et al., 2015). It is also important to understand 

the effects of various dietary components on aging and disease risk (Sohal and Forster, 

2014). Such studies have tended to focus on altering individual macronutrients in the diet (P; 

C; and F) although more recent studies have examined the effects of the interactions between 

macronutrients, i.e., addressing the question of what is the optimum balance of 

macronutrients for lifespan in ad libitum fed animals. It should be noted that without 

appropriate controls, which are seldom implemented, CR cannot differentiate between the 

effects of reduced calorie intake versus reduced intake of each of the macronutrients. 

Additionally, many CR studies are designed to give the animals less food, and therefore are 

potentially confounded by the effects of IF (Simpson et al., 2015). Intermittent fasting 

regimes seem to generate similar benefits as CR yet do not necessarily involve reduced 

calorie intake over longer periods of time because of compensatory periods of overeating. 

This suggests that IF and even periods of hunger might be important for the effects of CR on 

aging.

In addition to studies of CR and the aging brain, there has been a considerable amount of 

research on the effects of micronutrients and pharmaceutical agents on age-related changes 

cognitive function and dementia in an attempt to find a single therapeutic agent (Barnes et 

al., 2014; Granzotto and Zatta, 2014; Meramat et al., 2015). However, the role of 

macronutrients in brain health and aging has more recently been investigated. Many studies 

have examined the relationship between macronutrients and cognitive function (Table 2). 

Most of these studies in lower organisms have focused on chronic high-fat diets which 
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exacerbate cognitive decline with aging (Beilharz et al., 2015). The roles that the 

macronutrients play in basic aspects of brain health and function have been relatively well 

established (Figure 3) (Jones et al., 2012; Solfrizzi et al., 2005; Solfrizzi et al., 2003a, b; Yon 

et al., 2013) and are described below. An understanding of the role of each of the 

macronutrients on brain function is important when designing a diet with a balance of 

macronutrients that optimizes brain health. It is not possible to alter the intake of a single 

macronutrient without influencing the intake of the other two macronutrients or the ratios 

between the macronutrients so it is likely that the optimum balance of macronutrients for 

healthy brain aging in an ad libitum fed diet will necessitate some trade offs between the 

beneficial and/or harmful effects of each macronutrient.

4.1 Protein and amino acids

One of the important roles of dietary protein is to provide a supply of amino acids for the 

production of neurotransmitters, such as catecholamines and serotonin (Bourre, 2006). Of 

particular interest is the essential amino acid tryptophan, which is a precursor to serotonin, a 

neurotransmitter involved in mood, information processing and cognitive function. For 

example, bioavailable tryptophan dietary supplements improved cognition in healthy 

middle-aged women (Mohajeri et al., 2015). Serotonin cannot cross the blood-brain barrier, 

however tryptophan crosses via specialized channels and is converted to 5- hydroxyl-

tryptophan (5-HTP), which then undergoes further conversion to serotonin (Shabbir et al., 

2013). Serotonin levels may decrease with age, possibly contributing to detrimental effects 

on cognitive function (Bourre, 2006; Melancon et al., 2014). In addition to serotonin other 

dietary-derived neurotransmitters such as glutamate, aspartate, and taurine are shuttled from 

surrounding astrocytes to neurons (Gundersen et al., 2015) and potentially could be 

influenced by dietary amino acids.

4.2 Fats

Dietary fat is an important macronutrient for the brain because it is necessary for the 

structure of neuronal membranes (Bourre, 2006). All neurons and organelles in the brain are 

rich in polyunsaturated omega 3 fatty acids (PUFA), which are of dietary origin. Of 

particular interest have been the omega-3 fatty acids, which make up about 30% of the 

membrane phospholipid composition in the brain. Whilst the majority of studies on rodents 

have found detrimental cognitive effects of a long-term high fat diet, a recent study reported 

that chronic high-fat diet treatment did not affect spatial memory in mice (Kesby et al., 

2015). Nonetheless, the omega-3 fatty acid docosahexaenoic acid (DHA) has generated 

considerable interest due to its role in providing membrane fluidity and synaptic integrity, 

which in turn can affect cognitive function (Sidhu et al., 2016). It also activates neuronal 

cascades that affect BDNF and insulin-like growth factor 1 (IGF-1), which further activates 

signaling cascades at the pre- and post-synaptic levels, thereby affecting long-term 

potentiation (LTP) and associated memory processes (Gomez-Pinilla, 2008). These effects 

have been shown in clinical studies, where MRI has confirmed that omega-3 fatty acids can 

contribute to brain protection during aging (Denis et al., 2015).
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4.3 Carbohydrates

Adequate carbohydrate consumption is essential for brain function, because glucose is the 

main energy source for the brain, and the brain requires about 25% of the total glucose 

energy consumed despite only compromising 2% of total body weight (Sokoloff, 1999). 

Measures of prefrontal cortex function increase transiently in response to glucose 

consumption (Kumar et al., 2015). Similarly, in aged rodent models complex cognitive 

behavioral tasks are rapidly improved post-glucose injection (Gold, 2005). On the other 

hand, it has been suggested that a chronic excess of glucose consumption can contribute to 

reduced synaptic plasticity and high levels of inflammation, which may contribute to 

cognitive deficits (Stefanidis and Watt, 2012). Interestingly, cognitive fatigue is common in 

older adults, which has been suggested to be partly due to a decline in neuronal glucose 

utilization with age (Galeffi et al., 2015), possibly as the result of reduced brain sensitivity to 

insulin (Ryu et al., 2014).

5. Anti-aging compounds, the aging brain and dementia

Recently it has been established that a number of compounds can activate or inhibit the 

nutrient sensing pathways that link diet with aging, and thereby potentially delay aging. 

Three examples are metformin, rapamycin, and resveratrol. Each of these drugs act via well-

established nutrient sensing pathways (Maiese, 2015; Novelle et al., 2015; Pryor and 

Cabreiro, 2015). For example, the AMPK pathway has received attention as a target for 

delaying aging because of the availability of the AMPK agonist, metformin (Anisimov, 

2013). Metformin has been shown to be a caloric restriction mimetic that prolongs life in 

various laboratory animals including mice (Martin-Montalvo et al., 2013). Metformin is also 

widely prescribed for the treatment of type II diabetes. A recent observational study found 

that diabetics who use metformin have lower mortality than age-matched non-diabetic 

controls suggesting that its anti-aging effects might also be apparent in humans (Bannister et 

al., 2014). Metformin has been promoted as a potential anti-dementia treatment based on its 

metabolic effects. Metformin has been reported to ameliorate cognitive impairment in some 

mouse models of AD (Li et al., 2012). Observational studies of metformin in diabetic 

humans, who have a very high risk of dementia as a result of their metabolic dysregulation, 

have yielded conflicting results with one study showing increased risk of cognitive 

impairment in diabetics taking metformin (Moore et al., 2013) while other studies have 

shown reduced risk (Ng et al., 2014). This might reflect different treatment doses, such that 

overtreatment might also increase the risk of dementia as the result of repeated episodes of 

hypoglycemia.

Rapamycin inhibits mTOR which plays a central role in signaling downstream pathways that 

control cell growth and proliferation and is heavily over-activated in certain cancers (Duzgun 

et al., 2015). Inhibition of mTOR activity with rapamycin is for the treatment of some 

cancers (Meng and Zheng, 2015) and as an immunosuppressant. Rapamycins increased 

lifespan in mice, including those mice fed standard diets and commenced on therapy in 

middle and late life (Harrison et al., 2009; Miller et al., 2011), and its role as a treatment of 

aging is being tested for feasibility and safety in older humans (Leslie, 2013). Intermittent 

dosing might be appropriate for long term aging therapy because this should reduce toxicity 
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(Longo and Fontana, 2011). In AD patients, mTOR signaling is upregulated in the brain and 

correlates with disease severity (Sun et al., 2014) while down-regulation of mTOR or its 

inhibition with rapamycin can ameliorate pathology and cognitive impairment in mouse 

models of AD (Caccamo et al., 2014; Lin et al., 2013; Spilman et al., 2010).

Resveratrol, which is an allosteric activator of SIRT1, has the most beneficial effects under 

high fat diet conditions, where SIRT1 activity is greatly reduced (Baur et al., 2006; reviewed 

in Novelle et al. 2015). Some studies in humans have shown improvements in 

cardiometabolic function with resveratrol (Magyar et al., 2012; Poulsen et al., 2012; 

Timmers et al., 2012). It has also been shown that resveratrol reverses the phenotype, 

especially the metabolic changes, in transgenic progeria mice (Labbé et al., 2011) and frailty 

in old mice (Kane et al., 2016). The role of SIRT1 has also been studied in animal models of 

AD (Donmez, 2012); for example SIRT1 has recently been shown to mediate effects of 

metabolic stress on β-secretase (Wang et al., 2013). Overexpression of SIRT1 (Kim et al., 

2007; Lalla and Donmez, 2013) and activation of SIRT1 with resveratrol (Porquet et al., 

2013; Porquet et al., 2014) can prevent or ameliorate cognitive impairment in experimental 

models of AD and age-related dementia. Moreover, it was shown that two-year resveratrol 

supplementation ameliorated neuroinflammation and increased cerebral microvasculature 

density in Rhesus macaques on a high fat diet (Bernier et al. 2016).

Together these results suggest that rapamycin, resveratrol and metformin, which are agents 

that delay aging by modulating the nutrient sensing pathways, may also have promise as 

agents to delay brain aging and forestall the onset of dementia.

6. Linking dementia and aging

The observation that dietary and medical interventions that delay aging also delay brain 

aging and dementia suggests that there is evidence that dementia is part of the aging process, 

perhaps analogous to sarcopenia and immunosenescence. The prevalence of dementia under 

the age of 65 years is just 0.1% but this increases 300-fold beyond the age of 85 years, while 

the majority of people older than 90 years are diagnosed with dementia (Australian Institute 

of Health and Welfare, 2012; Yang et al., 2013). The powerful influence of aging on the risk 

of dementia in comparison to other risk factors is demonstrated by the ANU-ADRI scale. 

Simply living to the age of 85 years confers the same risk for AD as having every other 

known genetic (i.e., apolipoprotein ε4 allele) and environmental risk factor combined 

(Anstey et al., 2013). Although aging is a risk factor for many diseases (Sierra, 2016), such 

overwhelming age-dominance is unusual, perhaps shared only with the other as yet 

untreatable geriatric conditions of sarcopenia and frailty. Therefore, while dementia research 

has tended to focus on the role of genetic and modifiable risk factors for dementia, it has 

placed less emphasis on the role of the aging process in the pathogenesis of dementia and 

the possibility that the aging process is modifiable.

The influence of old age on dementia outweighs all other biomarkers, genes and risk factors 

(Brayne and Davis, 2012), and the heavily studied amyloid-based biomarkers become less 

accurate in older people (Mattsson et al., 2012). Numerous clinical trials targeting amyloid 

have not shown any effect on, and even worsened, cognitive outcomes (Schneider et al., 
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2014). This has led some people to question the validity and usefulness of the amyloid 

cascade hypothesis, which has been the major area of study during the past two decades 

(Drachman, 2014; Krstic and Knuesel, 2013).

From the clinical perspective it is of note that most chronic disorders that occur in older 

people – which may have a single etiopathogenesis in younger people – have multifactorial 

causes on a background of accruing cellular and tissue damage with aging. Thus it is not 

surprising that Alzheimer’s and other forms of dementia share similar trajectories to other 

disorders and diseases associated with old age in humans. The effects of age on mortality 

and AD are similar, with a doubling of mortality every 7.5 years from the age of 30, versus a 

doubling of dementia every 5 years (Raber et al., 2004). Dementia is also closely associated 

with multi-morbidity and frailty (Oosterveld et al., 2014), which are key clinical 

manifestations of old age.

Likewise, from the biological perspective it is clear that many of the major cellular and 

molecular changes of aging (such as characteristic changes in oxidative stress, mitochondrial 

function, DNA damage, telomere shortening, advanced glycation end products, autophagy) 

and major systemic changes (microvascular disease, inflammation have been documented in 

AD and dementia more broadly (de Cabo and Le Couteur, 2015) (Table 3). All of these 

processes have been linked individually and separately to dementia. In many cases it has 

been postulated that they contribute to disease causation.

Although the link between old age and dementia is overwhelming, there have been only a 

few studies about how the biological changes of aging might influence or even cause 

dementia. On the other hand, there has been a revolution in understanding the biology of 

aging in the last decade and this has led to the identification of pharmaceutical, genetic and 

nutritional interventions that delay aging and multiple age-associated pathologies in a range 

of species (Fontana et al., 2014). If dementias of all types are multifactorial manifestations 

of aging and not classical diseases with a discrete pathogenesis, then the therapeutic 

interventions being developed to act on the aging process could be harnessed and/or 

exploited for the treatment and prevention of dementia. This opens up a range of novel 

therapies and drug targets for dementia.

7. The Geometric Framework, diet and cognition

Whilst the contribution of individual macronutrients to cognitive fitness has been intensively 

studied, it is likely that the brain requires a finely tuned balance of macronutrients and 

micronutrients in order to function properly (Mallidou and Cartie, 2015). It has been shown 

that changes in diet, even in late life, can have a positive impact on cognition and possibly 

attenuate dementia (Hardman et al., 2015). An example of this is the Mediterranean dietary 

pattern. This dietary pattern is mainly followed by people living in the Mediterranean 

crescent and is largely composed of fresh fish and shellfish, red wine, breads, pasta, fruits, 

vegetables, and olive oil (Castro-Quezada, Román-Viñas, & Serra-Majem, 2014; 

Yannakoulia, Kontogianni, & Scarmeas, 2015). People who follow a Mediterranean dietary 

pattern have improved cognitive function during the transition to old age (Huhn, Kharabian 

Masouleh, Stumvoll, Villringer, & Witte, 2015; Lourida et al., 2013; Woodside, Gallagher, 
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Neville, & McKinley, 2014). Another intervention that has been successful in delaying some 

symptoms of cognitive decline was the Finnish Geriatric Intervention Study to Prevent 

Cognitive Impairment and Disability (FINGER) which combined exercise, cognitive training 

and diet with defined percentages of fat, carbohydrate and protein, and little sugar (<10%E) 

(Kivipelto et al., 2013). This multimodal approach was successful in reducing cognitive 

decline in a cohort of elderly patients (Ngandu et al., 2015). Although these two dietary 

approaches share some common features such as high intake of fruits, vegetables and 

wholegrain cereals with limited intake of added sugars, there are also some differences. For 

example, the FINGER diet is a well-defined diet based on the Finish Nutritional 

Recommendations and was developed based on a stringent set of specific nutritional 

guidelines (National Nutrition Council, 2005). On the other hand, the Mediterranean dietary 

pattern is not as strict in nutritional guidelines and allows for some leniency in food intake 

(Woodside et al., 2015). Another difference is the source of dietary lipids (rapeseed oil and 

vegetable margarine in the FINGER diet vs. olive oil and nuts in the Mediterranean diet). 

Followers of the Mediterranean dietary pattern consume high amounts of legumes which 

affects the ratio of animal to plant protein as well as the amounts of fibre and phytates in the 

diet. Contrary to the FINGER diet, moderate consumption of red wine – a moderate source 

of resveratrol – is recommended in the Mediterranean diet (Huhn et al., 2015).

When looking at the role of macronutrient consumption on aging, one of the main human 

populations studied in recent years has been the Okinawan people, who enjoy the longest 

lifespan in the world (Japan Ministry of Health, 2000). There is some evidence that their 

healthspan and cognitive function is also preserved later in life when compared to other 

similar populations (Willcox et al., 2014). Whilst there are varying factors involved in this 

lifespan extension including lifestyle choices and physical activity, perhaps one major factor 

is their diet, which is 9 percent protein, 85 percent carbohydrate, and very little fat 

(Reviewed in Le Couteur et al, 2016). Interestingly, these percentages are almost identical to 

the macronutrient ratios found to increase lifespan and healthspan in mice and insect 

models, even when compared to CR (Solon-Biet et al, 2014; Le Couteur et al, 2016). These 

results along with the Mediterranean dietary pattern and the FINGER diet study suggest that 

many components of the diet (and lifestyle) influence brain aging and that experimental 

approaches that target individual components of the diet maybe be overly simplistic. It 

should also be noted that these interventions seem to reduce brain aging as part of a broader 

outcome which could be termed ‘healthy aging’.

How can the complexity of diet be disentangled experimentally? One approach is the 

Geometric Framework (GF). GF provides a multidimensional approach that facilitates 

interpretation of how macronutrients and energy impact on outcomes such as lifespan, age-

related phenotypes, and cognitive function (Simpson and Raubenheimer, 2007; 

Raubenheimer et al. 2016). Responses of individuals, such as cognitive behavior, are 

phenotypic features that can be superimposed on the experimental nutritional space by 

plotting these as response surfaces. In a recent study on aging of mice, the GF was used to 

analyze lifespan and age-related health in animals fed one of 25 diets varying in protein, 

carbohydrates, fat and total energy content (Solon-Biet et al., 2014). A major conclusion of 

the latter study is that LPHC diets optimize healthspan and lifespan. LPHC diets were found 

to inhibit hepatic mTOR, providing a mechanism linking this type of ad libitum diet to 
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delayed aging. GF was utilized to unravel the complex effects of macronutrients on 

metabolic health, lifespan (Solon-Biet et al., 2014), immunity (Le Couteur et al., 2015), 

reproduction (Solon-Biet et al., 2015b) and microcirculation (Cogger et al., 2016). GF 

methodology is therefore likely to provide insight into how dietary energy and 

macronutrients influence brain aging and dementia.

8. Conclusion

Dietary factors, including energy intake and macronutrient composition, influence brain 

function, especially during the transition to later life. The study and understanding of aging 

biology has led to the identification of pharmaceutical and nutritional interventions that 

delay aging and multiple age-associated pathologies. Therefore, it is plausible that 

therapeutic interventions that delay the aging process could be used for the treatment and 

prevention of brain aging and dementia. Whilst the roles of individual macronutrients in the 

brain have been investigated, interactions among and between macronutrients and 

micronutrients, with regards to their effects on brain aging are unknown. Diet is complex 

and this complexity can be disentangled using novel approaches such as the GF, thereby 

informing future research and nutritional guidelines for the delay of brain aging and 

dementia.
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Figure 1. 
Changes in the brain that occur in aging. Genetic changes, physical characteristics, cell-to-

cell interactions, physiological changes, and cognitive differences are included. It has been 

suggested that these underlying physiological underpinning contribute to the symptoms of 

cognitive decline. AHP, afterhyperpolarization; EPSPs, excitatory postsynaptic potentials; 

LTP, long-term potentiation; PFC, prefrontal cortex.
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Figure 2. 
A LPHC diet and its effect on the associated mTOR and related nutrient-sensing pathways. 

A hypothesis as to how a LPHC diet may affect brain physiology and neuronal function is 

included. A LPHC diet reduces mTOR activation and increases FGF21 activation, which in 

turn drives AMPK levels, contributing to the production of beneficial proteins PGC1α and 

SIRT1. In parallel, reduced IGF-1 levels heighten the sensitivity of IGF-1 receptors to IGF-1 

and contribute to the production of AKT, which drives FOXO3 production, leading to 

improved insulin sensitivity (Ruderman et al., 2010; Willette et al., 2012; Cheng et al., 2012; 

Solon-Biet et al., 2015a).
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Figure 3. 
A brief description of the contribution of individual macronutrients to brain health and 

cognitive function. Whilst the individual contributions have been relatively well-established, 

what remains is elusive is their proper ratios in order to maintain maximal brain fitness in 

late life.

Wahl et al. Page 25

Ageing Res Rev. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wahl et al. Page 26

Table 1

Calorie restriction is an effective treatment for many hallmarks of the aging brain, however the effects are still 

not known or controversial in higher order species.

Aging brain pathology Species Calorie restriction 
effective treatment?

Reference(s) Notes

Increased mitochondrial 
Reactive
Oxygen Species (ROS)

Rodents
Non-human primates
Humans

✓
Unknown
Unknown

(Hyun et al., 2006) Only several studies have been 
published in rodents.

Reduction in neurogenesis Rodents
Non-human primates
Humans

✓
Unknown
Unknown

(Kaptan et al., 
2015)

Although heavily studies in 
rodents, still unknown in higher-
order species perhaps due to a 
lack of feasible tissue for 
biochemical analysis.

Slowing of action potentials Rodents
Non-human primates
Humans

Unknown
Unknown
Unknown

The one study in rodents was not 
cognitive and looked at lumbar 
motor neurons and 
corresponding hind-limb muscle 
activity. The authors concluded 
no CR effect (Kalmar et al., 
2009).

Tangles and plaques Rodents
Non-human primates
Humans

✓
Controversial/negative
Unknown

(Halagappa et al., 
2007)
(Sridharan et al., 
2013)

Although very few studies exist, 
there are some promising results 
in rodents. Presumably the lack 
of evidence in humans is due to 
the shortage of tissue for 
biochemical analysis.

Inflammation Rodents
Non-human primates
Humans

✓
✓
✓

(Vasconcelos et al., 
2014)
(Willette et al., 
2013)
(Johnson et al., 
2007)

Perhaps this is the most robust 
CR effect which has been 
heavily demonstrated in all three 
species.

Reduction in spatial,
working, and
associative memory

Rodents
Non-human primates
Humans

✓
Limited evidence
Controversial

(Brownlow et al., 
2014; Kuhla et al., 
2013)
(Dal-Pan et al., 
2011)
(Cheatham et al., 
2009)

The results are controversial in 
humans mainly due to the 
differences in the memory tests 
and vastly different calorie 
restriction protocols.
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Table 2

A selection of clinical trials which looked at individual macronutrient contributions to brain fitness and 

cognitive function.

Reference and year Year Subjects and methods Nutritional status or 
intervention

Diet results on cognitive 
function

(Gibson et al., 2013) 2013 Thirty-eight women, mean age 32.7±5.3 
years; BMI 24.9±4.5kg/m2.
Verbal recognition tasks, delayed matching 
to sample, and paired associate learning tasks 
were carried out

Average daily macronutrient 
intake was assessed via a 
seven-day food diary. Mean 
protein (16.3±2.8%); 
carbohydrate (44.0±5.8%); 
fat (39.7±6.5%).

Highest fat intake was 
associated with poorer 
memory function in all 
three cognitive tests.

(Holloway et al., 
2011)

2011 Sixteen men, mean age 22±1 years. Normal 
BMI; Double blind, cross over procedure 
after a 2-week washout period. The 
Cognitive Drug Research (CDR) 
computerized assessment battery was 
performed daily to measure attention, 
working memory, episodic memory, and self-
reported mood and alertness were performed 
shortly after consumption.

Five days of either a high fat 
(70%), low carbohydrate 
(26%) diet or low fat (24%), 
high (50%) carbohydrate 
diet.

Cognitive testing showed 
impaired speed, attention, 
and mood after 
consumption of the high 
fat diet.

(Jones et al., 2012) 2012 Eighteen (5 males, 13 females), mean BMI 
21.1kg/m2, mean age 19 years. Blind, 
placebo controlled, wash out, repeated 
measures design. Tests for spatial working 
memory, numeric working memory, spatial 
recall, and immediate word recall were 
performed shortly after consumption.

Either a 40 g protein in 
solution, 16 g fat emulsion, 
40 g glucose solution, or an 
inert placebo over four days, 
with a 5 – 7 day wash out 
period.

In general, glucose and fat 
had had the fastest acting 
effects on memory, 
whereas protein ingestion 
had beneficial effects at 
later time-points. The 
authors suggested a 
complex interaction 
between macronutrients, 
with each affecting 
different memory systems.

(Holloway et al., 
2011)

2011 Sixteen men, mean age 22±1 year. Normal 
BMI; Double blind, cross over procedure 
after a 2-week washout period. The 
Cognitive Drug Research (CDR) 
computerized assessment battery was 
performed daily to measure attention, 
working memory, episodic memory, and self-
reported mood and alertness were performed 
shortly after consumption.

Five days of either a high fat 
(70%), low carbohydrate 
(26%) diet or low fat (24%), 
high (50%) carbohydrate 
diet.

Cognitive testing showed 
impaired speed, attention, 
and mood after 
consumption of the high 
fat diet.

(Jones et al., 2012) 2012 Eighteen (5 males, 13 females), mean BMI 
21.1 kg/m2, mean age 19 years. Blind, 
placebo controlled, wash out, repeated 
measures design. Tests for spatial working 
memory, numeric working memory, spatial 
recall, and immediate word recall were 
performed shortly after consumption.

Either a 40 g protein in 
solution, 16 g fat emulsion, 
40 g glucose solution, or an 
inert placebo over four days, 
with a 5 – 7 day wash out 
period.

In general, glucose and fat 
had had the fastest acting 
effects on memory, 
whereas protein ingestion 
had beneficial effects at 
later time-points. The 
authors suggested a 
complex interaction 
between macronutrients, 
with each affecting 
different memory systems.

(Roberts et al., 2012) 2012 937 (51% male) participants. Mean BMI 
27.7 kg/m2. Participants were instructed to 
record their dietary intake from the past 12 
months in a food diary. Cognitive 
examination took place at 15 month 
intervals.

As a group, subjects 
consumed 232 g 
carbohydrate per day, 78 g 
protein/day, and 61g fat per 
day.

High daily carbohydrate 
percentages were 
associated with a higher 
risk of mild cognitive 
impairment, while higher 
fat and protein 
consumption was 
associated with lower risk 
of mild cognitive 
impairment.

(Krikorian et al., 
2012)

2012 23 participants (10 men, 13 women) with 
mild cognitive impairment as per Clinical 
Dementia Rating (CDR) assessment. Mean 
age 70.1±6.2 years. Subjects completed a 7-
day diet diary prior to intervention. Trial 

High carbohydrate (50% of 
energy) and very low 
carbohydrate (5–10% of 
energy) diets with no 

Very low percentage of 
carbohydrate consumption 
was associated with 
improved memory 
performance.
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Reference and year Year Subjects and methods Nutritional status or 
intervention

Diet results on cognitive 
function

Making Test Part B and Verbal Paired 
Associate Learning Test were used to assess 
executive ability, long term memory, and 
mood before and after dietary intervention.

restriction on total energy, 
protein or fat intake.

(D’Anci et al., 2009) 2009 19 women, aged 22–55 years; repeated 
measures mixed-factor design. Profile of 
Mood States (POM) Questionnaire, five 
computer-based cognitive tasks assessing 
visuospatial memory, vigilance attention 
(CPT) with a concurrent secondary task, digit 
span (forward and backward), and both 
positive and negative consequences of food 
preoccupation were performed

Low-carbohydrate (0 g/day 
1st week, 5 – 8 g/day 2nd 

week, 10–16 g/day 3rd 

week) vs. a low-calorie, 
macronutrient balanced diet 
(as per American Dietetic 
Association)

Low-carbohydrate was 
associated with less 
confusion (POMS) and 
faster response during an 
attention vigilance task 
(CPT) than low-calorie, 
macronutrient balanced 
dieters.

(Jakobsen et al., 2011) 2011 23 healthy males aged 19–31 years. 
Randomised, single blinded, parallel 
intervention study. Addenbrooke Cognitive 
Examination, Tests for Attentional 
Performance.

Usual Protein (UP) diet (1.5 
g protein/kg BW) for a 1-wk 
run-pre-intervention then 
UP or a High Protein (HP) 
diet (3.0 g protein/kg BW) 
for 3-wks with controlled 
intake of food and 
beverages.

High protein diet improved 
reaction time.
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Table 3

Many of the common molecular hallmarks of aging are also present in dementia.

Cellular process Aging Dementia reference

Increased oxidative stress ✓(Finkel and Holbrook, 2000) ✓(Wang et al., 2014)

Mitochondrial dysfunction ✓(Balaban et al., 2005) ✓(Ferrer, 2009)

mtDNA mutations ✓(Piko et al., 1988) ✓(Wang et al., 2014)

Shortened telomeres ✓(Honig et al., 2012) ✓(Honig et al., 2012)

Decreased autophagy ✓(Tan et al., 2014) ✓(Tan et al., 2014)

Microvascular abnormalities ✓(Le Couteur and Lakatta, 2010) ✓(Costanza et al., 2012)

Inflammation ✓(Franceschi and Campisi, 2014) ✓(Bettcher and Kramer, 2014)

Advanced glycation endproducts ✓(Baynes, 2001) ✓(Srikanth et al., 2013)
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