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A major percentage of fixed nitrogen (N) loss in the oceans occurs
within nitrite-rich oxygen minimum zones (OMZs) via denitrification
and anammox. It remains unclear to what extent ammonium and
nitrite oxidation co-occur, either supplying or competing for sub-
strates involved in nitrogen loss in the OMZ core. Assessment of the
oxygen (O2) sensitivity of these processes down to the O2 concentra-
tions present in the OMZ core (<10 nmol·L−1) is therefore essential for
understanding and modeling nitrogen loss in OMZs. We determined
rates of ammonium and nitrite oxidation in the seasonal OMZ off
Concepcion, Chile at manipulated O2 levels between 5 nmol·L−1 and
20 μmol·L−1. Rates of both processes were detectable in the low
nanomolar range (5–33 nmol·L−1 O2), but demonstrated a strong de-
pendence on O2 concentrations with apparent half-saturation con-
stants (Kms) of 333 ± 130 nmol·L−1 O2 for ammonium oxidation and
778± 168 nmol·L−1 O2 for nitrite oxidation assuming one-component
Michaelis–Menten kinetics. Nitrite oxidation rates, however, were
better described with a two-component Michaelis–Menten model,
indicating a high-affinity component with a Km of just a few nano-
molar. As the communities of ammonium and nitrite oxidizers were
similar to other OMZs, these kinetics should apply across OMZ sys-
tems. The high O2 affinities imply that ammonium and nitrite oxi-
dation can occur within the OMZ core whenever O2 is supplied, for
example, by episodic intrusions. These processes therefore compete
with anammox and denitrification for ammonium and nitrite,
thereby exerting an important control over nitrogen loss.
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Oxygen (O2) is a key factor regulating biogeochemical cycling
in the marine environment (1). Although the vast majority

of the ocean remains well oxygenated, subsurface regions of
extreme oxygen depletion can persist along eastern boundaries
of the world’s ocean basins. These regions are known as oxygen
minimum zones (OMZs) and are located within the eastern
tropical North and South Pacific, the Arabian Sea, and off the
coast of Namibia, where oxygen depletion results from poor
ventilation and a high export of organic matter from productive
surface waters, generating high rates of subsurface oxygen con-
sumption (2, 3).
Oceanic waters characterized by oxygen-deficient conditions

(<4.5 μmol·L−1 O2) account for <0.1% of total ocean volume but
for >30% of fixed nitrogen (N) loss (3–6) due to the onset of
anaerobic processes, including denitrification and anammox
(7–10). Both field and modeling observations point to the expansion
of low oxygen regions as a result of global warming (11). Thus, to
evaluate the biogeochemical impact of these regions, it is im-
perative to understand fully how oxygen controls the cycling of
substrates involved in nitrogen loss pathways.
Recent studies have quantified the oxygen sensitivity of an-

aerobic OMZ nitrogen transformations, finding that denitrifi-
cation has relatively low oxygen tolerance with a half-inhibition
concentration (IC50) of 0.3 μmol·L−1, compared with higher
values for nitrate reduction (4 to ≥20 μmol·L−1) and anammox

(1 to ∼10 μmol·L−1 O2) (12–14). Variability in IC50 for nitrate
reduction and anammox may result from differences in microbial
community composition or the variable presence of aggregates
with anoxic microsites (12, 14).
The oxygen kinetics of aerobic nitrification are poorly con-

strained relative to the oxygen sensitivity for the anaerobic pro-
cesses. Field studies point to low apparent half-saturation
constant (Km) values in OMZ waters, where, for example, am-
monium oxidation rates decreased by ≤50% of maximum rates in
N2 or He purged controls, with oxygen concentrations estimated
to be ≤1 μM (12, 15). Similarly, at <1 μmol·L−1 O2, nitrite oxida-
tion rates were 36–59% of the activity observed at >10 μmol·L−1 O2
in the Peruvian and Namibian OMZs (10, 16). Still, the kinetics of
these processes have not been explored for oxygen concentrations
of less than 0.25 μmol·L−1, and Km values for oxygen have not been
resolved. Ammonium and nitrite oxidation are generally active in
incubations of waters from anoxic parts of the OMZ, although
these rates are usually low relative to the adjacent oxygen-con-
taining waters (10, 16–18). Recent developments in oxygen de-
tection reveal, however, that even “anoxic” incubations easily suffer
from oxygen contamination (18–20).
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Oxygen concentrations in the OMZ core generally fall below
the detection limit (<1–10 nmol·L−1) of the highly sensitive
switchable trace amount oxygen (STOX) sensors (21–25). The
nondetectable levels of oxygen in conjunction with the dominance
of gene transcripts associated with anaerobic processes (26) and
the long residence time of OMZ waters (upward of several
months) imply that the OMZ cores are, to a wide extent, func-
tionally anoxic (22, 27). Still, intrusions of oxygen to nanomolar
levels are occasionally observed within the OMZ core (22, 23) and
could potentially support aerobic ammonium and nitrite oxida-
tion. Indeed, natural abundance isotopic signatures of nitrate and
nitrite suggest an important role for nitrite recycling to nitrate
within OMZs, particularly at the low oxygen fringes (28). Also,
direct competition between aerobic and anaerobic populations
at nanomolar oxygen levels has been indicated in the Black Sea
chemocline, where anaerobic anammox bacteria appear to out-
compete aerobic nitrite oxidizers for nitrite (29). Resolving the
oxygen kinetics of these processes at low nanomolar levels is
essential to understanding the regulation of N loss in OMZs.
We explored the oxygen kinetics of ammonium and nitrite

oxidation, as well as nitrate reduction, over the oxygen concen-
tration range of 5 nmol·L−1 to 20 μmol·L−1 in waters of the
seasonal OMZ off central Chile. Our results demonstrate that all
three processes have a strong dependence on nanomolar oxygen
concentrations, but also that ammonium and nitrite oxidation
can be active and important at the lowest oxygen levels analyzed.

Results and Discussion
In the eastern South Pacific, low oxygen conditions exist between
0° and 37°S (30, 31). Off the coasts of Peru and northern Chile,
these conditions persist year round in the permanent OMZ,
whereas seasonal oscillations occur at our study site off Con-
cepcion, Chile at 36°S. Here, complete oxygen depletion is only
observed during the austral summer (32–34) when upwelling-
favorable southerly winds dominate, allowing nutrient-rich, ox-
ygen-depleted equatorial subsurface waters to intrude across the
shelf. This advection of nutrients stimulates primary productivity,
enhancing organic matter export and thereby generating higher
rates of subsurface respiration (34, 35).
Oxygen concentrations during the time of our experiments

(March 2012) decreased from near saturation at the surface to
below detection between 40 and 50 m, and then remained below
the detection limit of the in situ STOX sensor (about 10 nmol·L−1)
to the seabed (23) (Fig. 1). With the disappearance of oxygen,
nitrite increased from 0.1 μmol·L−1 at 40 m to 2.7 μmol·L−1 at
85 m, alongside a decrease in nitrate concentrations (Fig. 1), in-
dicative of dissimilatory nitrate reduction to nitrite. Ammonium
concentrations peaked at 1.3 μmol·L−1 in the upper oxic water
column, but remained below 0.4 μmol·L−1 in the oxygen-depleted
bottom water (Fig. 1).

Oxygen Sensitivity of Ammonium Oxidation.Oxygen sensitivity tests
were undertaken with water sampled at the oxygen-depleted
depth of 50 m. Ammonium oxidation rates depended strongly on
oxygen concentrations in the nanomolar range (Fig. 2). Maximal
rates of ∼40 nmol·L−1 N·d−1 were seen at oxygen concentrations
above 1 μmol·L−1, and rates declined sharply at lower concen-
trations. Nonetheless, rates were detectable to the lower limit of
our oxygen measurements, with 12% of the maximal activity
remaining at an oxygen concentration of 6 nmol·L−1 (Fig. 2).
These results indicate that ammonium oxidation proceeded at or
below the detection limit of the in situ STOX sensor and that
rates can be stimulated strongly by the injection of oxygen.
Michaelis–Menten kinetics fitted to these data produced an
apparent Km of 333 ± 130 nmol·L−1 O2 (Fig. 2). This oxygen
response likely represents the response of a mixed community
potentially carrying a variety of terminal oxidases with different
Km values.

Prior studies at our study site have shown that the ammonium
oxidizer community is dominated by Archaea (36), which are
abundant and diverse under oxygen-deficient conditions (37).
We used small subunit (SSU) ribosomal rRNA gene pyrose-
quencing with primers encompassing both Bacteria and Archaea
to describe microbial population diversity at 50 m. Between 53%
and 58% of all sequences were affiliated with four monophyletic
clades within the phylum Thaumarchaeota (Fig. S1): Nitro-
sopumilus, Nitrosopelagicus water column A, unaffiliated water
column B, and marine benthic group B (38–40). The most
abundant thaumarchaeal phylotype observed was affiliated with
the Nitrosopumilus cluster, a group that contains cultivated,
ammonium-oxidizing representatives (39) and has been observed
in a wide array of marine environments (41, 42). The Thau-
marchaeota observed here displayed close relationships to those
observed in permanent and seasonally anoxic OMZs and anoxic
basins, such as the eastern tropical South Pacific and Saanich
Inlet, respectively (43, 44) (Fig. S1). No sequences observed were
affiliated with any genus of ammonium-oxidizing bacteria or with
Nitrospira, which may oxidize both ammonium and nitrite (45).
We thus conclude that ammonium oxidation was likely fueled
exclusively by Thaumarchaeota, as in other low oxygen regions
(17, 46). Cultivated, ammonium-oxidizing Nitrosopumilus maritimus
strain SCM1 has an apparent Km for oxygen of 3.9 ± 0.6 μmol·L−1

and ceases to grow under oxygen limitation, suggesting a limited
capacity to survive under low oxygen conditions (39). Thus, the
ammonium-oxidizing Archaea (AOA) community of the OMZ
appears to be better adapted to low oxygen than N. maritimus.
Curiously, the apparent Km for oxygen for N. maritimus is high,
considering its COX1-type terminal oxidase (47), with such oxi-
dases typically having Km values of 0.2 μM (48). Thus, the oxygen
kinetics of ammonium oxidation appear not to depend on the
terminal oxidase alone, and detailed biochemical and physio-
logical studies would be needed to explore the difference be-
tween N. maritimus and the OMZ Thamarchaeota further.

Oxygen Sensitivity of Nitrite Oxidation. Similar to ammonium oxi-
dation, nitrite oxidation showed a high affinity for oxygen, with a
strong dependence on oxygen in the nanomolar range (Fig. 2).
Rates were approximately fivefold higher than the rates for
ammonium oxidation, with maximal rates >200 nmol·L−1 N·d−1

at oxygen concentrations greater than 1.6 μmol·L−1. As oxygen
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concentrations declined, nitrite oxidation rates dropped sharply,
yet a mean rate of 35 nmol·L−1 N·d−1 persisted at 5–33 nmol·L−1

O2. Hence, rates of both ammonium and nitrite oxidation were
detectable in the low nanomolar range (5–33 nmol·L−1 O2). The
response to oxygen was consistent across multiple depths (30, 40,
and 50 m), with in situ oxygen conditions ranging from below
detection to 19 μmol·L−1 and nitrite concentrations in the range
of 0.1–0.45 μmol·L−1. A one-component Michaelis–Menten fit to
the nitrite oxidation data produced an apparent Km of 778 ±
168 nmol·L−1 O2 (Fig. 2). Although this result suggests a lower
oxygen affinity for nitrite oxidation compared with ammonium
oxidation, the fitted Michaelis–Menten kinetics generally under-
estimated the measured nitrite oxidation rates in the low nanomolar
range (<300 nmol·L−1; Fig. 2, Inset). This mismatch suggests that the
kinetic response has a high-affinity component.
To evaluate this response, we calculated values for a two-com-

ponent Michealis–Menten model, which gave a significantly better
fit to the data (sum of squares F test; F2,26 = 6.2, P = 0.0062). Al-
though the two resulting apparent Km values are not well con-
strained (Km1 = 0.5 ± 4.0 nmol·L−1; Km2 = 1,750 ± 570 nmol·L−1),

this model fit supports the presence of a high-affinity component,
which accounted for ∼15% of the maximum nitrite oxidation rate
(Vmax1 = 45 ± 14 nmol·L−1·d−1; Vmax2 = 239 ± 21 nmol·L−1·d−1;
Fig. 2). A high-affinity component for nitrite oxidation, and hence
nitrite oxidation having a higher affinity for low nanomolar oxygen
than that observed for ammonium oxidation, aligns with the typ-
ical depth distribution of AOA and nitrite-oxidizing bacteria
(NOB) observed in OMZs, where NOB are typically distributed
deeper and at higher abundances into the OMZ core relative to
AOA (17, 49).
Nitrospina-like bacteria were the only nitrite oxidizers identi-

fied in our SSU rRNA gene analysis (Fig. S1), consistent with
prior work at our study site (50), and similar to other low oxygen
regions (16, 18, 49). This phylogenetic similarity suggests that our
observed kinetic response could be consistent across low oxygen
systems. Microaerobic adaptations have been identified in the
genome of a marine Nitrospina gracilis strain, including the pres-
ence of a putatively high-affinity cbb3-type terminal oxidase (51).
A Km value of 7 nmol·L−1 O2 was previously determined for a
cbb3-type oxidase (52) broadly consistent with the high-affinity
component inferred here. The cbb3-type oxidase was the only
terminal oxidase robustly identified in the N. gracilis genome. An
additional cytochrome bd terminal oxidase, which typically has a
lower oxygen affinity, was also identified, but it was not thought
to be involved in oxygen respiration, because residues responsible
for quinol binding were lacking (51). Physiological variability across
the Nitrospina clade has to be expected, however, and because low-
affinity oxidases are generally more efficient in energy conservation
(53), the possession of an additional functional terminal oxidase
with lower oxygen affinity, as suggested by our results, would con-
stitute metabolic versatility. Similar to the ammonium oxidizers,
detailed studies of other Nitrospina strains are required to link the
community’s oxygen response to cell physiology.
Anaerobic nitrite oxidation is known to occur as part of the

anammox metabolism, with nitrite acting as an electron donor
during carbon fixation; hence, growth is associated with nitrate
production (54). However, during our study, anammox activity
was only detected at 80 m, at a rate of 2 nmol·L−1 N·d−1, and the
process was also previously only observed close to the sediment–
water interface at this site (33, 55). Hence, we do not expect
anammox to contribute significantly to total nitrite oxidation
here. We note also that it would be thermodynamically feasible
for NOB to use an alternate electron acceptor to oxygen, such as
iodate (56), allowing the process to proceed in anaerobic con-
ditions. The occurrence of such a process in marine systems
has yet to be demonstrated. However, the high oxygen affinity
demonstrated here implies that NOB in OMZs perform aerobic
nitrite oxidation even below the lowest in situ detection limit for
oxygen achieved so far (21).

Oxygen Sensitivity of Nitrate Reduction. The exceptionally high
oxygen affinities of ammonium and nitrite oxidizers reinforce the
possibility that these organisms coexist with anaerobes. Such
overlaps between N-cycling processes have implications for the
turnover, retention, and substrate supply within an OMZ. For
example, when nitrite is cycled between nitrite oxidation and
dissimilatory nitrate reduction, N is retained in the system (28).
Nitrate reduction has been shown to be the least oxygen-sensitive of
the anaerobic pathways, with activity observed up to 25 μmol·L−1

O2 (12, 15). Therefore, a large overlap could occur between nitrate
reduction and ammonium and nitrite oxidation. In the present
study, however, nitrate reduction from the oxygen-depleted depth
of 50 m was highly sensitive to nanomolar oxygen concentrations,
with an IC50 of 0.73 ± 0.5 μmol·L−1 O2 (Fig. 3) and a maximum rate
of 197 ± 26 nmol·L−1 N·d−1. Complete inhibition was observed
above 6 μmol·L−1 O2. Potential explanations for the differ-
ence from previous studies include possible differences in the
populations of nitrate reducers, which generally exhibit high
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phylogenetic diversity (26, 46, 57), and differences in the particle
size distributions, because larger aggregates may hold oxygen-
depleted microniches (12, 58). The latter effect was specifically
suggested to explain lower oxygen sensitivity of anammox at
coastal, presumably more particle-rich, sites than at offshore OMZ
sites (12), but our results demonstrate that the oxygen sensitivity
can also be high in coastal waters. Our results also indicate that the
previously suggested potential for nitrate reduction to nitrite to
initiate N cycling at micromolar oxygen concentrations cannot be
generalized across OMZ environments.

Implications. Here, we present detailed determinations of oxygen
kinetics and apparent Km values for ammonium and nitrite oxi-
dation over environmentally relevant oxygen concentrations for
an OMZ. As highlighted above, the AOA and NOB communities
at our study site are similar to the AOA and NOB communities
observed in the permanent, open ocean OMZs, suggesting that
the kinetics determined here are applicable across OMZ sys-
tems. Combining our data with data from previous oxygen sen-
sitivity studies in the Peruvian and Namibian OMZs that did not
reach as low oxygen concentrations (10, 12, 16) lends further
support to the generalization of our results and also illustrates
the gap, which has now been filled (Fig. S2; rates from all studies
were normalized to maximal rates, because the apparent Vmax
varies as a result of variability in cell numbers, whereas the ap-
parent Km will not be influenced). For ammonium oxidation, the
lack of any clear oxygen dependence in the previous results
obtained at oxygen concentrations ≥0.6 μmol·L−1 is consistent
with the apparent Km of 0.3 μmol·L−1 found here. In the case of
nitrite oxidation, the general tendency of the previously measured
rates to increase from the lowest studied oxygen concentrations of
0.25 μmol·L−1 is also consistent with the kinetic response that is
resolved well by our data. Accordingly, apparent Km values for
both processes from the combined datasets are within error of
those Km values obtained in this study. These kinetics indicate, on
the one hand, that ammonium and nitrite oxidation function un-
der nanomolar oxygen concentrations with rates highly dependent
on the actual oxygen level and, on the other hand, that these
processes are strongly suppressed under anoxia.
Further comparison of our low Km values for ammonium and

nitrite oxidation, alongside the IC50 value for anammox, de-
nitrification, and nitrate reduction (this study and refs. 12 and 14),

indicates that the potential for overlap between aerobic and an-
aerobic processes varies strongly by location, due to the large
variation in IC50. Thus, with IC50 values less than 1 μmol·L−1 for
the anaerobic processes (this study and ref. 14), overlap is largely
restricted to the nanomolar range, in contrast to the low micro-
molar range based on the results of Kalvelage et al. (12). Further
experimental analysis of the factors (as discussed above) causing
the large variability in IC50 within and among studies is needed.
However, considering that nitrite oxidation rates approach satu-
ration already at ∼1 μmol·L−1 O2 (Fig. 2B) and that the rates in
the lower oxycline are generally high compared with anammox
and denitrification rates (e.g., 10, 18), it is evident that this process
provides strong competition for available nitrite even in settings
where the anaerobic processes have a high oxygen tolerance.
We observed active ammonium and nitrite oxidation to the

lowest oxygen levels analyzed (Fig. 2), with nitrite oxidation
maintaining a particularly high relative activity at oxygen levels
corresponding to the typical detection limit for in situ STOX
oxygen measurements (∼10 nmol·L−1) (18, 22, 23, 59). These
observations imply that the processes could be active in the ap-
parently oxygen-depleted OMZ core provided that oxygen is
supplied at a sufficient rate. Such may be the case at the fringes
of the OMZs, where intrusions of nanomolar oxygen levels are
occasionally observed (22, 23). Thus, nanoaerobic nitrite oxida-
tion may explain the recycling of nitrate inferred from nitrogen
and oxygen isotope patterns observed there (28). Under these
conditions, ammonium and nitrite oxidation would be able to
compete for substrates critical to the N loss processes of anam-
mox and denitrification, hence affecting total N loss in these
systems. The oxygen kinetics determined here should therefore
be incorporated into models not only to assess the role of nitrite
and how it is produced and lost within OMZ systems but also,
more importantly, to understand N cycling with the predicted
expansion of low oxygen waters throughout the global ocean.

Materials and Methods
Samples were collected during the MOOMZ 4 cruise (Microbial Oceanography of
Oxygen Minimum Zones cruise no. 4 onboard R/V Kay Kay II; March 20–26, 2012)
at the COPAS (Centro de Investigación Oceanográphica en el Pacífico Sur-Ori-
ental) time series site, station 18, off the coast of Concepcion, Chile (36°30′85 S,
73°07′75 W). Station 18 is located 18 nautical miles offshore, with a total water
depth of ∼93 m. Water was sampled using a pump profiling system (PPS) (24)
equipped with a SeaBird SBE 25 CTD (conductivity, temperature, and depth
measuring device), SBE 43 oxygen sensor, and in situ STOX unit (23).

High-resolution oxygen profiling was carried out initially alongside nu-
trient determinations to characterize the water column and determine depth
selection for oxygen sensitivity experiments. Tiano et al. (23) discussed the
oxygen depth profiles from across the sampling period with particular focus
on the submicromolar range. Nitrate, nitrite, and phosphate concentrations
were measured at a land-based laboratory using standard protocols (60).
Ammonium concentrations were determined fluorometrically by the orthoph-
thaldialdehyde method (61). The N deficit was calculated as follows,
ð½NO-

3 +NO-
2 +NH+

4 �− 16× ½PO3-
4 �Þ × 0.86, with 0.86 used to take into account

the release of PO3-
4 from organic matter remineralized during denitrification (5).

Samples were taken for the determination of anammox and denitrification
rates from five depths between the oxycline and sediment water interface,
following sampling and experimental procedures outlined by Dalsgaard et al.
(9). Two amendments were made at each depth, 5 μM 15NH+

4 and 5 μM 15NO-
2,

with triplicate exetainers killed at 0 and 12 h. Analysis and calculations fol-
lowed the principles outlined by Dalsgaard et al. (9).

Oxygen Sensitivity Experiments (5 nmol·L−1 to 2 μmol·L−1 O2). Seawater was
sampled from 40 and 50 m (representing the oxycline and OMZ core) directly
from the PPS into a 20-L glass bottle. The bottle was overflowed (at least three
volume equivalents), flushing the bottle before filling and the headspace
while filling with N2 gas, and sealed without bubbles using deoxygenated
butyl rubber stoppers (19, 59). On return to the land-based laboratory, the
bottle was degassed with helium (∼40 min) and was spiked with one
of three amendments: 2 μmol·L−1 15NH+

4 + 2 μmol·L−1 14NO-
2 to measure

ammonium oxidation (only done at 50 m), 2 μmol·L−1 15NO-
2 + 2 μmol·L−1

14NO-
3 to measure nitrite oxidation, or 10 μmol·L−1 15NO-

3 + 5 μmol·L−1 14NO-
2
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Fig. 3. Inhibition of nitrate reduction by oxygen, where oxygen was ma-
nipulated between 5 nmol·L−1 and 25 μmol·L−1, with water sampled from a
depth of 50 m. Inhibition was determined by the difference between the
maximum rate observed and zero (undetectable rate) representing complete
inhibition. Experiments carried out in a setup with continuous monitoring by
STOX sensors (□) and experiments carried out in serum bottles (▲) are
shown. Error bars represent the SE.
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to measure dissimilatory nitrate reduction to nitrite (only done at 50 m). The
addition of 14N compounds served to trap 15N-labeled products. The water
was then dispensed into custom-modified SCHOTT DURAN glass bottles
(1,160 mL) (62), eight bottles per depth per treatment. An additional
modification was the placement of a third glass port on the bottle, which
held a 100-mL glass reservoir filled with sample water, that was continually
degassed with helium for the duration of the experiment. During the in-
cubations, the bottles were continuously stirred with a glass-coated
magnetic stir bar (62), kept in the dark, and submersed in a water bath to
maintain in situ temperature. Oxygen additions were made to the bottles
by injecting known volumes of air-saturated seawater; two bottles per
depth per treatment received no oxygen addition. In this setup, oxygen
was monitored throughout the incubations with a STOX sensor in each
bottle. Time-series sampling was undertaken at 0, 3, 6, 9, and 12 h by
inserting a long needle down the pressure compensation tube, opening
the valve to the reservoir, allowing the reservoir water to flow into the
incubation vessel, and replacing the 10 mL of sample that was withdrawn.
Samples were filtered through a 0.22-μm cellulose acetate filter and fro-
zen until analysis.

Oxygen Sensitivity Experiments (100 nmol·L−1 to 20 μmol·L−1 O2). Seawater was
sampled from 30, 40, and 50 m representing different in situ oxygen conditions.
Water was sampled directly from the PPS into 120-mL serum bottles, allowing
water to overflow for approximately three volume changes before sealing
(without bubbles) with deoxygenated butyl rubber stoppers (19). Bottles were
stored in the dark until the start of the experiment (always <12 h). Serum bottles
were amended with 15N-labeled substrates. The same three 15N amendments as
mentioned above were carried out; 15NO-

2 at all depths and
15NH+

4 and 15NO-
3 at

50 m only. For each amendment, four serum bottles were spiked with 15N
substrate. Saturated HgCl2 (200 μL) was immediately added to one bottle,
which served as a “killed” control. A volume of 20 mL was subsequently re-
moved from all bottles to create a headspace, which was then flushed twice
with helium. The removed 20 mL was filtered through a 0.22-μm cellulose
acetate filter and frozen for “time zero” analysis. Injections of air or pure
oxygen were then made into the headspace to manipulate oxygen concen-
trations with oxygen solubility determined using the equation provided by
Garcia and Gordon (63). A subset of the amendments received no oxygen in-
jection (100 nmol·L−1 on average). After 6, 12, and 24 h, an additional 15 mL was
removed, filtered, and frozen. After removing the sample at 6 and 12 h,
headspaces were flushed twice with helium and oxygen additions were made
again. After 24 h, oxygen concentrations in the serum bottles were determined
using a Clark-type oxygen electrode (64).

Rate Determination. Nitrite oxidation rates were determined based on 15NO-
3

production in incubations with 15NO-
2. After removal of any unused 15NO-

2
from the initial amendment using sulfamic acid, 15NO-

3 was converted to
15NO-

2 with cadmium and then to N2 with sulfamic acid (16, 65). Ammonium
oxidation and nitrate reduction rates were determined based on 15NO-

2
production in incubations with 15NH+

4 or 15NO-
3. The

15NO-
2 produced during

incubations was converted to N2 with sulfamic acid (16). The N2 produced
(14N15N and 15N15N) was analyzed on a gas chromatography isotope ratio
mass spectrometer as described by Dalsgaard et al. (9). Rates for all pro-
cesses were evaluated from the slope of the linear regression of 15N pro-
duction with time, and corrected for the fraction of the N pool labeled in
the initial substrate pool. A t test was applied to determine if rates were
significantly different from zero (P < 0.05). Detection limits for the oxygen
sensitivity experiments were estimated from the median of the SE of the
slope, multiplied by the t value for P = 0.05. Thus, detection limits were
4.8 nmol·L−1 N·d−1 for ammonium oxidation, 28.8 nmol·L−1 N·d−1 for
nitrite oxidation, and 28.8 nmol·L−1 N·d−1 for nitrate reduction.

The parameters Vmax and Km for Michaelis–Menten kinetics were derived
from the rate data by nonlinear least squares fits of either single [rate = Vmax *
[O2]/(Km + [O2])] or double [rate = Vmax1 * [O2]/(Km1 + [O2]) + Vmax2 * [O2]/
(Km2 + [O2])] rate expressions. The fits were made in GraphPad Prism based on
the Levenberg–Marquardt algorithm.

SSU Ribosomal RNA Gene Sequencing. Approximately 20 L of GFA (glass fiber
filter; 1.6 μm)-prefiltered seawater spanning four depth intervals collected at

5, 29, 50, and 85 m was passed through 0.2-μm Serivex filters (10 L per filter
for each depth interval) using previously reported sample collection and
filtration protocols. These protocols can be viewed as visualized experiments
at www.jove.com/video/1159/ (66) and www.jove.com/video/1161/ (67), re-
spectively. DNA was extracted from Sterivex filters as described by Zaikova
et al. (66) and DeLong et al. (68). The DNA extraction protocol can be viewed
as a visualized experiment at www.jove.com/video/1352/ (69). DNA extracts
from the 50-m depth interval were amplified using the universal three do-
main primers 926F (5′-cct atc ccc tgt gtg cct tgg cag tct cag AAA CTY AAA
KGA ATT GRC GG-3′) and 1392R (5′-cca tct cat ccc tgc gtg tct ccg act cag-
<XXXXX>-ACG GGC GGT GTG TRC-3′) targeting the V6–V8 region of the SSU
ribosomal RNA (16S rRNA) gene. Primer sequences were modified by the
addition of 454 A or B adapter sequences (lowercase). In addition, the re-
verse primer included a 5-bp barcode designated <XXXXX> for multiplexing
of samples during sequencing. Twenty-microliter PCR reactions were per-
formed in duplicate and pooled to minimize PCR bias using 0.4 μL of Ad-
vantage GC 2 Polymerase Mix (Advantage-2 GC PCR Kit; Clontech), 4 μL of 5X
GC PCR buffer, 2 μL of 5M GC Melt Solution, 0.4 μL of 10 mM dNTP mix (MBI
Fermentas), 1.0 μL of each 25 nM primer, and 10 ng of sample DNA. The
thermal cycler protocol was 95 °C for 3 min; 25 cycles of 95 °C for 30 s, 50 °C
for 45 s, and 68 °C for 90 s; and a final 10-min extension at 68 °C. PCR
amplicons were purified using SPRI Beads and quantified using a Qubit
fluorometer (Invitrogen). Samples were diluted to 10 ng/μL and mixed in
equal concentrations. Emulsion PCR and sequencing of the PCR amplicons
were performed at the Department of Energy Joint Genome Institute fol-
lowing the Roche 454 GS FLX Titanium (454 Life Sciences) technology
according to the manufacturer’s instructions.

Pyrotag Sequence Processing and Phylogenetic Analysis. Pyrotag sequences
from three independent runs of the 50-m sample were pooled, trimmed to a
fixed length (250 nt), and analyzed using the “UPARSE” pipeline in USEARCH
(version 6.0) (70). Briefly, samples were dereplicated (USEARCH command
“derep_fulllength”), sorted by size (USEARCH command “sortbysize,” minsize
option 2 to exclude singletons), and clustered in operational taxonomic units at
97% nucleotide identity (command -cluster_otus). OTU sequences were then
screened for chimeras against the SILVA rRNA gene database (version 119,
command “uchime_ref”). Dereplicated sequences were then mapped to OTU
sequences (command “usearch_global”). Nonchimeric OTU sequences were di-
rectly compared with the SILVA rRNA database (version 119) and 16S rRNA
genes from the eastern tropical South Pacific and Saanich Inlet using the nu-
cleotide basic local alignment search tool (BLASTN) (71). Relative abundance
matrices were generated based on the best-BLAST hit to the SILVA rRNA gene
database using the “summarize_taxa.py” script in the QIIME software package
(72). Thaumarchaeal 16S rRNA genes, their respective best-BLASTN hits, and
pure-culture thaumarchaeal rRNAs were aligned using the SINA alignment tool
with the default settings. The resulting alignment was then imported into the
ARB environment. Phylogenetic trees of partial full-length 16S rRNA genes (600
bp or greater) were made using neighbor-joining with the jukes-cantor cor-
rection. Short sequences were then inserted into this backbone tree using the
parsimony tool.
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