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The anaphase-promoting complex/cyclosome (APC/C) is a large
multimeric cullin–RING E3 ubiquitin ligase that orchestrates cell-cycle
progression by targeting cell-cycle regulatory proteins for destruc-
tion via the ubiquitin proteasome system. The APC/C assembly
comprises two scaffolding subcomplexes: the platform and the
TPR lobe that together coordinate the juxtaposition of the cata-
lytic and substrate-recognition modules. The platform comprises
APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of
Apc1 as an APC/C scaffolding subunit has been characterized, its
specific functions in contributing toward APC/C catalytic activity
are not fully understood. Here, we report the crystal structure of
the N-terminal domain of human Apc1 (Apc1N) determined at
2.2-Å resolution and provide an atomic-resolution description of
the architecture of its WD40 (WD40 repeat) domain (Apc1WD40). To
understand how Apc1WD40 contributes to APC/C activity, a mutant
form of the APC/C with Apc1WD40 deleted was generated and
evaluated biochemically and structurally. We found that the de-
letion of Apc1WD40 abolished the UbcH10-dependent ubiquitina-
tion of APC/C substrates without impairing the Ube2S-dependent
ubiquitin chain elongation activity. A cryo-EM structure of an
APC/C–Cdh1 complex with Apc1WD40 deleted showed that the mu-
tant APC/C is locked into an inactive conformation in which the
UbcH10-binding site of the catalytic module is inaccessible. Addi-
tionally, an EM density for Apc15 is not visible. Our data show that
Apc1WD40 is required to mediate the coactivator-induced conforma-
tional change of the APC/C that is responsible for stimulating APC/C
catalytic activity by promoting UbcH10 binding. In contrast, Ube2S
activity toward APC/C substrates is not dependent on the initia-
tion-competent conformation of the APC/C.
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The eukaryotic cell cycle is controlled by oscillations in the
activities of key regulatory proteins through the interplay

of reversible protein phosphorylation and irreversible ubiquitin-
dependent proteolysis (1–3). By ubiquitinating essential cell-cycle
proteins, the anaphase-promoting complex/cyclosome (APC/C) is
the crucial RING E3 ubiquitin ligase that controls accurate sister
chromatid segregation, cytokinesis, and the initiation of chromo-
some replication (4–9). The APC/C and a second cullin–RING E3
ligase, the Skp1–Cul1–F-box protein (SCF), coordinate cell-cycle
regulation and are important players in cancer biogenesis (10).
APC/C activity is controlled by its association with one of two

coactivator subunits (either Cdc20 or Cdh1) that function to specify
substrate recognition and stimulate ubiquitin transfer reactions
(11–14). The mitotic coactivator Cdc20 preferentially binds to
hyperphosphorylated APC/C, whereas Cdh1 also binds to
unphosphorylated APC/C. Coactivators enhance vertebrate
APC/C catalytic activity by increasing its affinity for the priming
E2 UbcH10 (also known as “Ube2C”) (12), whereas in budding
yeast APC/C coactivators enhance E2 catalytic efficiency (13).
The APC/C is a multisubunit E3 ligase composed of 15 different
proteins (12). Five are tetratricopeptide repeat (TPR) proteins,
four of which (Apc3, Apc6, Apc7, and Apc8) form structurally

related homodimers. Apc12, Apc13, and Apc16 are TPR accessory
subunits. Apc1 is the largest scaffolding subunit (molecular mass
∼200 kDa) (15). Its proteasome cyclosome (PC) domain shares the
same PC repeat architecture as the Rpn1 and Rpn2 subunits of the
19S proteasome (16). The N-terminal region of Apc1 (Apc1N) is
rich in β-strands and possesses a multitude of regulatory phos-
phorylation sites (17, 18). The APC/C catalytic module composed
of Apc2 and Apc11 recruits canonical E2s (UbcH10 and UbcH5
in vertebrates, Ubc1 and Ubc4 in budding yeast) to catalyze
substrate ubiquitination (19, 20). Apc2 is a cullin domain protein
that interacts with the RING domain subunit Apc11. Apc10 and
the coactivators are responsible for APC/C substrate recruitment.
Apc15 is required for Cdc20 autoubiquitination in the context
of the mitotic checkpoint complex (MCC), thereby regulating
APC/C–MCC disassembly (21–23).
In human APC/C, UbcH10 and Ube2S synthesize polyubiquitin

chains through a sequential mechanism. The association of UbcH10
with the RING domain of Apc11 (Apc11RING) and Apc2’s
winged-helix B domain (Apc2WHB) initiates ubiquitin-chain
formation (19, 20, 24–26). Ube2S, on the other hand, is responsible
for ubiquitin-chain extension and specifically assembles Lys11-linked
ubiquitin chains on substrates targeted by the APC/C (14, 25, 27–30).
In vertebrates, the RING domain of Apc11 is repurposed to
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position the acceptor ubiquitin, conjugated to an APC/C substrate,
for modification by Ube2S (14, 30, 31). UbcH10 and Ube2S
together build branched ubiquitin chains on APC/C substrates,
and these chains are recognized more efficiently by the protea-
some (32). In budding yeast, APC/C modifies substrates with
Lys48-linked ubiquitin chains. The E2 Ubc4 initiates the ubiq-
uitin chain synthesis, whereas Ubc1 extends the Lys48-linked
ubiquitin chains (33, 34).
Previous cryo-EM studies showed that Cdh1 association with

the APC/C promotes substantial conformational changes in the
catalytic module and the neighboring platform subunits Apc1,
Apc4, and Apc5 (12). This change in conformation exposes the
UbcH10-binding site of the catalytic module, enhancing UbcH10
association and thereby stimulating APC/C E3 ligase activity (12,
19). Here, we combined biochemical methods, X-ray crystallog-
raphy, and single-particle EM to study the structure of Apc1N
and to examine its functions in vitro. We demonstrate that Apc1N
is essential for APC/C catalytic activity because it is required to
mediate the coactivator-induced conformational changes necessary
for UbcH10 to engage the APC/C catalytic module.

Results
Apc1N Comprises a WD40 β-Propeller Domain. The domain architec-
ture of full-length Apc1 is shown in Fig. 1A. Apc1N is followed
by the middle domain (Mid-N), a PC domain, and a C-terminal
domain (Mid-C) that coalesces with Mid-N to form Apc1Mid

(19). Combining the secondary structure predictions of Apc1 with
structural information from the APC/C atomic model determined
using a 3.6-Å resolution cryo-EM map (19), we designed the fol-
lowing Apc1N constructs: Apc1NWT, Apc1NΔloop2, Apc1NΔloops2&3,
and Apc1NΔloops1&2&3 (Fig. 1B). The resultant proteins were
expressed using the insect cell/baculovirus system, purified (Fig.
S1A), and screened for crystallization conditions. The stability of
the four Apc1N constructs was examined using thermal shift assays.
The combined deletion of loops 1, 2, and 3 (Apc1NΔloops1&2&3)
greatly increased the thermal stability of the protein (Fig. S1 B and
C) and allowed its crystallization.
The Apc1NΔloops1&2&3 construct yielded protein crystals that

diffracted to 2.2-Å resolution (Table S1). The crystal structure of
Apc1NΔloops1&2&3 was determined using the cryo-EM–derived
APC/C atomic model (19) as a search object in molecular re-
placement. The crystal structure of Apc1NΔloops1&2&3 was confirmed
as a WD40 β-propeller domain, which consists of seven blades, each
with either four or five β-strands (Fig. 1B and Fig. S1D). The Apc1
WD40 domain (Apc1WD40) is ∼70 Å in diameter across its top face
and ∼50 Å in height (Fig. 1B). In blade 7, an N-terminal β-strand
(β7D) joins strands β7A–C to close the propeller in a Velcro-like
closure common to β-propeller domains (35). Loop 2, the longest
disordered loop, was removed from the segment connecting
β-strands β4D and β4E, and loops 1 and 3 were removed from
the segments connecting β7D with β1A and β6D with β7A, re-
spectively (Fig. 1B and Fig. S1D). There is only one helical region in
Apc1WD40, located within the extended loop that emerges from
strand β7D. The WD40 repeat domain is an ancient conserved ar-
chitecture that functions in many cellular processes (36, 37). The
similarities of Apc1WD40 to other WD40 domain proteins were
assessed using the pairwise structural comparison server DALI
(Table S2) (38).
As expected, the Apc1WD40 crystal structure is in good agree-

ment with the Apc1WD40 model from the cryo-EM structure of
APC/C–Cdh1–Emi1 at 3.6 Å (19). The two structures aligned with
an rmsd value of 1 Å (Fig. S2A). Because the crystal structure is at
higher resolution than the cryo-EM structure, it better defines
side-chain rotamers (Fig. S2 B and C), and Apc1WD40

–water
interactions also can be observed.

Apc1WD40 Interacts with Apc5 and Apc8B. Within the context of the
APC/C assembly, Apc1WD40 tucks into the helical groove of

Apc5TPR (the TPR domain of Apc5) and forms an edge-on
contact with the C-terminal TPR helix of Apc8B (one subunit of
the homodimer Apc8) (Fig. S3) (12, 19). To gain structural in-
sights into the interactions of Apc1WD40 with Apc5 and Apc8B,
we mapped the sequence conservation and electrostatic potential
of Apc1WD40 onto its molecular surface. The surface electro-
static analysis shows that Apc1WD40 is predominantly negatively
charged, especially on surfaces that interact with complementary
positively charged regions of Apc5 and Apc8B (Fig. S3), and,
notably, these interacting regions are evolutionarily conserved
(Fig. S3 D and E). The interface interactions between Apc1WD40

and Apc5 and Apc8B were analyzed using Protein Interfaces,
Surfaces, and Assemblies (PISA) (Table S3). Conformational
differences between the crystal and EM structures of Apc1WD40,
confined mainly to surface loops, accommodate the interaction
of Apc1WD40 with Apc5 and Apc8B (Fig. S3 B and C).

Apc1WD40 Is Required for APC/C–UbcH10 Ubiquitination Activity. To
understand better the function of Apc1WD40 for APC/C activity
and its contribution to the overall conformation of the APC/C,
we reconstituted recombinant mutant APC/C lacking Apc1WD40

(APC/CΔApc1−WD40) and tested its activity using in vitro ubiq-
uitination assays. As judged by SDS/PAGE gels (Fig. S4A) and
single-particle negative-stain EM (Fig. 2A), APC/CΔApc1−WD40

was assembled correctly. Strikingly however, in contrast to wild-type
APC/C, the UbcH10-dependent APC/C ubiquitination activity
was abolished, even at 30 μM UbcH10 [∼100-fold its Kd (12)]
(compare lanes 2–4 with lanes 5–7 in Fig. 2C). When the purified
Apc1WD40 was added back to the APC/CΔApc1−WD40, ubiquitina-
tion activity was restored (lanes 8–10 in Fig. 2C). In addition, the
reconstituted APC/CΔApc1−WD40

–Apc1WD40 complex is struc-
turally equivalent to the wild-type PC/C complex as revealed by
negative-stain EM (Fig. 2B), indicating that the mutant complex
activity and structure could be fully recovered by the addition of
Apc1WD40. Thus, Apc1WD40 is essential for APC/C–Cdh1–UbcH10
catalytic activity.

An Apc1WD40 Loop Regulates APC/CCdc20 Activity.As discussed above,
three disordered loops were deleted from Apc1WD40 to aid suc-
cessful protein crystallization. Numerous mitotic phosphorylation
sites are located within these loops, implicating a potential role in
regulating Cdc20 interactions with the APC/C. This idea has been
confirmed recently by structural and biochemical studies (39, 40).
We therefore addressed the requirement of these Apc1WD40 loops
for APC/C activity. To obtain versions of APC/C lacking one or
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more Apc1WD40 loops, APC/CΔApc1−WD40 was reconstituted with
individual Apc1WD40 loop-deletion constructs. The activity of the
resultant reconstituted APC/C was then tested. These tests showed
that the catalytic activity of APC/CΔApc1−WD40

–Cdh1 is restored

with any of the Apc1WD40 loop-deletion constructs (lanes 4, 6, 8,
and 10 in Fig. 2D). Therefore the three loops of Apc1WD40 are
not required for APC/C–Cdh1 catalytic activity. Strikingly, when
we used Cdc20 as the coactivator, although APC/CΔApc1−WD40

was not activated using wild-type Apc1WD40 (lane 4 in Fig. 2E),
the loop 2 deletion construct of Apc1WD40 generated active APC/
CCdc20 (lane 6 in Fig. 2E). Additional deletions of loops 1 and 3
did not further activate APC/CCdc20 (lanes 8 and 10 in Fig. 2E).
This result, indicating that loop 2 (residues 307–402) of Apc1WD40

inhibits Cdc20 activity, is in agreement with the identification of an
autoinhibitory segment within this loop that blocks the binding site
of the coactivator C-box on Apc8B (39, 40). Phosphorylation of
loop 2 (referred to as the “300s loop” in ref. 39) by mitotic kinases
displaces the autoinhibitory segment, relieving the steric blockade
of the C-box binding site, thereby permitting APC/C–Cdc20 in-
teractions (39). Thus, deletion of loop 2 of Apc1WD40 (also termed
the “300s loop”) enables APC/CCdc20 activation, mimicking the
effects of mitotic APC/C phosphorylation. This finding is in
agreement with recent studies (39, 40).

Apc1WD40 Is Required for the APC/C–Cdh1 Complex to Bind UbcH10.
The loss of APC/C catalytic activity in the absence of Apc1WD40

could result from the loss of either UbcH10 or substrate/coactivator
interactions with the mutant APC/C. The latter possibility was
excluded because an APC/CΔApc1−WD40

–Cdh1–Hsl1 complex
was isolated using size-exclusion chromatography (lane 4 in Fig.
S4B). To test the association of UbcH10 with both the APC/C
and APC/CΔApc1−WD40, size-exclusion chromatography was
performed. An excess of biotinylated UbcH10, prepared as de-
scribed (12), was incubated with either wild-type ternary APC/C–
Cdh1–Hsl1 or mutant ternary APC/CΔApc1−WD40

–Cdh1–Hsl1
complexes. Although wild-type ternary APC/C binds UbcH10
(lane 2 in Fig. S4C), virtually no UbcH10 coeluted with
APC/CΔApc1−WD40

–Cdh1–Hsl1 (lane 4 in Fig. S4C). However,
UbcH10 associated with the reconstituted APC/CΔApc1−WD40

–

Cdh1–Hsl1–Apc1WD40 complex, as it did with wild-type APC/C
(lane 6 in Fig. S4C). Thus, Apc1WD40 is required for UbcH10 to
associate optimally with the APC/C–coactivator complex, and
the loss of UbcH10-dependent catalytic activity of the APC/
CΔApc1−WD40 mutant results (at least in part) from the loss of
UbcH10 binding.
UbcH10LR [a fusion of the LRmotif of Ube2S (residues 154–222)

to the C terminus of UbcH10] has a higher affinity for APC/C
than does wild-type UbcH10 because the LR motif of UbcH10LR

engages the LR motif-binding site at the interface of Apc2 and
Apc4 (12, 19). Using size-exclusion chromatography, we could
detect binding of UbcH10LR to both APC/C–Cdh1–Hsl1 and
APC/CΔApc1−WD40

–Cdh1–Hsl1 (lanes 3 and 5 in Fig. S4B).
However, despite the binding of UbcH10LR to APC/CΔApc1−WD40,
the mutant APC/CΔApc1−WD40

–Cdh1 complex was still unable
to ubiquitinate Hsl1 (compare lanes 2 and 3 with lanes 4 and 5
in Fig. 2F). These data are consistent with the idea that in the
APC/CΔApc1−WD40

–Cdh1 complex the recognition site for the
Ubc domain of UbcH10 on the APC/C’s catalytic module, necessary
to stimulate UbcH10 catalytic activity (19, 20), is not accessible.

Apc1WD40 Is Not Required for APC/C–Ube2S Ubiquitination Activity.
Although the APC/CΔApc1−WD40

–Cdh1–UbcH10 E2–E3 pair is
deficient in substrate ubiquitination, it remained possible that
APC/CΔApc1−WD40

–Cdh1 might still promote Ube2S-dependent
extension of ubiquitin moieties conjugated to APC/C substrates. To
address this possibility, we tested whether APC/CΔApc1−WD40

–Cdh1
could catalyze Ube2S-mediated elongation of an APC/C sub-
strate primed with ubiquitin. We used a modified Hsl1 sub-
strate in which all Lys residues except that in the KEN box were
replaced with arginines and a ubiquitin moiety was fused to
Hsl1’s C terminus (Hsl1–K1–Ub). Interestingly, both wild-
type APC/C–Cdh1 (lanes 2 and 3 in Fig. 2G) and the mutant
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4). In contrast to wild-type APC/C, APC/CΔApc1−WD40

–UbcH10 did not
ubiquitinate Hsl1 (lanes 5 to 7). Adding back Apc1WD40 to APC/CΔApc1−WD40

restored activity (lanes 8 to 10). (D) Ubiquitination assays of the Cdh1-mediated
APC/CΔApc1−WD40-loops activity. Lanes 1 to 10 correspond to lanes 1, 2, 11, 12,
and 5-10 of the original Western blot. This is consistent with the order of lanes
in Fig. 2E. Lines were added surrounding spliced lanes 3 and 4. As in C, APC/
CΔApc1−WD40

–Cdh1 showed no activity compared with apo APC/CΔApc1−WD40.
The APC/C–Cdh1 ubiquitination activity toward Hsl1 was restored by adding
back Apc1WD40, Apc1WD40–Δloop2, Apc1WD40–Δloops2&3, and Apc1WD40–Δloops1&2&3.
(E) Ubiquitination activity of APC/CΔApc1−WD40 with Cdc20 and loop deletions of
Apc1WD40. APC/CΔApc1−WD40

–Cdc20 was not active and could not be activated
with wild-type Apc1WD40. The addition of Apc1WD40–Δloop2, Apc1WD40–Δloops2&3,
or Apc1WD40–Δloops1&2&3 to APC/CΔApc1 allowed APC/CΔApc1 to be activated by
Cdc20. (F) Ubiquitination activity of APC/C–UbcH10LR toward Hsl1. In con-
trast to wild-type APC/C (lanes 2 and 3), APC/CΔApc1−WD40

–UbcH10LR did
not ubiquitinate Hsl1 (lanes 4 and 5). The addition of Apc1WD40 restored
the ubiquitination activity (lanes 6 and 7). (G) Ubiquitination assay of
APC/CΔApc1−WD40 with Cdh1, Hsl1–K1–Ub, and Ube2S. APC/CΔApc1−WD40

–Cdh1
showed higher activity than the wild-type APC/C–Cdh1. The reconstituted
APC/CΔApc1−WD40

–Cdh1–Apc1WD40 complex showed activity similar to that of
wild-type APC/C.
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APC/CΔApc1−WD40
–Cdh1 (lanes 4 and 5 in Fig. 2G) ubiquitinated

Hsl1–K1–Ub. Surprisingly, APC/CΔApc1−WD40 had a slightly
higher activity than wild-type APC/C. In conclusion, our results
reveal that without Apc1WD40 the APC/CΔApc1−WD40

–Cdh1–Hsl1
complex is impaired in substrate ubiquitination because its ability
to bind UbcH10 in a catalytically productive mode is disrupted.

The APC/CΔApc1−WD40
–Cdh1–Hsl1 Complex Is Locked in the Inactive

Conformation. Previous cryo-EM reconstructions of human
APC/C revealed that coactivator induces a conformational
change of the platform subcomplex and the associated Apc2–
Apc11 catalytic module. Additionally, the entire TPR sub-
complex rotates relative to Apc1PC. In the presence of coactivator,
the catalytic module is shifted to an upward position, away from
Apc4 and Apc5 of the platform, thereby exposing the UbcH10-
binding sites on Apc11RING and Apc2WHB (Fig. 3 A and B) (12, 19,
20). In these structures the small subunit Apc15, which is required for
Cdc20 autoubiquitination (21–23), adopts an extended confor-
mation anchored to Apc5 by its N terminus and bridging
Apc5 and Apc8A through its adjacent N-terminal helix (Apc15NTH)
(Fig. 3 A and B).
To obtain structural insights into the inability of APC/

CΔApc1−WD40 to ubiquitinate substrates when paired with
UbcH10, we determined the cryo-EM structures of both apo

APC/CΔApc1−WD40 (Fig. 3 C and D) and a ternary APC/
CΔApc1−WD40

–Cdh1–Hsl1 complex (Fig. 3 C and E) at 6.0-Å reso-
lution (Fig. S5 C–J). An atomic model of apo APC/CΔApc1−WD40

(Fig. 4D) was built by docking models of apo APC/C (39) into the
cryo-EM reconstruction. APC/CΔApc1−WD40

–Cdh1–Hsl1 (Fig. 4E)
was built using apo APC/C (39) and APC/C–Cdh1–Hsl1–UbcH10
(19) coordinates. Except for the absence of Apc1WD40, the apo
states of wild-type APC/C and mutant APC/CΔApc1−WD40 are
essentially identical (Fig. 4 A and D).
Strikingly, 3D classification of the APC/CΔApc1−WD40

–Cdh1–
Hsl1 cryo-EM dataset showed that even when associated with
coactivator, APC/C particles are locked in the inactive state with
the catalytic module occupying the downward position (Figs. 3 C
and E and 4E). This APC/C conformation resembles apo APC/C
(Fig. 4 A and D) and is associated with low affinity for UbcH10
and low ubiquitination activity (12). The smaller coactivator-
induced rotation of the entire TPR subcomplex relative to Apc1PC

is retained in APC/CΔApc1−WD40. In the downward conformation,
UbcH10 is unable to engage the catalytic module for two rea-
sons. First, docking UbcH10 onto Apc11RING, as observed in the
APC/C–Cdh1–substrate–UbcH10 complex (19, 20), shows that
UbcH10 would clash with Apc5TPR. Second, in this conformation
Apc2WHB, which is required for high-affinity UbcH10 interac-
tions and for stimulating ubiquitin transfer from UbcH10–Ub
conjugates (20), would clash with Apc5TPR (see Fig. S7). In
contrast to apo APC/CΔApc1−WD40 and the ternary APC/C–
Cdh1–Hsl1 complex, EM densities corresponding to Apc15 and
the N-terminal TPR helix of Apc5TPR are not visible in the APC/
CΔApc1−WD40

–Cdh1–Hsl1 complex (Fig. 3 D and E), indicating
their structural disorder. Size-exclusion chromatography showed
that Apc15 dissociated from the APC/CΔApc1−WD40

–Cdh1–Hsl1
complex (Fig. S5 A and B).
The disordering of Apc15 and the N-terminal TPR helix of

Apc5TPR is a consequence of the Cdh1-induced conformational
change of the APC/C that is disrupted in the APC/CΔApc1−WD40

mutant by the loss of Apc1WD40. In apo APC/C (wild type
and APC/CΔApc1−WD40 mutant), Apc8B is well ordered, and its
C-terminal TPR motifs interact with the outer α-helices of
Apc1PC (Fig. 4 C and F and Fig. S6) (12, 19). On associating with
the APC/C, the N-terminal domain of Cdh1 (Cdh1NTD) interacts
both with Apc8B (C-box interaction) and with a site on Apc1PC

that overlaps with the Apc1PC–Apc8B interface (Fig. S6)
(12, 19). This latter interaction disrupts Apc8B–Apc1PC contacts,
resulting in a downward shift of Apc8B’s C-terminal TPR motifs.
The downward movement of Apc8B pushes simultaneously on
the N-terminal TPR helix of Apc5TPR and on Apc1WD40. In turn,
movement of Apc1WD40 causes a shift of the C-terminal TPR
helix of Apc5TPR, resulting in a concerted motion of the whole
Apc5TPR domain. The overall effect is that the platform sub-
complex rotates, lifting it and the associated catalytic module
upward at the front of the molecule into the catalytically active
conformation (Fig. 4 B and C) (12, 19). In APC/CΔApc1−WD40

–

Cdh1–Hsl1, however, because of the loss of Apc1WD40, the
downward movement of Apc8B causes a displacement of only
the N-terminal TPR helix of Apc5TPR, whereas the C-terminal
TPR helix of Apc5TPR remains in the inactive conformation.
Motion of the C-terminal TPR helix of Apc5TPR is likely to be
the main driving force for rotation of the platform. Thus, with
Apc8B pushing down on the N-terminal TPR helix of Apc5TPR,
without motion of Apc4 and the C-terminal TPR helix of
Apc5TPR, the N-terminal TPR helix of Apc5TPR clashes with
Apc8B, distorting the TPR helical geometry; this distortion is
likely further accentuated by the noncoordinated motion of the
C-terminal TPR helix of Apc5TPR (Fig. S6). Thus the loss of
Apc1WD40 destabilizes and disorders the N-terminal TPR helix
of Apc5TPR and disrupts interactions with the N-terminal extended

Fig. 3. Cdh1 cannot induce the active conformation of APC/CΔApc1−WD40. (A
and B) Ribbon representation of wild-type apo APC/C (A) and ternary APC/
C–Cdh1–Hsl1 complex (B). These two structures show the coactivator-in-
duced conformational change of the catalytic module of Apc2–Apc11.
(C) Superimposition of the 6-Å resolution cryo-EM maps of apo APC/CΔApc1−WD40

(yellow) and the ternary APC/CΔApc1−WD40
–Cdh1–Hsl1 complex (light blue).

(D) View of the apo APC/CΔApc1−WD40 molecular envelope with the EM
maps color-coded according to subunit assignments. (E) View of the ternary
APC/CΔApc1−WD40

–Cdh1–Hsl1 EM map. The EM density for Apc15 seen in D is
not visible.
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segment of Apc15 that is responsible for anchoring Apc15 to Apc5
(Fig. 3D).
Interestingly, the conformation of APC/CΔApc1−WD40

–Cdh1–
Hsl1 resembles the hybrid class observed in the EM datasets
of wild-type ternary APC/C–coactivator–substrate complexes
(∼10% of APC/C particles) (12, 19, 39). In the hybrid state, the
catalytic module adopts the inactive conformation, and EM
densities for Apc1WD40 and Apc15 are absent. We assume that
the hybrid state results from an N-terminal truncation of a minor
portion of Apc1 during expression and purification of the
recombinant APC/C (Figs. S4B and S5A).

Discussion
In this study we have used information from a cryo-EM model to
determine the crystal structure of Apc1WD40 at higher resolution,
highlighting the complementarity of X-ray crystallography and
cryo-EM. Our results reveal that, in the absence of Apc1WD40,
the APC/CΔApc1−WD40

–Cdh1–Hsl1 complex is locked in the
inactive conformation with the Apc2CTD–Apc11RING catalytic mod-
ule positioned in the downward conformation. Thus, Apc1WD40

functions to stabilize the active conformation of the APC/C but is
not required to stabilize the inactive conformation.
The inability of APC/CΔApc1−WD40 to adopt the active

conformation results in a loss of catalytic activity of the APC/
CΔApc1−WD40

–Cdh1–UbcH10 E3–E2 pair because UbcH10 is un-
able to engage APC/C’s catalytic module. However, this inactive
conformation did not affect the ability of Ube2S to assemble a
polyubiquitin chain on Hsl1–K1–Ub. This finding indicates that,
although coactivators regulate the catalytic activity of the APC/C
toward the priming E2 (UbcH10) through a conformational
change that renders the UbcH10-binding site on the catalytic
module accessible, the intrinsic catalytic activity of the APC/C–
Ube2S pair is independent of coactivator. Unlike UbcH10, the
affinity of Ube2S for the APC/C is not dependent on coactivator
(12). Ube2S interacts with the APC/C through its C-terminal LR
tail at the interface of Apc2–Apc4 (19) and interacts with Apc2
through its Ubc catalytic domain (31). This LR tail-binding site
does not change conformation on interconversion between active
and inactive states (12, 39). Although independent of the catalytic
module for APC/C binding, the catalytic activity of Ube2S requires

the RING domain of Apc11 that is repurposed to engage the ac-
ceptor ubiquitin of the APC/C substrate for covalent linkage with
the donor ubiquitin of the Ube2S–ubiquitin conjugate (14, 30).
The acceptor ubiquitin-binding site on Apc11 is accessible in the
inactive APC/C conformation (Fig. 3 D and E) as is consistent with
our findings that Ube2S extends ubiquitin on the Hsl1–K1–Ub
substrate in the context of the APC/CΔApc1−WD40

–Cdh1–Hsl1–Ub
complex. This study shows that, similar to the affinity of Ube2S
for the APC/C (19), the catalytic activity of Ube2S in complex
with the APC/C is not stimulated by the coactivator-induced
conformational changes within the APC/C.
The affinity of apo APC/C for UbcH10 is four- to eightfold

lower than for the ternary APC/C–Cdh1–substrate complex (12).
However, the present study indicates that the inactive conforma-
tion adopted by apo APC/C would be incapable of engaging
UbcH10. We suggest that the APC/C interconverts between an
inhibited conformation that is unable to bind UbcH10 and an ac-
tive conformation that binds UbcH10 even in the absence of
coactivator. This interconversion would explain the capacity of apo
APC/C to bind UbcH10 with low affinity, the small but detectable
binding of UbcH10 to APC/CΔApc1−WD40

–Cdh1–Hsl1 (Fig. S4C),
and the low ubiquitination activity of APC/CΔApc1−WD40 (Fig. 2D).
Analysis of 3D classes of apo wild-type APC/C and mutant APC/
CΔApc1−WD40 EM datasets indicates a small population of mole-
cules (roughly 8%) in which the catalytic module (Apc2CTD–
Apc11) adopts an upward conformation because of rotation about
the Apc2CTD–Apc2NTD interface, with the platform remaining in
the inactive conformation (Fig. S7 C and D). This upward con-
formation of the catalytic module would allow binding of UbcH10
to Apc11RING and Apc2WHB (Fig. S7 E and F).
It is interesting to consider the possibility that controlling the

association of Apc1WD40 with its binding pocket in the APC/C
could provide a potential regulatory mechanism. Thus, proteins
that bind to Apc1WD40 and compete for its association with its
docking site on the APC/C would displace Apc1WD40, thereby
inactivating the APC/C. The APC/CΔApc1−WD40 mutant has
unexpectedly provided a system for exploring the different
ubiquitination mechanisms of human APC/C with its two cog-
nate E2s UbcH10 and Ube2S.
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Fig. 4. Comparison of apo APC/CΔApc1−WD40 and ternary APC/CΔApc1−WD40
–Cdh1–Hsl1 complexes with wild-type APC/C. (A) Apo APC/C. (B) Ternary APC/C–

Cdh1–Hsl1. (C) Schematic of the conformational change on conversion from the apo to the ternary state. The N-terminal domain of Cdh1 (Cdh1NTD) acts as a
wedge to separate Apc1PC from Apc8B. Apc8B is pushed down on Apc5TPR and Apc1WD40, shifting Apc4 and causing the platform subcomplex to rotate.
(D) Apo APC/CΔApc1−WD40. (E) Ternary APC/CΔApc1−WD40

–Cdh1–Hsl1. (F) Schematic of the conformational change on conversion from the apo to the ternary
state. Apc8B pushes down on Apc5TPR; however, because of the absence of Apc1WD40, the conformational changes are not transmitted to Apc4; the platform
remains unchanged, and the N-terminal domain of Apc5TPR becomes distorted, destabilizing its contacts with the N terminus of Apc15, which dissociates.
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Materials and Methods
X-ray data were collected at the Diamond Light Source beamline I02 using a
Pilatus 6M-F silicon pixel detector and were processed using XDS (41) and
scaled using Aimless (42) in the CCP4i software package (43, 44). Cryo-EM
data were collected using a 300-kV FEI Polara electron microscope and were
processed using the RELION (Regularized Likelihood Optimization) software
package (45). Detailed procedures for the protein preparation, ubiquitination
assays, crystallization, and EM data processing are provided in SI Materials
and Methods.
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