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Medical research has evolved conventions for choosing sample
size in randomized clinical trials that rest on the theory of hypothesis
testing. Bayesian statisticians have argued that trials should be
designed to maximize subjective expected utility in settings of
clinical interest. This perspective is compelling given a credible
prior distribution on treatment response, but there is rarely consen-
sus on what the subjective prior beliefs should be. We use Wald’s
frequentist statistical decision theory to study design of trials un-
der ambiguity. We show that e-optimal rules exist when trials have
large enough sample size. An e-optimal rule has expected welfare
within e of the welfare of the best treatment in every state of
nature. Equivalently, it has maximum regret no larger than e.
We consider trials that draw predetermined numbers of subjects
at random within groups stratified by covariates and treatments.
We report exact results for the special case of two treatments and
binary outcomes. We give simple sufficient conditions on sample
sizes that ensure existence of e-optimal treatment rules when there
are multiple treatments and outcomes are bounded. These condi-
tions are obtained by application of Hoeffding large deviations in-
equalities to evaluate the performance of empirical success rules.
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Acore objective of randomized clinical trials (RCTs) comparing
alternative medical treatments is to inform treatment choice

in clinical practice. However, the conventional practice in designing
trials has been to choose a sample size that yields specified statis-
tical power. Power, a concept in the statistical theory of hypothesis
testing, is at most loosely connected to effective treatment choice.
This paper develops an alternative principle for trial design

that aims to directly benefit medical decision making. We propose
choosing a sample size that enables implementation of near-optimal
treatment rules. Near optimality means that treatment choices
are suitably close to the best that could be achieved if clinicians
were to know with certainty mean treatment response in their
patient populations. We report exact results for the case of two
treatments and binary outcomes. We derive simple formulas to
compute sufficient sample sizes in clinical trials with multiple
treatments.
Whereas our immediate concern is to improve the design of

RCTs, our work contributes more broadly by adding to the
reasons why scientists and the general public should question the
hegemony of hypothesis testing as a methodology used to collect and
analyze sample data. It has become common for scientists to express
concern that evaluation of empirical research by the outcome of
statistical hypothesis tests generates publication bias and dimin-
ishes the reproducibility of findings. See, for example, ref. 1 and the
recent statement by the American Statistical Association (2). We
call attention to a further deficiency of testing. In addition to
providing an unsatisfactory basis for evaluation of research that
uses sample data, testing also is deficient as a basis for the design of
data collection.

Background
The Conventional Practice. The conventional use of statistical
power calculations to set sample size in RCTs derives from the
presumption that data on outcomes in a classical trial with per-
fect validity will be used to test a specified null hypothesis against
an alternative. A common practice is to use the outcome of a

hypothesis test to recommend whether a patient population
should receive a status quo treatment or an innovation. The
usual null hypothesis is that the innovation is no better than the
status quo and the alternative is that the innovation is better. If
the null hypothesis is not rejected, it is recommended that the
status quo treatment should continue to be used. If the null is
rejected, it is recommended that the innovation should replace
the status quo as the treatment of choice.
The standard practice has been to perform a test that fixes the

probability of rejecting the null hypothesis when it is correct,
called the probability of a type I error. Then sample size deter-
mines the probability of rejecting the alternative hypothesis when
it is correct, called the probability of a type II error. The power
of a test is defined as one minus the probability of a type II error.
The convention has been to choose a sample size that yields
specified power at some value of the effect size deemed clinically
important.
The US Food and Drug Administration (FDA) uses such a

test to approve new treatments. A pharmaceutical firm wanting
approval of a new drug (the innovation) performs RCTs that
compare the new drug with an approved drug or placebo (the
status quo). An FDA document providing guidance for the de-
sign of RCTs evaluating new medical devices states that the
probability of a type I error is conventionally set to 0.05 and that
the probability of a type II error depends on the claim for the device
but should not exceed 0.20 (3). The International Conference on
Harmonisation has provided similar guidance for the design
of RCTs evaluating pharmaceuticals, stating (ref. 4, p. 1923)
“Conventionally the probability of type I error is set at 5% or
less or as dictated by any adjustments made necessary for
multiplicity considerations; the precise choice may be influ-
enced by the prior plausibility of the hypothesis under test and
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the desired impact of the results. The probability of type II
error is conventionally set at 10% to 20%.”
Trials with samples too small to achieve conventional error

probabilities are called “underpowered” and are regularly criticized
as scientifically useless and medically unethical. For example,
Halpern et al. (ref. 5, p. 358) write “Because such studies may
not adequately test the underlying hypotheses, they have been
considered ‘scientifically useless’ and therefore unethical in their
exposure of participants to the risks and burdens of human re-
search.” Ones with samples larger than needed to achieve con-
ventional error probabilities are called “overpowered” and are
sometimes criticized as unethical. For example, Altman (ref. 6, p.
1336) writes “A study with an overlarge sample may be deemed
unethical through the unnecessary involvement of extra subjects
and the correspondingly increased costs.”

Deficiencies of Using Statistical Power to Choose Sample Size. There
are multiple reasons why choosing sample size to achieve spec-
ified statistical power may yield unsatisfactory results for medical
decisions. These include the following:

i) Use of conventional asymmetric error probabilities: As dis-
cussed above, it has been standard to fix the probability of
type I error at 5% and the probability of type II error for a
clinically important alternative at 10–20%, which implies
that the probability of type II error reaches 95% for alter-
natives close to the null. The theory of hypothesis testing
gives no rationale for selection of these conventional error
probabilities. In particular, it gives no reason why a clinician
concerned with patient welfare should find it reasonable to
make treatment choices that have a substantially greater
probability of type II than type I error.

ii) Inattention to magnitudes of losses when errors occur: A
clinician should care about more than the probabilities of
types I and II error. He should care as well about the mag-
nitudes of the losses to patient welfare that arise when errors
occur. A given error probability should be less acceptable
when the welfare difference between treatments is larger,
but the theory of hypothesis testing does not take this wel-
fare difference into account.

iii) Limitation to settings with two treatments: A clinician often
chooses among several treatments and many clinical trials
compare more than two treatments. However, the standard
theory of hypothesis testing contemplates only choice between
two treatments. Statisticians have struggled to extend it to deal
sensibly with comparisons of multiple treatments (7, 8).

Bayesian Trial Design and Treatment Choice.With these deficiencies
in mind, Bayesian statisticians have long criticized the use of
hypothesis testing to design trials and make treatment decisions.
The literature on Bayesian statistical inference rejects the frequentist
foundations of hypothesis testing, arguing for superiority of the
Bayesian practice of using sample data to transform a subjective
prior distribution on treatment response into a subjective posterior
distribution. See, for example, refs. 9 and 10.
The literature on Bayesian statistical decision theory additionally

argues that the purpose of trials is to improve medical decision
making and concludes that trials should be designed to maximize
subjective expected utility in decision problems of clinical interest.
The usefulness of performing a trial is expressed by the expected
value of information (11), defined succinctly in Meltzer (ref. 12, p.
119) as “the change in expected utility with the collection of in-
formation.” The Bayesian value of information provided by a trial
crucially depends on the subjective prior distribution. The sam-
ple sizes selected in Bayesian trials may differ from those moti-
vated by testing theory. See, for example, refs. 13 and 14.
The Bayesian perspective is compelling when a decision maker

feels able to place a credible subjective prior distribution on

treatment response. However, Bayesian statisticians have long
struggled to provide guidance on specification of priors and the
matter continues to be controversial. See, for example, the spec-
trum of views expressed by the authors and discussants of ref. 9.
The controversy suggests that inability to express a credible prior is
common in actual decision settings.

Uniformly Satisfactory Trial Design and Treatment Choice with the
Minimax-Regret Criterion. When it is difficult to place a credible
subjective distribution on treatment response, a reasonable way
to make treatment choices is to use a decision rule that achieves
uniformly satisfactory results, whatever the true distribution of
treatment response may be. There are multiple ways to formalize
the idea of uniformly satisfactory results. One prominent idea
motivates the minimax-regret (MMR) criterion.
Minimax regret was first suggested as a general principle for

decision making under uncertainty by Savage (15) within an es-
say commenting on the seminal Wald (16) development of sta-
tistical decision theory. Wald considered the broad problem of
using sample data to make decisions when one has incomplete
knowledge of the choice environment, called the state of nature.
He recommended evaluation of decision rules as procedures,
specifying how a decision maker would use whatever data may be
realized. In particular, he proposed measurement of the mean
performance of decision rules across repetitions of the sampling
process. This method grounds the Wald theory in frequentist
rather than Bayesian statistical thinking. See refs. 17 and 18 for
comprehensive expositions.
Considering the Wald framework, Savage defined the regret

associated with choice of a decision rule in a particular state of
nature to be the mean loss in welfare that would occur across
repeated samples if one were to choose this rule rather than the
one that is best in this state of nature. The actual decision problem
requires choice of a decision rule without knowing the true state of
nature. The decision maker can evaluate a rule by the maximum
regret that it may yield across all possible states of nature. He can
then choose a rule that minimizes the value of maximum regret.
Doing so yields a rule that is uniformly satisfactory in the sense of
yielding the best possible upper bound on regret, whatever the true
state of nature may be.
It is important to understand that maximum regret as defined

by Savage is computed ex ante, before one chooses an action. It
should not be confused with the familiar psychological notion of
regret, which a person may perceive ex post after choosing an
action and observing the true state of nature.
A decision made by the MMR criterion is invariant with respect

to increasing affine transformations of welfare, but it may vary
when welfare is transformed nonlinearly. The MMR criterion
shares this property with expected utility maximization.
The MMR criterion is sometimes confused with the maximin

criterion. A decision maker using the maximin criterion chooses
an action that maximizes the minimum welfare that might pos-
sibly occur. Someone using the MMR criterion chooses an action
that minimizes the maximum loss to welfare that can possibly
result from not knowing the welfare function. Whereas the
maximin criterion considers only the worst outcome that an action
may yield, MMR considers the worst outcome relative to what is
achievable in a given state of nature. Savage (15), when introducing
the MMR criterion, distinguished it sharply from maximin,
writing that the latter criterion is “ultrapessimistic” whereas the
former is not.
Since the early 2000s, various authors have used the MMR

criterion to study how a decision maker might use RCT data to
subsequently choose treatments for the members of a population
(19–27). In these studies, the decision maker’s objective has been
expressed as maximization of a welfare function that sums
treatment outcomes across the population. For example, the
objective may be to maximize the 5-y survival rate of a population
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of patients with cancer or the average number of quality-adjusted
life years of a population with a chronic disease.
The MMR criterion is applicable in general settings with

multiple treatments. Regret is easiest to explain when there are
two treatments, say A and B. If treatment A is better, regret is
the probability of a type I error (choosing B) times the magni-
tude of the resulting loss in population welfare due to assigning
the inferior treatment. Symmetrically, if treatment B is better,
regret is the probability of a type II error (choosing A) times the
magnitude of the resulting loss in population welfare due to
foregoing the superior treatment. In contrast to the use of hy-
pothesis testing to choose a treatment, the MMR criterion views
types I and II error probabilities symmetrically and it assesses the
magnitudes of the losses that errors produce.
Whereas the work cited above has used the MMR criterion to

guide treatment choice after a trial has been performed, the present
paper uses it to guide the design of RCTs. We focus on classical
trials possessing perfect validity that compare alternative treat-
ments relevant to clinical practice. Treatments may include placebo
if it is a relevant clinical option or if it is considered equivalent to
prescribing no treatment (28, 29). In particular, we study trials
that draw subjects at random within groups of predetermined
size stratified by covariates and treatments. Trials Enabling Near-
Optimal Treatment Rules summarizes the major findings. Sup-
porting Information provides underlying technical analysis.

Trials Enabling Near-Optimal Treatment Rules
General Ideas. An ideal objective for trial design would be to
collect data that enable subsequent implementation of an opti-
mal treatment rule in a population of interest—one that always
selects the best treatment, with no chance of error. Optimality is
too strong a property to be achievable with trials having finite
sample size, but near-optimal rules exist when classical trials with
perfect validity have large enough size.
Given a specified « > 0, an «-optimal rule is one whose mean

performance across samples is within « of the welfare of the best
treatment, whatever the true state of nature may be. Equiva-
lently, an «-optimal rule has maximum regret no larger than «.
Thus, an «-optimal rule exists if and only if the MMR rule has
maximum regret no larger than «.
Choosing sample size to enable existence of «-optimal treat-

ment rules provides an appealing criterion for design of trials
that aim to inform treatment choice. Implementation of the idea
requires specification of a value for «. The need to choose an
effect size of interest when designing trials already arises in
conventional practice, where the trial planner must specify the
alternative hypothesis to be compared with the null. A possible
way to specify « is to make it equal the minimum clinically im-
portant difference (MCID) in the average treatment effect
comparing alternative treatments.
Medical research has long distinguished between the statistical

and the clinical significance of treatment effects (30). Although
the idea of clinical significance has been interpreted in various
ways, many writers call an average treatment effect clinically
significant if its magnitude is greater than a specified value
deemed minimally consequential in clinical practice. The In-
ternational Conference on Harmonisation (ICH) put it this way
(ref. 4, p. 1923): “The treatment difference to be detected may
be based on a judgment concerning the minimal effect which has
clinical relevance in the management of patients.”
Research articles reporting trial findings sometimes pose par-

ticular values of MCIDs when comparing alternative treatments
for specific diseases. For example, in a study comparing drug
treatments for hypertension, Materson et al. (31) defined the
outcome of interest to be the fraction of subjects who achieve a
specified threshold for blood pressure. The authors took the MCID
to be the fraction 0.15, stating that this fraction is “the difference
specified in the study design to be clinically important,” and

reported groups of drugs “whose effects do not differ from each
other by more than 15 percent” (ref. 31, p. 916).

Findings with Binary Outcomes, Two Treatments, and Balanced
Designs. Determination of sample sizes that enable near-optimal
treatment is simple in settings with binary outcomes (coded
0 and 1 for simplicity), two treatments, and a balanced design
that assigns the same number of subjects to each treatment group.
Table 1 provides exact computations of the minimum sample size
that enables « optimality when a clinician uses one of three dif-
ferent treatment rules, for various values of «.
The first column in Table 1 shows the minimum sample size

(per treatment arm) that yields « optimality when a clinician uses
the empirical success (ES) rule to make a treatment decision.
The ES rule chooses the treatment with the better average
outcome in the trial. The rule assigns half the population to each
treatment if there is a tie. It is known that the ES rule minimizes
the maximum regret rule in settings with binary outcomes, two
treatments, and balanced designs (25).
The second and third columns in Table 1 display the minimum

sample sizes that yield « optimality of rules based on one-sided
5% and 1% hypothesis tests. There is no consensus on what hy-
pothesis test should be used to compare two proportions. We
report results based on the widely used one-sided two-sample
z test, which is based on an asymptotic normal approximation (32).
The findings are remarkable. A sample as small as 2 obser-

vations per treatment arm makes the ES rule « optimal when « =
0.1 and a sample of size 145 suffices when « = 0.01. The mini-
mum sample sizes required for « optimality of the test rules are
orders of magnitude larger. If the z test of size 0.05 is used, a
sample of size 33 is required when « = 0.1 and 3,488 when « =
0.01. The sample sizes have to be more than double these values
if the z test of size 0.01 is used.
Fig. 1 illustrates the difference between error probabilities and

regret incurred by the ES rule and the 5% z-test rule for a sample
size of 145 per arm, the minimum sample size yielding « optimality
when « = 0.01. Fig. 1, Upper shows how the probability of error
varies with the effect size for all possible distributions of treatment
response with effect sizes in the range [−0.5, 0.5]. Fig. 1, Lower
displays the regret (probability of error times the effect size) of the
same treatment rules. Maximum regret occurs at intermediate effect
sizes. For small effect sizes, regret is small because choosing the
wrong treatment is not clinically significant. Regret is also small
for large effect sizes, because the probability of error eventually
starts declining rapidly with the effect size. Traditional power
calculations are not informative about the maximum regret of a
test-based rule. Two red vertical lines in Fig. 1 mark effect sizes
at which the z test has at least 80% and 90% power. Neither size
corresponds to the effect size where regret is maximal.

Findings with Bounded Outcomes and Multiple Treatments. In prin-
ciple, the existence of «-optimal treatment rules under any de-
sign can be determined by computing the maximum regret of the
minimax-regret rule. In practice, determination of the minimax-
regret rule and its maximum regret may be burdensome. To date,

Table 1. Minimum sample sizes per treatment enabling
e-optimal treatment choice: binary outcomes, two treatments,
balanced designs

« ES rule One-sided 5% z test One-sided 1% z test

0.01 145 3,488 7,963
0.03 17 382 879
0.05 6 138 310
0.10 2 33 79
0.15 1 16 35
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exact minimax-regret decision rules have been derived only for
the case of two treatments with equal or nearly equal sample
sizes (24–26). Hence, it is useful to have simple sufficient con-
ditions that ensure existence of «-optimal rules more generally.
The conditions we derive below hold in all settings where out-
comes are bounded. Our findings apply to situations in which
there are multiple treatments, not just two. They also apply when
trials stratify patients into groups with different observable
covariates, such as demographic attributes and risk factors.
To show that a specified trial design enables «-optimal treat-

ment rules, it suffices to consider a particular rule and to show
that this rule is « optimal when used with this design. We focus on
empirical success rules for both practical and analytical reasons.
Choosing a treatment with the highest reported mean outcome is
a simple and plausible way in which a clinician may use the results
of an RCT. Two analytical reasons further motivate interest in ES
rules when outcomes are bounded. First, these rules either exactly
or approximately minimize maximum regret in various settings
with two treatments when sample size is moderate (25, 26) and
asymptotic (23). Second, large-deviations inequalities derived in
ref. 33 allow us to obtain informative and easily computable upper
bounds on the maximum regret of ES rules applied with any
number of treatments. These upper bounds on maximum regret
immediately yield sample sizes that ensure an ES rule is « optimal.
Propositions 1 and 2 (Supporting Information) present two al-

ternative upper bounds on the maximum regret of an ES rule.
Proposition 1 extends findings of Manski (19) from two to mul-
tiple treatments whereas Proposition 2 derives a new large-
deviations bound for multiple treatments. When the design is
balanced, these bounds are

ð2eÞ−ð1=2ÞMðK − 1Þn−ð1=2Þ, [1]

Mðln  KÞ1=2n−ð1=2Þ, [2]

where n is the sample size per arm, K is the number of treatment
arms, and M is the width of the range of possible outcomes.
Proposition 3 (Supporting Information) shows that the bounds

on maximum regret derived in Propositions 1 and 2 are minimized
by balanced designs. Table S1 gives numerical calculations for K ≤ 7.
Trials Stratified by Observed Covariates extends these findings to
settings where patients have observable covariates.
Propositions 1 and 2 imply sufficient conditions on sample sizes

for « optimality of ES rules. Proposition 1 implies that an ES rule
is « optimal if the sample size per treatment arm is at least

n≥ ð2eÞ−1ðK−1Þ2ðM=«Þ2. [3]

Proposition 2 implies that an ES rule is « optimal if the sample
size per treatment arm is at least

n≥ ln  KðM=«Þ2. [4]

We find that when the design is balanced, Proposition 1 provides
a tighter bound than Proposition 2 for two or three treatments.
Proposition 2 gives a tighter bound for four or more treatments.
To illustrate the findings, consider the Materson et al. (31)

study of treatment for hypertension. The outcome is binary with
the range of possible outcomes M = 1. The study compared seven
drug treatments and specified 0.15 as the MCID. We cannot know
how the authors of the study, who reported results of traditional
hypothesis tests, would have specified « had they sought to achieve
« optimality. If they were to set « = 0.15, application of bound 4
shows that an ES rule is « optimal if the number of subjects per
treatment arm is at least (ln 7) · (0.15)−2 = 86.5. The actual study
has an approximately balanced design, with between 178 and 188
subjects in each treatment arm. Application of bound 2 shows
that a study with at least 178 subjects per arm is « optimal for
« = (ln 7)1/2(178)–1/2 = 0.105.
It is important to bear in mind that Propositions 1 and 2 imply

only simple sufficient conditions on sample sizes for « optimality
of ES rules, not necessary ones. These sufficient conditions use
only the weak assumption that outcomes are bounded and they
rely on Hoeffding large-deviations inequalities for bounded
outcomes. In the special case with binary outcomes and two
treatments and a balanced design, the sufficient sample sizes

Fig. 1. Error probabilities and regret for empirical success and one-sided 5% z-test rules.
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provided by Proposition 1 are roughly 10 times the size of the exact
minimum sample sizes, depending on the value of «. This result
strongly suggests that it is worthwhile to compute exact minimum
sample sizes whenever it is tractable to do so.

Trials Stratified by Observed Covariates. Clinical trials often stratify
participants by observable covariates, such as demographic at-
tributes and risk factors, and report trial results separately for
each group. We consider « optimality of the ES rule that assigns
individuals with covariates ξ to the treatment that yielded the
highest average outcome among trial participants with covariates ξ.
There are at least two reasonable ways that a planner may wish

to evaluate « optimality in this setting. First, he may want to
achieve « optimality within each covariate group. This interpre-
tation requires no new analysis. The planner should simply de-
fine each covariate group to be a separate population of interest
and then apply the analysis of Findings with Binary Outcomes,
Two Treatments, and Balanced Designs and Findings with Bounded
Outcomes and Multiple Treatments to each group. The design that
achieves group-specific « optimality with minimum total sample
size equalizes sample sizes across groups.
Alternatively, the planner may want to achieve « optimality

within the overall population, without requiring that it be
achieved within each covariate group. Bounds 1 and 2 extend to
the setting with covariates. With a balanced design assigning nξ
individuals from covariate group ξ to each treatment, the maxi-
mum regret of an ES rule is bounded above by

ð2eÞ−ð1=2ÞMðK − 1Þ
X

ξ∈X
Pðx= ξÞðnξÞ−ð1=2Þ, [5]

Mðln  KÞ1=2
X

ξ∈X
Pðx= ξÞðnξÞ−ð1=2Þ. [6]

The design that minimizes bound 5 or 6 for a given total
sample size generally neither equalizes sample sizes across
groups nor makes them proportional to the covariate distribution
P(x = ξ). Instead, the relative sample sizes for any pair (ξ, ξ′) of
covariate values have the approximate ratio

nξ
�
nξ′ = ½Pðx= ξÞ=Pðx= ξ′Þ�2=3. [7]

Such trial designs make the covariate-specific sample size increase
with the prevalence of the covariate group in the population, but less
than proportionately. Covariate-specific maximum regret commen-
surately decreases with the prevalence of the covariate group.

Conclusion
Choosing sample sizes in clinical trials to enable near-optimal
treatment rules would align trial design directly with the objective

of informing treatment choice. In contrast, the conventional
practice of choosing sample size to achieve specified statistical
power in hypothesis testing is only loosely related to treatment
choice. Our work adds to the growing concern of scientists that
hypothesis testing provides an unsuitable methodology for col-
lection and analysis of sample data.
We share with Bayesian statisticians who have written on trial

design the objective of informing treatment choice. We differ in
our application of the frequentist statistical decision theory de-
veloped by Wald, which does not require that one place a sub-
jective probability distribution on treatment response. We use
the concept of « optimality, which is equivalent to having maxi-
mum regret no larger than «.
There are numerous potentially fruitful directions for further

research of the type initiated here. One is analysis of other types
of trials. We have focused on trials that draw subjects at random
within groups of predetermined size stratified by covariates and
treatments. With further work, the ideas developed here should
be applicable to trials where the numbers of subjects who have
particular covariates and receive specific treatment are ex ante
random rather than predetermined.
Our analysis assumed no prior knowledge restricting the varia-

tion of response across treatments and covariates. This assumption,
which has been traditional in frequentist study of clinical trials, is
advantageous in the sense that it yields generally applicable find-
ings. Nevertheless, it is unduly conservative in circumstances where
some credible knowledge of treatment response is available. One
may, for example, think it credible to maintain some assumptions
on the degree to which treatment response may vary across treat-
ments or covariate groups. When such assumptions are warranted,
it may be valuable to impose them.
We mentioned at the outset that medical conventions for

choosing sample size pertain to classical trials possessing perfect
validity. However, practical trials usually have only partial validity.
For example, the experimental sample may be representative only
of a part of the target treatment population, because experimental
subjects typically are persons who meet specified criteria and who
consent to participate in the trial. Due to this and other reasons,
experimental data may only partially identify treatment response
in the target treatment population. The concept of « optimality
extends to such situations.
Finally, we remark that our analysis followed the long-

standing practice in medical research of evaluating trial designs
by their informativeness about treatment response, without
consideration of the cost of conducting trials. The concept of «
optimality can be extended to recognize trial cost as a de-
terminant of welfare.
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