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Savannas first began to spread across Africa during the Miocene. A
major hypothesis for explaining this vegetation change is the
increase in C4 grasses, promoting fire. We investigated whether
mammals could also have contributed to savanna expansion by
using spinescence as a marker of mammal herbivory. Looking at
the present distribution of 1,852 tree species, we established that
spinescence is mainly associated with two functional types of
mammals: large browsers and medium-sized mixed feeders. Using
a dated phylogeny for the same tree species, we found that spine-
scence evolved at least 55 times. The diversification of spiny plants
occurred long after the evolution of Afrotherian proboscideans
and hyracoids. However, it is remarkably congruent with diversi-
fication of bovids, the lineage including the antelope that predom-
inantly browse these plants today. Our findings suggest that
herbivore-adapted savannas evolved several million years before
fire-maintained savannas and probably, in different environmental
conditions. Spiny savannas with abundant mammal herbivores occur
in drier climates and on nutrient-rich soils, whereas fire-maintained
savannas occur in wetter climates on nutrient-poor soils.
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The origin and spread of savannas have been topics of in-
tensive research, but many questions remain. The C4 grasses

that dominate savannas emerged in the late Oligocene (∼30 Ma),
but savannas only began to emerge as one of the world’s major
biomes in the late Miocene more than 20 My later (1). What
changed to roll back the forests, allowing the rapid spread of
grasslands? Ehleringer et al. (2) first linked the rise of savannas to
a drop in atmospheric CO2, which would favor C4 grasses over
their C3 grass predecessors. Low CO2 can also reduce woody cover
by increasing the risk of recruitment failure in woody plants whether
from drought, fire, or browsing (3). However, the timing of the
onset of low CO2 is much earlier than the spread of savannas;
therefore, although low CO2 may have contributed to savanna ex-
pansion, it cannot explain the long time lag between C4 origins and
savanna spread. Climate change is the usual explanation for
changing vegetation over time. Increased aridity in the late Miocene
has been shown to cause the retreat of forests in North America and
Eurasia, allowing grasslands to spread in their place (4, 5). How-
ever, large areas of extant savannas occur in climates that are wet
enough to support forests and other closed woody types (6–8). Fires
are frequent in high-rainfall savannas and have been considered the
major agents accounting for open ecosystems in climates that can
support forests. Fossil charcoal, mostly from marine cores, shows a
surge in fire activity from the late Miocene correlated with the
spread of savannas (9, 10). Phylogenetic studies have shown the
emergence of fire-adapted woody plants from the late Miocene
through to the Pleistocene in both Brazil and Africa, consistent with
fossil evidence for increasing fire activity from this time (11, 12).
An alternative hypothesis, that mammal herbivory creates

open ecosystems, was first proposed by Owen-Smith (13). He

argued that increased forest cover from the last glacial to in-
terglacial conditions was partly the result of extinction of the
Pleistocene fauna (13). Many experimental and observational
studies have shown that mammals have the capacity to create
open ecosystems by reducing tree biomass whether in the tropics
or temperate and boreal regions (14, 15). Although Owen-Smith
(13) emphasized megaherbivores (animals >1,000 kg) as pri-
marily responsible for open habitats, mesobrowsers (4–450 kg),
such as deer, antelope, and caprids, are very effective at pre-
venting woody plants from escaping the “browse trap” and
growing into larger size classes. They have also been implicated
as agents maintaining open ecosystems and preventing forest
development. Here, we explore the potential role of meso-
browsers in opening up ancient ecosystems and promoting the
spread of African savannas. Africa is particularly suitable for
such a study, because it retains a largely intact megafauna, al-
though now greatly reduced in abundance and area.
Fossil tests of the importance of herbivory in opening up ancient

forests are difficult because of the lack of sites with suitable data on
both plant and animal fossils. This lacuna in the fossil record is
explained partly because contrasting conditions favor fossil devel-
opment in plants vs. mammals (16). For example, where plant fossils
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are well-preserved in acidic deposits, animal bones are not. Re-
cently, paleoecologists have begun using the spores of a cop-
rophilous fungus, Sporormiella, as a proxy for high herbivore
activity. Fungal spores can be counted along with pollen and
charcoal to determine changes in herbivory, fire, and vegetation
(17). Such studies have suggested changes from open ecosystems
with high Sporormiella counts to closed woody vegetation or in
some cases, a switch to flammable vegetation when the dung
spores decline (18, 19). Thus, there is growing paleoecological
evidence that mammal herbivory helped maintain open ecosys-
tems in the past and that large mammal extinction triggered
major vegetation change. However, these studies have focused
on the Late Pleistocene and Holocene, and the earlier origins of
open grassy formations have been less explored (20).
Here, we report on a phylogenetic approach for exploring

the importance of mammal browsers in opening up African
vegetation and promoting the spread of savannas from the late
Miocene. Although several phylogenetic analyses have explored
plant defenses against insect herbivory, we report here an analysis
of the evolution of tree defenses against vertebrate herbivores. We
used stem (not leaf) spines on woody plants as markers of high
mammal herbivory (Fig. S1). Spines are considered a defense
specific to mammal herbivores (21). We did not include leaf
spines or species with soft organs, stinging hairs, or spines shorter
than 5-mm long, because their defensive function against verte-
brate herbivory remains unclear. Spines are a peculiar defense in
that the foliage of spiny trees is often highly palatable and favored
by browsers. Spines function by reducing bite size of the browsing
animal, thereby reducing food intake and driving the animal to
move away to seek more rewarding targets (22). In this paper, we
first establish how the present day distribution of spiny species
relates to the abundance of different herbivore functional types,
abiotic environmental factors (precipitation, soil fertility, fire, and
temperature), and major vegetation types. We used a recent
classification of African herbivores that groups together animals

according to their functional traits (body mass, diet, gut type,
social behavior, and water dependence) (23). We then explore
coevolutionary dynamics by comparing the accumulation of spiny
plant lineages in African savanna with the diversification of
bovids (antelope and their relatives). Although bovids and meso-
browsers are not strictly equivalent, most mesobrowsers in Sub-
Saharan Africa are bovids. The bovid lineage includes the browsers
most related to spiny plant distribution today. A close match
would imply a causal link between the diversification of bovids
and spiny plants. If spines emerged much earlier than bovid ra-
diations, then it is possible that these plants were preadapted to
bovid herbivory, and it is unlikely that mammal herbivory was a
major factor in their spread. Finally, we compared the timing of
the increase in spiny plant lineages and the diversification of
their mammal browsers (bovids) with phylogenetic and fossil
evidence for the emergence of savannas.

Results
Contemporary Environmental Correlates.Our spatial model explained
over 60% of the distribution of spiny communities in Africa (Fig.
1A and Table S1). Spinescence of vegetation was significantly
related to the suite of herbivores present (adjusted R2 = 0.38),
abiotic factors (0.35), and the distribution of biomes (0.27).
Spiny communities are favored in open environments, such as
mixed savannas (all scores are reported in Table S2), shrub-
land, savanna–shrubland, and grassland–shrubland, and poorly
represented in evergreen forest and forest/grassland mosaics
(Figs. 1B and 2). The abiotic environments related to spine-
scence include low mean annual precipitation (Fig. 1B), high-
nutrient soils, colder temperature, and low fire frequencies.
Importantly, the unique contribution of herbivores (0.081) is signifi-
cant even after removing the variation coexplained with abiotic fac-
tors or biome distribution. The relationship between spiny plant and
herbivore communities is strong and positive for medium-sized mixed
feeders (consuming grass and trees) and large browsers (Fig. 1B).

Fig. 1. Environmental factors related to spinescence of African tree species. (A) Variation partitioning of the proportion of spiny species explained by the
biomass of different herbivore functional types, environmental variables, and vegetation type. (B) Relationships between environmental factors and pro-
portion of spiny species. Black arrows indicate a positive relationship; gray arrows indicate a negative relationship. The position on the arrow indicates the
strength of the relationship. Names of functional types of mammals follow the work in ref. 23. LBr, large browser; MSMix, medium-sized social mixed feeders;
NRum, nonruminant; SNSBr, small nonsocial browser; Total, total biomass of mammalian herbivores; WDBr, water-dependent grazer.
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In contrast, spinescence is strongly negatively associated with small
nonsocial browsers, which are largely restricted to rainforest
(Fig. 2). The weaker relationship with the total biomass of herbi-
vores emphasizes the usefulness of the functional grouping of
herbivores to identify groups best associated with spinescence.
Phylogenetic regression on the principal components of the

combined explanatory dataset identified similar important vari-
ables (Fig. 1B). The best model included only the first principal
component (Table S3), which was positively related to spine-
scence (P = 0.022) (Table S4). Variable correlations with the first
principal component (Table S2) suggest that spinescence is as-
sociated with dry, somewhat cooler environments with high soil
nutrient status (all scores are reported in Table S4). Medium-
sized mixed feeders, large browsers, nonruminants, and to some
extent, water-dependent grazers are positively related to spine-
scence, whereas small nonsocial browsers have a strong negative
correlation with spinescence (Fig. 1B and Table S4). Fire prev-
alence seems to have virtually no association with spinescence.

Phylogenetic Analyses. The distribution of spinescence in African
trees is phylogenetically dispersed (Fig. 3). We recorded 213
spiny species (from a sample of 1,852 tree species) distributed in
29 families, indicating at least 55 independent evolutionary ori-
gins across the angiosperm tree of life (Dataset S1). Spiny clades
have relatively recent origins, with the great majority arising
within the last 17 Ma (Fig. 3) but with some older origins, fre-
quently associated with clades that likely diversified elsewhere
(Table S5). The mid-Miocene radiation of spiny plants indicates
that early Cenozoic African herbivores, notably proboscideans
(including elephants) and hyracoids, did not select for this
structural defense.
Accumulation of lineages of spiny trees and bovids (data from

ref. 24) (both bovid and tree phylogenies have multiple calibra-
tions by fossils) is remarkably congruent in time (Fig. 4). The
origin and timing in acceleration of bovid lineage diversification
match closely to the increase in spiny plant lineages with present
day descendants in African savanna. The suggestion of some

apparently older dates for the origin of spines, perhaps as far
back as 40 Ma, reflects uncertainty in character states deeper in
time and the fact that some spiny taxa are nested within non-
African clades (i.e., we are missing their close relatives) (Fig. S2
and Table S5). Our sampling of plant lineages only encompasses
woody tree species with southern African distributions but is
relatively complete for spiny taxa, and we have reasonable con-
fidence that we are not missing species-rich spiny lineages with
earlier origins.

Discussion
Are Spines a Good Proxy for Mammal Presence in Contemporary
Savannas? We analyzed three linked explanations for the pre-
sent day distribution of spinescent species in Africa: (i) growing
conditions in which spines are more effective, (ii) carbon costs,
and (iii) mammal herbivore pressure. In our analyses, spiny
communities are associated with more arid and nutrient-rich
savannas. These communities are the “eutrophic” savannas of
Africa (25). These environments support high mammal biomass
(23, 25) and high browser diversity (26). Spinescent species are
rare in forest and negatively associated with its mammalian
fauna. In contrast, open savannas have a high proportion of spiny
species, suggesting that the costs of structural defenses (27) may
be incompatible with low light levels found in forests. Our results
constitute evidence at large spatial scales that the abundance of
mammals is the factor best related to the distribution of spiny
communities. Our results are not explained by covarying abiotic
environmental factors or vegetation types and remain significant,
even after controlling for these factors. Additionally, phyloge-
netic analyses show that herbivory has selected for the evolution
of structural defenses in multiple woody plant lineages.
Using the functional grouping of mammal herbivores (23), we

found that “medium-sized social mixed feeders” are the func-
tional type most closely associated with spinescence. This group
of species generally grazes more during the wet season and
browses more in the dry season. Mixed feeding has several
consequences. First, high-quality new grass growth can support

Fig. 2. Maps of spiny species distribution and environmental correlates. (A) Vegetation types. (B) Proportion of spiny species: values for areas in gray are not
reported because fewer than 100 tree species have been reconstructed in each degree pixel; interpretation of proportions should then be subject to caution.
(C) Total biomass of medium-sized social mixed feeders. (D) Mean annual rainfall. (E) Total biomass of large browsers. (F) Total biomass of small nonsocial
browsers.
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large herds of mixed feeders during the wet season, which then
amplifies their selective effect on trees when these herds switch
to browsing during the dry season; second, mixed feeder impacts
on plant populations should be stronger where dry seasons are
longer, as suggested by our results that show spinescence to be
associated with more arid savannas.

Bovids and Spiny Trees: A Coevolutionary Relationship? Patterns of
convergent evolution provide a test of adaptation between her-
bivores and plant defenses (28). We show that spinescence
evolved independently multiple times in the phylogeny of Afri-
can trees and many different families and was achieved by three
different developmental pathways: stipular spines, epidermic
prickles, and thorns. Character optimization on the dated phy-
logeny indicates that nearly all of the modern spiny species
evolved since the early Miocene.
Before the Miocene, spinescence evolution could have been

limited by unfavorable physical environmental conditions or
their ineffectiveness against modes of feeding of early Cenozoic
African mammals. The rarity of spines in modern forests could
imply that a more forested environment in the Paleogene may
have inhibited spine development. However, this argument is
contradicted by the presence in Africa of thicket from the early
Eocene (29). Thicket is a low, dense woody vegetation with in-
termediate light level between forests and savannas that supports
a high diversity of spiny trees (29). The early appearance of
thicket and the much later appearance of spiny plants in our
analysis, thus, suggest that the evolution of spinescence is linked
to the arrival of bovids in Africa during the Neogene.
Structural defenses vary with mode of feeding: for example,

defenses against large bird browsers are quite different from
those of “mammal” browsers (30). However, there are few studies
of variation in defense structures in response to different modes of
mammal feeding. Africa was an island continent from the beginning
of the Cenozoic with an endemic African fauna, the Afrotheria,

including the extinct rhinoceros-like embrithopods, Hyracoidea,
and Proboscidea (of which hyraxes and elephants, respectively,
are the sole extant examples) (16). Hyracoids were diverse, ranging
in size from small rabbits to rhinoceros, and the ecological analogs

Fig. 4. Lineage accumulation through time of bovids and spiny and non-
spiny southern African woody species. Information for the bovid lineages is
sourced from ref. 24. Plant lineage richness for spiny and nonspiny taxa was
estimated as the sum of the number of lineages multiplied by their proba-
bility for the respective character state.

Fig. 3. (Left) Phylogeny of southern African woody flora and position of spiny species. Flora were reconstructed based on DNA barcodes using a maximum
likelihood approach after transforming branch lengths to millions of years ago by enforcing a relaxed molecular clock and multiple calibrations. Colored
branches highlight families containing at least one spiny species. The subtrees for these families are presented (Right), with the position of spiny species
indicated in black (shades of gray indicate the probability of the ancestral lineages being spiny). The red bar indicates 17 Ma on all subtrees.
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of perissodactyls and artiodactyls on other continents (16). Ap-
parently, none of these lineages selected for spines as a plant
defense. Modern elephants, the last of the proboscids, have been
documented as destroying stands of spiny tree species (31). A
land bridge developed between Africa and Eurasia in the late
Oligocene/Miocene, and Eurasian mammals (rhinoceros and
suids) entered Africa for the first time. By mid-Miocene (16 Ma),
there was a second invasion of Eurasian elements, including
horned bovids and antlered giraffoids, with another wave of
Eurasian immigrants in the late Miocene (16).
The diversification of bovids (24) from mid-Miocene closely

matches the rapid accumulation of spiny plant lineages in Afri-
can savanna (Fig. 4), suggesting that bovids presented a novel
mode of feeding that spread in Africa after the Miocene and
selected for the evolution of spinescence. Interactions between
trees and mammals might have resulted in niche diversification
for both groups. This suggestion is consistent with contemporary
patterns of diversity identified for Acacia species (sensu lato; i.e.,
Vachellia and Senegalia) and mammalian herbivores (26). Several
processes could be involved in niche diversification: (i) segre-
gation of niches in height: herbivores have distinct feeding
strategies (bite size and tolerated fiber content) depending on
their body size (32), and the vertical deployment of spines on
plant species has been shown to match the body size of herbi-
vores present (33); (ii) niche specialization: mammals that
browse more have narrower muzzles, longer tongues, and pre-
hensile lips, allowing them to handle thorny plants better than
grazers (22); and (iii) segregation of niches in time for trees:
browser impacts vary with season, differentially affecting ever-
green and deciduous tree species (34, 35).
The second functional type of herbivores related to spine-

scence (“large browsers”) in modern Africa includes giraffes and
okapi, two members of the Giraffidae family. Fossil giraffids
were formerly more diverse and are known since the middle
Miocene in Africa (16). Although not as abundant or diverse as
bovids, giraffids might also have played a role in selecting
for spinescence.

Bovids and the Spread of Savannas. The timing of increase in
spinescence, which we have shown to associate with savannas,
provides a proxy for dating the spread of mammal-dominated
savannas independent of isotopic evidence (36, 37). The rise of
savanna has been attributed to increased aridity promoting
grasses over trees (4) or a drop in CO2 concentrations promoting
the spread of C4 grasses (Fig. 5). Although these two factors
define the climatic envelope suitable for grasses, they do not
account for the exclusion of forests that could be supported
along the precipitation gradient in Africa (38, 39). Simulations
illustrate well that aridity and low CO2 are not enough to explain
the spread of savannas; an additional force opening up forests is
needed (40). Fire is one likely causative agent (9, 41). Here, we
have shown that herbivory pressure might provide another
pathway. Our results indicate that the influx of bovids triggered
savanna formation from the mid-Miocene, long before its ex-
plosive spread because of fire in the late Miocene. The precise
dating of this ecological transition is difficult: molecular dating
could overestimate divergence ages, and the use of fossils most
often underestimates them (42). This problem is especially true
in the African context, where the fossil record for trees and
mammals is patchy and restricted to few localities that poorly
describe the full ecological spectrum of the continent (4, 16, 43).
However, we can compare relative dating using phylogenetic
analysis of spines as a marker of mammal-dominated savannas
and geoxylic suffrutices as markers of fire-dominated savannas
(12). The same woody plant phylogeny shows an accumulation of
spiny plant lineages in Africa several million years earlier than
the appearance of geoxyles, suggesting that mammal-dominated
savannas predate fire-dominated savannas by millions of years

(Fig. 5). Moreover, savannas maintained by fire and herbivory
seem to be favored in contrasting environmental settings: fire-
dominated (dystrophic) savannas on seasonally humid and nutrient-
poor environments vs. herbivore-dominated (eutrophic) savannas
on arid and nutrient-rich environments (7, 23, 25). If these two types
of savannas occurred elsewhere in the world, then Pleistocene
mammal extinctions may only have had limited effects on releasing
fire as an agent and then, only in eutrophic, semiarid savannas.
The structure of the first savannas is intriguing: were they

similar to modern savannas but with a C3 grass layer (1, 4), or
were they carved out of ancient thickets as browse pressure in-
creased? How do the distinct histories of browsing on other
continents relate to the evolution of structural defenses? An-
swers to these questions require a better understanding of the
interactions between photosynthetic constraints and efficacy of
defense and of how structural defenses vary with different modes
of feeding.

Materials and Methods
Taxon Sampling and Plant Distribution Data. We sampled a total of 1,852 (of
∼2,200) woody plant species in southern Africa from 127 families and 651
genera, including 213 spiny taxa. Species names were extracted from the
African plants database (www.ville-ge.ch/cjb/) and cross-checked against
The Plant List (www.theplantlist.org/). Species were defined as spinescent if
they had hard sharp-pointed structures developed from modified epidermis
(prickles), modified stipules (stipular spines), or lignification of the apex of a
stem (thorns) (Fig. S1).

Locality records for each species were extracted from the African plants
database (www.ville-ge.ch/cjb/) and supplemented with records from the
Naturalis Biodiversity Center (www.naturalis.nl/nl/) and the Global Bio-
diversity Information Facility (www.gbif.org). All records were thoroughly
checked, and those with points falling in the sea, inverted latitude/longi-
tude, or duplicate records were removed. Genera with fewer than 10 records
were also excluded from the analysis. Species distribution models were
constructed using MaxEnt (details are in SI Materials and Methods).

Environmental Variables. Environmental variables were derived from
WorldClim (44) (mean annual rainfall and temperature), the Food and
Agriculture Organization of the United Nations (www.fao.org/home/en/; soil

Fig. 5. Potential factors responsible for the rise of savannas. Percentages of
C4 grasses reconstructed from δ13C of tooth enamel of mammalian herbi-
vores (49), atmospheric CO2 measured from Antarctic ice cores (50), tem-
perature inferred from 18O levels in foraminiferous shells in marine
sediments (51), and charcoal abundance from marine sediments (9). For
underground trees (12), spiny trees, and African bovids (24), line widths are
proportional to the log of lineage numbers.
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nutrient status “SQ1”), and the Global Fire Emissions Database (45) (annual
mean burn percentage for 1997–2009) and downscaled to a 1° × 1° grid
resolution. Vegetation classifications were based on major vegetation types
and mosaics for Africa by White (46). The original 80-level vegetation
mapping units scheme by White (46) was simplified to 15 vegetation types
based on the relative predominance of plant growth forms and functional
groups (Figs. 1 and 2).

Large mammal herbivore functional types and biomass surfaces were
obtained from the work in ref. 23. Herbivore functional types were based on
hierarchical cluster analysis of five species-level traits (body mass, diet, gut
type, herd size, and water dependence) for 92 African herbivore species.
Biomass surfaces were created from spatially explicit species-level historical
biomass reconstructions (∼1,000 y ago) produced from models of protected
area census data in relation to rainfall, soil, and vegetation.

Phylogenetic Reconstruction and Dating. Phylogenetic reconstruction and
dating for trees follow the work in ref. 12 (details are in SI Materials and
Methods). Phylogenetic reconstruction for bovids is from the work in ref. 24,
and it is a dated phylogeny based on the full mitochondrial genome and
calibrated with 16 fossils.

Statistical Analyses.We first investigated environmental factors that correlate
with the spatial distribution of spinescence to (i) identify the group of
herbivores most associated spatially with the presence of spiny vegetation,
(ii) reveal the environmental factors favoring spinescence, and (iii) explore
the interaction between abiotic environment, spiny species, and herbivory.

Variables from the three datasets—herbivore densities, abiotic factors,
and vegetation types—were standardized and analyzed using canonical
correspondence analyses (CCAs). Stepwise selection in CCAs (permutation
under reduced model) (47) was applied to each dataset separately using a
stopping criterion of 0.05. We then used variation partitioning to estimate
the unique and joint effects of herbivores, abiotic environment, and vege-
tation type on the proportion of spiny species. CCAs and partial CCAs were
used with three partitions, and the significance of testable fractions was
evaluated using permutation tests (9,999 permutations; α < 0.05) (47). For
each of these analyses, adjusted R2 values provided unbiased estimates of

the variation explained by the fractions (48). Venn diagrams were used to
illustrate the results of variation partitioning.

Phylogenetic logistic regression was used to assess the extent to which
spines are associated with particular environments and forms of herbivory
pressure across plant lineages. Species-specific climate and herbivory scores
were obtained by averaging each of four environmental variables (mean
annual rainfall, mean annual temperature, soil nutrient status, and per-
centage burned area) and the biomass of five herbivore functional types
(small nonsocial browsers, medium-sized social mixed feeders, large browsers,
water-dependent grazers, and nonruminants) across their distribution range.
Because of the strong correlations among variables, principal components
analysis was performed to obtain orthogonal axes for inclusion in the sub-
sequent regression analysis. Spinescence, coded as spiny = 1 and nonspiny = 0,
was then modeled using logistic regression with the first three principal com-
ponents (87.5% of total variation) (Table S1) fitted as explanatory variables
and the nonindependence among residuals informed by the phylogenetic
tree (phyloglm using maximum penalized likelihood estimate; R Statistical
Software). Model selection was based on Akaike information criterion
scores, with only significant predictor variables described. Variable loadings
on principle components (Table S2) were used to gauge environmental and
herbivory effects on spinescence. All analyses were conducted in the fol-
lowing R packages: FactomineR, vegan, packfor, and phylolm.

Spatial autocorrelation in the residuals accounted for only a very small part
of the total variation in both our spatial analyses (Mantel correlation =
0.0015) and phylogenetic logistic regressions (cumulated Mantel correlation
always smaller than 0.04) (Table S3); we, therefore, did not fit an explicit
description of spatial structure into the models.
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