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Relationship between intelligence and spectral
characteristics of brain biophoton emission:
Correlation does not automatically imply causation
Vahid Salaria,b, István Bókkonc,d, Roohollah Ghobadib,e,f, Felix Scholkmanng,h, and Jack A. Tuszynskii,j,1

Despite enormous efforts, any correlation between
“intelligence” and cognitive or physiological/anatomical
properties of animal brains is still poorly understood
because intelligence depends on multiple factors in
parallel and not a single determinant (1). The study
by Wang et al. (2) is both novel and intriguing, but
we believe that the experimental results presented do
not directly support their conclusion. Unfortunately, a
mechanistic explanation of the correlation between in-
telligence and the spectral properties of biophotonic
emission is not given in ref. 2, raising concerns that
the observed correlation does not reflect a causal re-
lationship but rather an accidental coincidence. Based
on the reported spectral characteristics of the bio-
photonic emission (2) we calculated the coherence
length (3), given as lc = λ2avg=Δλ, with Δλ= λmax − λmin

in Table 1.
The obtained values for the coherence lengths show

that the biophotons in the human brain have the
shortest coherence length (i.e., 1.893 μm) among other
species (Fig. 1). This is in contradiction to the expecta-
tion that the longest coherence length would be favor-
able for efficient information processing from which a
higher degree of intelligence could emerge.

Interestingly, we have found a strong correlation
(r = 0.86) between the values of λmax and the mass of
each of the six species, indicating that intelligencemay

simply correlate with size. Additionally, glutamate-
induced biophotonic emission does not necessarily
correlate with the change in aerobic metabolism. Reac-
tive oxygen species (ROS) can be produced by neural
mitochondria as well as by the NADPH oxidase (4, 5).
NADPH oxidase can produce ROS whether mitochon-
drial cytochrome c oxidase is completely or incompletely
blocked. Glutamate-induced ROS generation in neuro-
nal presynaptic terminals is caused by the activation of
the NADPH oxidase and nitric oxide synthases (6).
NMDA receptor (NMDAR) activation by the glutamate
increases NADPH oxidase activity, which is the key
source of superoxide formation (O2

·−) (4). We conclude
that the glutamate-induced NMDAR activation and
NADPH oxidase activity can lead to overproduction
of ROS that causes an increase of biophoton in the
brain (7), which seems at odds with the reasoning be-
hind the claims made byWang et al. (2). Finally, protein
phosphatase (PP) 2A comprises a family of serine/thre-
onine phosphatases that play roles in cell-cycle regula-
tion, cell morphology and development, and specific
signal transduction (8). However, okadaic acid can also
inhibit the activity of PP1, PP2A, PP4, PP5, and PP6
phosphatases, which is an underappreciated fact (9).
Hence, the claim that the inhibition of PP2A induces
the hyperphosphorylation of MAP tau and interferes
with the function of microtubules is highly speculative.
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Fig. 1. Species dependence of the coherence length values calculated according to the measurements reported by Wang et al. (2).

Table 1. The coherence length of biophotons from different species

Species λavg, nm λmin, nm λmax, nm Δλ, nm λavg
2, nm2 lc, μm

Bullfrog 600.3 ± 0.82 522.1 ± 0.74 691.2 ± 0.98 169.1 360,360.09 2.131
Mouse 646.9 ± 1.53 591.1 ± 2.78 711.8 ± 0.0 120.7 418,479.61 3.467
Chicken 667.3 ± 2.00 607.4 ± 2.97 739.2 ± 1.96 131.8 445,289.29 3.378
Pig 682.3 ± 0.68 604.9 ± 1.29 777.7 ± 0.75 172.8 465,533.29 2.694
Monkey 696.9 ± 0.85 609.8 ± 1.76 806.1 ± 1.49 196.3 485,669.61 2.474
Human 714.6 ± 1.59 595.6 ± 2.13 865.3 ± 2.74 269.7 510,653.16 1.893
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