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ABSTRACT

Objective: To investigate the effect of enriching mild cognitive impairment (MCI) clinical trials
using combined markers of amyloid pathology and neurodegeneration.

Methods: We evaluate an implementation of the recent National Institute for Aging–Alzheimer’s
Association (NIA-AA) diagnostic criteria for MCI due to Alzheimer disease (AD) as inclusion cri-
teria in clinical trials and assess the effect of enrichment with amyloid (A1), neurodegeneration
(N1), and their combination (A1N1) on the rate of clinical progression, required sample sizes, and
estimates of trial time and cost.

Results: Enrichment based on an individual marker (A1 or N1) substantially improves all assessed
trial characteristics. Combined enrichment (A1N1) further improves these results with a reduc-
tion in required sample sizes by 45% to 60%, depending on the endpoint.

Conclusions: Operationalizing the NIA-AA diagnostic criteria for clinical trial screening has the
potential to substantially improve the statistical power of trials in MCI due to AD by identifying
a more rapidly progressing patient population. Neurology® 2016;87:1235–1241

GLOSSARY
A1 5 amyloid positive; Ab 5 b-amyloid; AD 5 Alzheimer disease; ADAS-Cog13 5 Alzheimer’s Disease Assessment Scale
Cognitive Subscale; ADNI 5 Alzheimer’s Disease Neuroimaging Initiative; FAQ 5 Functional Assessment Questionnaire;
HV 5 hippocampal volume; MCI 5 mild cognitive impairment; MMSE 5 Mini-Mental State Examination; N1 5 neurodegen-
eration positive; NIA-AA 5 National Institute for Aging–Alzheimer’s Association; RAVLT 5 Rey Auditory Verbal Learning
Test; SNR 5 signal-to-noise ratio.

Anatomic and pathophysiologic changes in Alzheimer disease (AD) begin years before the emer-
gence of clinical dementia.1–3 Recent revisions to AD diagnostic criteria have included explicit
references to biomarkers for differential diagnosis in the study of subjects for clinical research in
both AD and presymptomatic stages.4–9 In particular, the National Institute for Aging–Alzheimer’s
Association (NIA-AA) criteria propose positivity on both amyloid and neurodegeneration bio-
markers (A1 and N1, respectively).6,10

Recent negative phase III clinical trials of antiamyloid therapies did not consider biomarkers
for inclusion and recruited a significant portion of amyloid-negative subjects who did not prog-
ress substantially on primary endpoints.11–14 More recent phase II/III trials in prodromal or mild
AD implemented enrichment strategies based on amyloid markers.15,16

The value of MRI measures of neurodegeneration for trial enrichment has been shown both in
isolation and in combination with other measurements,17–25 has been endorsed by regulatory
agencies,26 and more recently has been emphasized by a post hoc analysis of the failed (A1)
Gantenerumab SCarlet RoAD study, showing a treatment effect in a multibiomarker-enriched
subpopulation.15,27

This article presents an operationalization of the NIA-AA guidelines for mild cognitive
impairment (MCI) due to AD4,6 for enriching clinical trials with the concept of a dual (A1N1)
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biomarker strategy.10,28 Applying established
cut points19,29,30 to define biomarker-positive
subpopulations, this study compares the perfor-
mance of combining both biomarkers (A1N1)
compared to screening based on either alone and
the resulting improvements in sample size and
screen fail fraction and presents total trial time
and cost.

METHODS Study population. The present study was per-

formed on 274 participants with MCI and 444 healthy controls

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (http://www.loni.usc.edu/ADNI).31

For the MCI cohort, we selected all participants with amnestic

MCI (labeled MCI in ADNI-1 and L-MCI in ADNI-2) who met

the following inclusion criteria: 1.5T (ADNI-1) or 3T (ADNI-2)

MRI scan available at baseline, baseline assessment of amyloid status

(from CSF or AV-45 amyloid PET) available, and clinical scores

(Mini-Mental State Examination [MMSE], 13-point Alzheimer’s

Disease Assessment Scale Cognitive Subscale [ADAS-Cog13]) avail-

able at baseline and at month 24.

For the healthy control cohort, used as a normative reference

population to define a hippocampal volume (HV) cut point, all par-

ticipants who had an MRI available at baseline from both ADNI-1

and ADNI-2 were used. We have previously demonstrated minimal

differences in HVs calculated from 1.5T and 3T scans on the same

participants.32

An overview of the included participants, together with key

characteristics, is presented in table 1. A more detailed description

of ADNI and its study design and the image acquisition param-

eters are given in appendix e-1 at Neurology.org.

Biomarker measures. Amyloid deposition measured through

PET imaging and CSF analyses of b-amyloid (Ab) levels has been

shown to be highly concordant and to show a similar diagnostic

accuracy.33 Consequently, the selection of either marker is driven

mainly by geographic availability and cost, as well as patient and

doctor preferences.33 For the purpose of identifying participants as

amyloid positive or negative, we used CSF Ab42 for participants

from ADNI-1 and florbetapir-PET for participants from ADNI-2;

cut points derived from both biomarkers have been shown to perform

consistently.30,33 Specifically, ADNI-1 participants were considered

A1 with Ab42 levels #192 pg/mL, while ADNI-2 participants

were considered A1 with a florbetapir-PET standardized uptake

value ratio .1.11 for the mean of 6 predefined regions of interest

relative to the whole cerebellum. Appendix e-2 presents results from

the ADNI-2 cohort on the concordance between amyloid positivity

from the 2 biomarkers and its impact on patient selection. However,

our cost estimates are based on the assumption that PET imaging is

used to determine amyloid positivity for our simulated clinical trial

scenarios.

HV was calculated with the learning embeddings for atlas

propagation (LEAP) algorithm34 incorporated into the CE-

marked medical device Assessa (www.assessa.com). HV was

adjusted for age and head size as measured by intracranial volume,

and left and right hippocampi were averaged for each subject

(details are presented in appendix e-3). After a detailed validation

of HV cut points,19 participants were considered N1 if their

adjusted HV was smaller than the 25th percentile of the age-

matched healthy subject cohort.

Combinatorial enrichment strategies. We examined the fol-

lowing enrichment strategies: NIA-AA I (A1), enrichment by

abnormal amyloid alone (neurodegeneration status undetermined);

NIA-AA II (N1), enrichment by low HV alone (amyloid status

undetermined); and NIA-AA III (A1N1), enrichment by both

Table 1 Subject characteristics

ADNI-1 MCI ADNI-2 MCI Combined MCI

Female, n (%) 152 (34) 122 (48) 274 (41)

Age, y 74.7 6 7.5 71.4 6 8.0 73.2 6 7.9

A1, % 76 (CSF) 72 (CSF),a 68 (PET)a 74 (all CSF),a 72 (CSF/PET)a

ApoE e4 carriers, % 53 55 54

MMSE BL/M24 26.9 6 1.8/25.3 6 3.9 27.7 6 1.8/25.7 6 3.4 27.3 6 1.9/25.5 6 3.7

CDR-SOB BL/M24 1.51 6 0.84/2.98 6 2.13 1.74 6 1.02/2.77 6 2.21 1.61 6 0.93/2.89 6 2.16

ADAS-Cog13 BL/M24 18.0 6 6.8/22.4 6 9.7 18.7 6 6.8/21.8 6 10.7 18.3 6 6.8/22.1 6 10.2

HV 1,632 6 301 1,730 6 326 1,675 6 314

ADNI-1 CN ADNI-2 CN Combined CN

Female, n (%) 222 (48) 222 (53) 444 (50)

Age, y 76.3 6 5.1 72.8 6 6.0 74.5 6 5.8

MMSE BL 29.1 6 1.0 29.0 6 1.3 29.0 6 1.2

CDR-SOB BL 0.00 6 0.09 0.02 6 0.13 0.01 6 0.11

ADAS-Cog13 BLb 9.53 6 4.16 8.87 6 4.33 9.21 6 4.25

HV 1,956 6 254 1,953 6 243 1,954 6 246

Abbreviations: A1 5 amyloid positive; ADAS-COG13 5 Alzheimer’s Disease Assessment Scale Cognitive Subscale; ADNI 5 Alzheimer’s Disease Neuro-
imaging Initiative; BL 5 baseline; CDR-SOB 5 Clinical Dementia Rating-Sum of Boxes; CN 5 cognitively normal; HV 5 hippocampal volume; MCI 5 mild
cognitive impairment; MMSE 5 Mini-Mental State Examination; M24, month 24.
a Eight subjects are CSF1/PET2, and 4 are PET1/CSF2.
b ADAS-Cog measurement was available in only 219 and 208 CN participants in ADNI-1 and ADNI-2, respectively.
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amyloid and HV. For comparison, the performance of the following

4 enrichment strategies is presented in appendix e-4: exploratory I,

enrichment by ApoE e4 status alone (e4 carriers only included);

exploratory II, enrichment based on a clinical functional deficit

(Functional Assessment Questionnaire [FAQ] .0); exploratory

III, enrichment based on a deficit in global cognition beyond that

specified as part of the diagnostic criteria (ADAS-Cog13 .15); and

exploratory IV, enrichment based on a more stringent definition of

memory deficit (Rey Auditory Verbal Learning Test [RAVLT]

,35).

Experiments. The effect of biomarker-based enrichment was

assessed with respect to the 2-year change in widely used clinical

scales of global cognition, MMSE and ADAS-Cog13, in terms of

2 key trial characteristics: the rate and homogeneity of clinical

progression in the included trial cohort and the additional screen

failure fraction due to the biomarker selection criteria. As a joint

measurement of rate and homogeneity of clinical progression, we

defined a signal-to-noise ratio (SNR) as the mean 2-year change on

the clinical scale in the included group divided by the SD of the

2-year change. On the basis of representative values from multisite

trial operations, we also estimated how the change and interplay of

these key measurements influence required sample sizes, the

number of participants who need to undergo screening to obtain

the required sample size, and indicative overall trial duration and

cost.19 Calculations of the latter take into account the tradeoff

between increased screen failures and the reduced number of

participants needed to be randomized. Sample size calculations

were performed for a 25% reduction in the worsening of either

MMSE or ADAS-Cog13 at 80% power and 5% significance.

Detailed models for sample size, number needed to screen, and

trial time and cost are presented in appendix e-3. Although

amyloid positivity is defined from CSF (ADNI-1 participants)

and PET imaging (ADNI-2 participants) in this work, the use of

PET imaging is assumed in the cost calculation.

RESULTS All 3 NIA-AA–based enrichment strate-
gies yielded increased 2-year SNRs for both MMSE
and ADAS-Cog13 (figure 1A) compared to the
unenriched population. Enrichment with HV (N1)
showed the smallest improvement, followed by

enrichment based on amyloid positivity (A1), whereas
enrichment based on both biomarkers (A1N1)
provided the overall best enrichment performance.
SNR was increased by 18% (MMSE) and 25% (ADAS-
Cog13) by N1 enrichment, 31% and 38%, respectively,
by A1 enrichment, and 45% and 57%, respectively, by
A1N1 enrichment.

The biomarker screen fail fractions were 28% for
enrichment by A1 or N1 alone and 45% for the
combined A1N1 enrichment (figure 1B). However,
the required sample size to enroll was substantially
reduced, by 26% (MMSE) and 33% (ADAS-Cog13)
for N1 enrichment, by 40% and 50% for A1 enrich-
ment, and by 53% and 60% for A1N1 enrichment
(figure 1C). In terms of overall estimated trial duration
and cost, all 3 enrichment strategies resulted in quicker,
cheaper clinical trials (table 2). That is, the gain due to
the reduced sample size more than compensated for the
increased screen fail rate. Performing N1 enrichment
before A1 enrichment leads to a further reduction in
trial cost (table 2).

Two-year change on both clinical scales showed
a nominally more rapid progression in the selected
cohort relative to the unenriched cohort for all 3 enrich-
ment methods, and this was statistically significant with
the use of the A1 and A1N1 enrichment schemes for
both scales (p , 0.05; figure 2). The excluded group
showed substantially slower clinical progression rates for
both scales using all 3 enrichment schemes (p, 0.01).
When shorter 6-month and 12-month trials were sim-
ulated, SNR was increased for both measures by
amounts similar to that found for the 24-month trial
(appendix e-5).

Detailed results for the comparator enrichment strat-
egies, based on ApoE e4 genotype, cognition (ADAS-
Cog13), function (FAQ), and memory (RAVLT), are

Figure 1 Trial characteristics for different enrichment strategies

Signal-to-noise ratio (SNR; A), screen fail fraction (B), and required sample sizes (C) for trials using different enrichment strategies. A1 5 amyloid positive;
ADAS-Cog13 5 Alzheimer’s Disease Assessment Scale Cognitive Subscale; MMSE 5 Mini-Mental State Examination; N1 5 neurodegeneration positive.
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presented in appendix e-4. Briefly, enrolling ApoE e4
carriers (a strong risk factor for amyloid positivity)
yielded an improvement in SNR of 24% (MMSE)
and 28% (ADAS-Cog13) at a screen failure rate of
46%. Enriching with ADAS-Cog13 .15 improved
the SNR by 40% onMMSE at the cost of an additional
31% screen failure rate, while FAQ-based enrichment
gave an SNR increase of 40% (MMSE) and 20%
(ADAS-Cog13) with an associated screen failure rate of
30%. Enriching with RAVLT ,35 gave an SNR
increase of 23% (MMSE) and 36% (ADAS-Cog13) at
the cost of an additional 32% screen failure rate. A
corresponding reduction in sample sizes was observed
with all 4 of these alternative, non–biomarker-based
enrichment strategies.

DISCUSSION These results demonstrate the effect of
using the current NIA-AA research diagnostic criteria
as an enrichment strategy for amnestic MCI clinical
trials. Compared to previous work that looked at
multibiomarker enrichment, we explicitly examined
the effects of these diagnostic criteria using specific,
established cut points on both measures. With a view
to operationalizing these criteria, we also assessed their
effect on trial design by exploring the changes in a set
of practical trial characteristics, including time and cost,
using parameters from recent trials. Although these
input values may vary, our findings of a substantial
relative improvement in trial parameters should be
relatively robust to realistic differences in these inputs
and the assumptions underlying our model.

The presented results show that enrichment with
either biomarker individually (A1 or N1) increases
the SNR of the change in clinical endpoint measures
and reduces the required sample sizes and the pro-
jected trial cost. When combined enrichment
(A1N1) is applied, the SNR values increase and
the required sample sizes decrease relative to no
enrichment by 45% to 60%, depending on the clin-
ical endpoint. The mean 2-year change in ADAS-
Cog13 in the enriched population was increased from
3.9 points (unenriched) to 5.0 to 6.5 points, and the
mean decrease in MMSE increased from 1.8 points
(unenriched) to 2.2 to 2.8 points. These results show
that when a trial with fixed power is designed, bio-
marker enrichment does not increase the number of
participants who need to be screened because the
reduction in the required sample size outweighs the
increased screen failure rate. Projected trial durations
were overall predicted to be no longer than in the
unenriched scenario. These results were robust to trial
duration because simulations with shorter follow-up
times resulted in very similar relative characteristics of
the enriched population (appendix e-5).

Several recent trials have enrolled amyloid-positive
participants only. Our results show that using HV-
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based enrichment in addition further reduces sample
sizes byz20% and cost byz25% when the cheaper
exclusion criterion (MRI) is administered first because
PET imaging is then required in fewer participants.
Because an MRI scan is typically acquired at screening
for other reasons, the added operational complexity of
automated and rapid computation of a HV estimate
is minimal but can lead to significant savings in trial
cost. Automatically derivedHV provides robust enrich-
ment with relatively little sensitivity to the cut point
used.19 To confirm this in the present study, we com-
pared enrichment with a cut point at the 40th percen-
tile (as an alternative to the 25th percentile used above)
of HV in the healthy control population. Screen failure
rate changes from 28% to 24%, yet the assessed trial
characteristics change by ,10% (details are given in
appendix e-2). While HV is an important downstream
biomarker of AD and therefore can help to identify
patients close to accelerated clinical decline,1 it is not
directly linked to Ab, one of the hallmarks in the
amyloid cascade hypothesis of AD.35 HV alone there-
fore cannot replace an amyloid marker to accurately
select patients in amyloid targeting therapies but can
complement it to help to identify subpopulations more
likely to progress on primary trial endpoints. Even when
not defining a specific exclusion criterion on HV, it can

be a valuable stratification or subgrouping measure as
shown by the recently presented post hoc analysis of
the MCI Gantenerumab SCarlet RoAD study in which
all the enrolled participants were amyloid positive but
a significant treatment effect was observed only in the
subgroup of participants predicted to progress more rap-
idly with a model that used HV and clinical scales.15

Our cost analysis assumed that PET imaging was
used to determine amyloid status. Although some reports
suggest that CSF levels of Ab become abnormal earlier in
the disease stage,33 the results presented in appendix e-6
confirm previous publications that showed high concor-
dance between amyloid markers from CSF and PET.33,36

A recent systematic comparison of PET and CSF con-
cludes that choices can be based on other factors such as
availability, cost, and doctor/patient preferences because
both have equally high diagnostic accuracy.36 While
a CSF analysis can potentially be incorporated more
easily with other biomarkers, it is highly invasive and
requires careful standardization; PET imaging, on the
other hand, requires highly advanced instruments and
is less available in clinical practice in some countries.36

In a separate analysis, this article shows how alterna-
tive enrichment strategies that avoid imaging measure-
ments can also increase the longitudinal progression
rate of a patient population thus selected. The proposed

Figure 2 Time course graphs for different enrichment strategies

Change in Mini-Mental State Examination (MMSE; A) and Alzheimer’s Disease Assessment Scale Cognitive Subscale
(ADAS-Cog 13; B) for the unenriched sample (dashed black line), enriched sample (solid blue line), and excluded sample
(solid green line). Whiskers present SE. Significance of the difference between included and excluded groups and the
unenriched sample is shown as **p , 0.05 and *p , 0.01. A1 5 amyloid positive; N1 5 neurodegeneration positive.
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models were applied to enrichment with ApoE e4 status
and measures of global cognition and function that are
widely used in clinical trials of mild AD and have fur-
thermore been shown to perform well in the prodromal
stage of the disease.37 The results using ApoE e4 status
and measurements of cognition, memory, and function
(appendix e-4) show an enrichment performance similar
to that obtained with the 2 imaging biomarkers and
following the NIA-AA criteria.

A limitation of the presented work is its validation
on the ADNI study alone. Even though inclusion and
exclusion criteria in ADNI were defined to be compa-
rable to those in clinical trials, it is unclear how well
the recruited participants compare to a typical clinical
trial population, let alone a real-world treatment pop-
ulation. However, preliminary results from current
clinical studies using biomarker enrichment (e.g.,
aducanumab) and the post-hoc analysis of the SCarlet
RoAD study discussed above provide additional evi-
dence for the benefit that single-biomarker and multi-
biomarker enrichment strategies can have.

Integrating different biomarkers, clinical measure-
ments, and patient attributes into integrated disease
progression models represents a next step toward
a more detailed understanding of disease progression
and the efficient use of available measurements for
trial inclusion, as well as the selection of suitable pa-
tients once treatment is available.
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