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CRHunter: integrating multifaceted 
information to predict catalytic 
residues in enzymes
Jun Sun, Jia Wang, Dan Xiong, Jian Hu & Rong Liu

A variety of algorithms have been developed for catalytic residue prediction based on either feature- or 
template-based methodology. However, no studies have systematically compared these two strategies 
and further considered whether their combination could improve the prediction performance. Herein, 
we developed an integrative algorithm named CRHunter by simultaneously using the complementarity 
between feature- and template-based methodologies and that between structural and sequence 
information. Several novel structural features were generated by the Delaunay triangulation and 
Laplacian transformation of enzyme structures. Combining these features with traditional descriptors, 
we invented two support vector machine feature predictors based on both structural and sequence 
information. Furthermore, we established two template predictors using structure and profile 
alignments. Evaluated on datasets with different levels of homology, our feature predictors achieve 
relatively stable performance, whereas our template predictors yield poor results when the homological 
relationships become weak. Nevertheless, the hybrid algorithm CRHunter consistently achieves 
optimal performance among all our predictors. We also illustrate that our methodology can be applied 
to the predicted structures of enzymes. Compared with state-of-the-art methods, CRHunter yields 
comparable or better performance on various datasets. Finally, the application of this algorithm to 
structural genomics targets sheds light on solved protein structures with unknown functions.

Enzymes play indispensable roles in catalyzing almost all biochemical reactions in living organisms. Key residues 
that are directly involved in various catalytic processes are typically defined as catalytic residues. The identifica-
tion of these functionally critical residues not only deepens our understanding of the catalytic mechanisms of 
enzymes but also offers valuable insights that can be used in enzyme engineering and drug discovery. Given the 
rapid increase in the number of protein sequences and structures, efficient ways to address this issue are urgently 
required. The experimental validation of catalytic residues is time-consuming and labor-intensive. Therefore, 
the computational prediction of these residues might complement the shortcomings of experimental methods.

To date, intensive efforts have been made to develop a variety of algorithms for catalytic residue prediction. 
Homology- or template-based strategies might be the most straightforward way to solve this problem. The puta-
tive catalytic residues of a query protein can be inferred by comparing its sequence or structure with the homolo-
gous proteins containing experimentally validated residues. For example, Wallace et al.1 first developed a program 
termed TESS, which used a geometric hashing algorithm to align novel protein structures against the structural 
template database of various enzyme active sites. Nebel et al.2 also implemented a structure-based method to 
discover the active sites of protein with rigid prosthetic groups based on clues from multiple templates. At the 
sequence level, Mistry et al.3 proposed a group of strict rules that enable the transfer of previously verified cat-
alytic residues to other chains within the same Pfam family. Unfortunately, these studies did not systematically 
investigate the extent to which sequence or structural similarity can result in the reliable transfer of information 
regarding catalytic residues. Additionally, the greatest weakness of the above approaches is that they strongly 
depend on the availability of reasonable templates, thus enabling a relatively narrow range of applications.

In contrast, the vast majority of current algorithms utilized feature-based strategies as alternative ways to 
predict catalytic residues. To this end, previous studies have proposed a large number of sequence and structural 
features that can be effectively used to characterize these critical residues. For instance, catalytic residues prefer 
higher sequence conservation4 and closeness centrality5, lower solvent accessibility and flexibility6,7, and pocket or 
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cleft regions in enzyme structures6,8,9. Based on the above attributes, a large number of feature-based algorithms 
have been established using customized scoring functions or machine learning techniques as their prediction 
engines. For instance, Lichtarge et al.10 designed an evolutionary trace method that considered the most highly 
conserved residues to be involved in catalytic processes. Gutteridge et al.11 constructed a neural network-based 
predictor to identify catalytic residues based on structural information. Petrova and Wu12 and Youn et al.13 devel-
oped support vector machine-based approaches using a variety of sequence and structural properties. Zhang  
et al.14 also used a support vector machine to implement their algorithm, but established a pure sequence-based 
predictor. Xin et al.15 developed a structure kernel method by incorporating multiple features. The aforemen-
tioned feature-based approaches also represent the state-of-the-art in catalytic residue prediction. Despite the 
great progress achieved by previous studies, well-designed feature-based algorithms remain highly anticipated, 
especially those incorporating novel characteristics. To our best knowledge, further, none of the existing studies 
systematically compared the strengths and weaknesses of feature- and template-based strategies or considered 
whether their combination could be used to improve catalytic residue prediction.

In this work, we attempted to simultaneously exploit the complementarity between feature- and 
template-based methodologies and that between structural and sequence information for catalytic residue pre-
diction. First, Delaunay triangulation and Laplacian transformation were used to characterize enzyme structures, 
thereby generating several novel structural attributes. By integrating these features with traditional descriptors, 
we established two support vector machine feature predictors based on structural and sequence information. 
We also developed two template predictors using structure and profile alignments, respectively. An integrative 
prediction algorithm termed CRHunter was finally generated to recognize catalytic residues by combining the 
above four predictors. When evaluating our approach in different scenarios, we assessed the strengths and limita-
tions of our different predictors. Overall, CRHunter not only achieves improvements over both its structure- and 
sequence-based component predictors but also outperforms the state-of-the-art algorithms. The final application 
to structural genomics targets further highlights the usefulness of our algorithm. The CRHunter server is freely 
available at http://www.bioinfo-hzau.cc/CRHunter/.

Materials and Methods
Overview of our prediction system.  As shown in Fig. 1, the proposed system is separated into two par-
titions, namely structure- and sequence-based prediction modules, which further comprise feature- and tem-
plate-based predictors, respectively. Regarding structure-based prediction, our template method can locate 
potential catalytic residues based on the global structural similarity between the query enzyme and its well-
aligned reference structures, and our feature method provides complementary signatures by combining machine 
learning techniques and local structural characterization. In contrast, because protein structures have not been 
solved for all enzymes, we extended the integrative strategy of our structure-based module to sequence-based 
prediction. Therefore, effective sequence characteristics were extracted as the inputs of the other feature predictor, 

Figure 1.  Schematic representation of the CRHunter algorithm. CRHunter is divided into two partitions, 
namely StrHunter and SeqHunter, both of which further comprise feature- and template-based predictors.

http://www.bioinfo-hzau.cc/CRHunter/
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and structure alignment was replaced by sequence profile alignment in the template predictor. These four compo-
nent predictors were integrated to establish our ultimate prediction algorithm.

Feature generation.  We defined several novel structural descriptors based on the Delaunay triangulation 
and Laplacian characterization of enzyme structures as described in the following sections. To our knowledge, 
these features have been applied to catalytic residue prediction for the first time. Moreover, we extracted tra-
ditional structural and sequence features for each residue, such as solvent accessibility, pocket information, 
position-specific scoring matrix (PSSM), and predicted structural features (see Supplementary Methods).

Generation of residue microenvironment using Delaunay triangulation.  In this study, we used the Delaunay tri-
angulation (DT) to generate the microenvironment of each residue16. For each target protein, the qdelaunay 
application of the Qhull package was used to divide the three-dimensional structure into tetrahedrons such that 
each vertex represents an atom17. We also generated a Voronoi diagram for atoms in the target protein, which 
corresponds to the geometric dual of Delaunay triangulation. In this context, two residues are considered to be 
in contact if any pair of heavy atoms from each residue shares a common facet in the Voronoi diagram. Figure 2 
shows an example of the DT-based microenvironment of a catalytic residue.

Microenvironment score based on Delaunay triangulation.  Using the above neighborhood, we defined a feature 
termed MEscoreDT inspired by the work of Han et al.18, which utilized the preference of specific residue pairs 
in the local environment to identify catalytic residues. We first constructed the residue pair frequency vector 
(termed FDT) for each residue as follows:
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where Am and An refer to the query residue and its neighbor, respectively, and NA A
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 denotes the number of this 

residue pair in the DT-based microenvironment. We then calculated the residue pair weight vector of each cata-
lytic residue as follows:
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 denote the counts of Am and An in the DT-based neighborhood. We further computed the 
overall WDT by averaging all of the weight vectors of catalytic residues in the training set. Finally, MEscoreDT was 
defined as follows:

Figure 2.  Generation of the microenvironment for each residue using Delaunay triangulation. In the left 
image, the catalytic residue of an enzyme structure (SCOP ID: d1gpma1) is shown in red, and its neighboring 
residues are shown in yellow or green. The right image shows the Delaunay triangulation of this active site, 
in which each node represents an atom. The atoms of the catalytic residue are shown in red, and atoms of 
neighbors that share a common facet with any atom of the catalytic residue are shown in yellow or green. 
Residues shown in green are finally removed because the number of common facets is less than the optimal 
cutoff.
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= ×MEscore F W (4)DT DT DT
T

where WDT
T  is the transposed matrix of WDT.

Because the number of common Voronoi facets of a given residue pair can reflect its contact strength, we 
deleted neighbors having a weak interaction with the target residue (Fig. 2). When MEscoreDT is individually 
used for prediction with optimal performance, the number of common facets should be no less than 9 (see 
Supplementary Fig. S1).

Topological features based on Delaunay triangulation.  Using the DT-based neighborhood, we transformed each 
enzyme structure into a residue interaction network in which vertices represent residues and edges denote link-
ages between residues. Two residues are considered to form a linkage when they share at least 9 common facets. 
For each residue, we computed four network parameters in which closeness and betweenness assess its global 
importance in the network, degree represents its local connectivity, and clustering coefficient reflects the com-
pactness of its neighboring residues.

Geometric features based on Laplacian characterization.  The Laplacian characterization of protein structures 
has recently been applied to structural comparison19 and RNA-binding residue prediction20. Here we extended 
the application of this method. Briefly, we computed a group of features termed Laplacian norms (LNs), which 
measure the distance between a target residue and the weighted center of its neighboring residues on multiple 
scales. The alpha carbon was utilized to represent each residue. Then a discrete Laplace operator was calculated 
as follows:
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where pi and pj denote the Cartesian coordinates of residue i and its neighbor j, respectively. The parameter σ is 
a scale factor that reflects the weights of close and remote neighbors. A lower value of σ indicates that only the 
nearby residues make an important contribution to the computation, whereas a higher value of σ indicates that 
the distant residues are also useful. To obtain this parameter, we calculated the distance distribution of all residue 
pairs in each protein. The values at the 0, 2−6, 2−4, 2−2, and 1 quantile positions of this distribution were chosen as 
the scale factors by systematical sampling (see Supplementary Fig. S2). The norm of the Laplacian coordinates of 
the target residue was then generated as follows:
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As a result, the LN features of each residue are represented by five weighted distances based on the selected 
scale factors.

Feature-based predictors.  After generating the above features, we established two support vector machine 
(SVM)21 feature predictors using structural and sequence information. For our structural predictor, we utilized 
all structural descriptors (see Supplementary Methods) and the sequence profile in combination with the struc-
tural neighborhood as its inputs. Neighboring residues in the DT-based microenvironment were sorted in terms 
of the number of facets shared by these residues and the target residue. For our sequence predictor, we input all 
sequence features (see Supplementary Methods) combined with the sequence microenvironment, which is a 
sliding window centered on the target residue. These predictors were implemented using LIBSVM22. The ratio 
of catalytic to non-catalytic residues in the training set was assigned as 1:6. To scale the attribute values to [0, 1], 
the elements in PSSM were transformed using the logistic function, and all remaining features except the binary 
vectors were transformed into a Z-score followed by the logistic function. By testing different window sizes, we 
found optimal values of 4 and 9 for the structure- and sequence-based predictors, respectively. To determine the 
parameters of the radial basis function in LIBSVM, we conducted a grid search for each predictor in which both 
C and γ​ values were tested in the range from 2−5 to 25, with a step size of 2. When these two parameters were set 
to 2 and 0.03125, respectively, both feature predictors achieved optimal performance.

Template-based predictors.  We further developed two template predictors based on structure and 
sequence alignments. For the first predictor, we compared the query structure against each enzyme in the tem-
plate library using SPalign23. Based on the structural similarity score (SPscore), the top-ranked enzyme was used 
as the reference structure and its catalytic residue information was transferred to the query structure. Concretely, 
if one residue in the query was matched with a catalytic residue in the optimal template, this position was consid-
ered as a catalytic residue with a probability score of 1; otherwise, a probability score of 0 was assigned. For the 
second predictor, the HHblits program24, a profile hidden Markov model (HMM)-based algorithm, was used as 
our search engine. We converted both the query and template sequences into HMMs by searching the sequences 
against the Uniprot20 database and conducted profile-profile alignments using the query HMMs and the tem-
plate HMMs library. This predictor selected the best template based on the profile similarity score (HHscore) and 
mapped known catalytic residues to the query sequence as with the structural template method.
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CRHunter: integrating the above four predictors.  Our prediction system is an ensemble algorithm 
integrating the complementarity between feature- and template-based methods and that between structural and 
sequence information. Template-based methods might provide higher prediction accuracy but unfortunately lose 
their power in the absence of good templates. Contrarily, coupled with higher false positive rates, feature-based 
methods might have broader applications25–27. Considering these points, we combined the structural feature- and 
template-based predictors as follows:

α α
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where Fscorestr and Tscorestr are the outputs of the individual predictors. The values of weight α and structural 
similarity cutoff SPcutoff were 0.55 and 0.6, respectively. Likewise, we merged the two sequence-based predictors 
as follows:
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where the values of weight β and profile similarity cutoff HHcutoff were 0.57 and 0.87, respectively. For the 
structure- and sequence-based modules, we further combined their outputs as follows:

γ γ= + −COMscore STRscore SEQscore(1 ) (9)

where weight γ was 0.5. The above parameters were chosen based on Supplementary Fig. S3.

Dataset preparation and performance evaluation.  To make a direct comparison between our 
algorithm and previous methods, we collected a group of well-established datasets with different levels of  
homology5,11–14,18. Cross-validation and independent testing were used to evaluate our various predictors. All of 
the parameters in our algorithms were determined based on the primary dataset (CSA223). The area under the 
receiver operating characteristic curve (AUC) was reported as a primary measure. We also calculated other metrics,  
including recall, precision, F1-score, accuracy (ACC), and Matthews correlation coefficient (MCC). Details can 
be found in Supplementary Methods.

Results and Discussion
Statistical analysis of novel structural features.  To obtain the DT-based microenvironment score 
(MEscoreDT), we first computed an overall weight vector WDT based on the CSA223 dataset18, which can be 
transformed into a 20 ×​ 20 matrix. As shown in Fig. 3A, catalytic residues are enriched in charged and hydro-
philic residues (H, D, R, E, K, C, and Y) but are depleted in hydrophobic residues. Our cluster analysis shows that 
neighboring residues have different preferences in the DT-based microenvironment. For instance, the neigh-
bors of dominant catalytic residue types generally have greater weights and the neighborhoods of these residue  
types share more similar patterns. Han et al.18 recently utilized the distance-based criterion to generate the 
residue neighborhood. A high correlation exists between their weight vector and ours (Pearson’s correlation  
coefficient =​ 0.940). We further calculated the value of MEscoreDT for each residue in CSA223. Figure 3B 
shows that catalytic residues have significantly higher microenvironment scores than non-catalytic residues 
(p-value =​ 9.8E-123), implying that MEscoreDT can serve as an effective feature.

Previous studies commonly retrieved topological features using distance-based residue interaction networks. 
As shown in Fig. 3B, when using DT-based networks, catalytic residues possess clearly higher closeness values 
than other residues (p-value =​ 3.3E-144). A similar tendency holds for betweenness centrality (p-value =​ 4.7E-69),  
further suggesting the global importance of catalytic residues in the network. Additionally, catalytic residues tend 
to achieve greater values of degree (p-value =​ 3.0E-51) but smaller clustering coefficients (p-value =​ 3.8E-37).  
These results illustrate the fact that although catalytic residues physically interact with more residues, these neigh-
bors are usually located in pocket or cleft regions and thus form few direct linkages among themselves due to the 
spatial gaps involved.

LN-based geometric features were also used for the first time to describe catalytic residues. As shown in Fig. 3C, 
the LNs of catalytic residues are consistently smaller than those of non-catalytic residues (p-value ≤​ 8.3E-12)  
and the discrepancy is markedly increased as the scale factor becomes greater. This phenomenon indicates that 
catalytic residues prefer relatively concave locations in both the local and global structures of enzymes. However, 
when we directly used the five scale factors proposed by Li et al.20 to generate different LNs, the distribution com-
parison on the last four scales looks very similar (see Supplementary Fig. S2). In contrast, our scale factors, which 
were chosen based on systematic sampling, might result in more multifaceted features. Finally, we select an exam-
ple from CSA223 and find that almost all of the catalytic residues appear at the valleys of LN curves (Fig. 3D), thus 
confirming the potential usefulness of LNs.

Evaluation of feature predictors using the primary dataset.  In this section, we first built a group of 
SVM-based predictors using each single feature coupled with the structural or sequence microenvironment and 
evaluated these predictors using 5-fold cross-validation on the CSA223 dataset. Figure 4 shows that the PSSM 
feature achieves the best performance among the structure- and sequence-based predictors, yielding AUCs of 
0.919 and 0.920, respectively. At the sequence level, the well-defined residue conservation scores provide com-
petitive performances compared to PSSM. Although our novel descriptors are not as useful as evolutionary con-
servation features, they rank at the top of all structural features. For instance, the AUCs of DT-based closeness 
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Figure 3.  Statistical analysis of novel structural features. (A) Weight coefficients of residue pairs in the DT-
based microenvironment of catalytic residues. Catalytic residues are sorted according to the percentages of 
different residue types. (B) A comparison of the distribution of DT-based features for catalytic and non-catalytic 
residues. ME: microenvironment score, DG: degree, CL: closeness, BW: betweenness, and CC: clustering 
coefficient. (C) A comparison of the distribution of LN-based geometric features for catalytic and non-catalytic 
residues. (D) Characterization of an enzyme structure (SCOP ID: d1qq5a_) by LNs at different scales. The 
positions marked in orange in the grey bar denote validated catalytic residues.

Figure 4.  Performance of single attributes evaluated on CSA223. PSSM: position-specific scoring matrix, 
CL: closeness, ME: microenvironment score, LN: Laplacian norm, BW: betweenness, SA: solvent accessibility, 
DG: degree, PK: pocket, CC: clustering coefficient, CX: protrusion index, HB: hydrogen bonds, BF: B-factor, 
DPX: depth index, SS: secondary structure, RE: relative entropy, JSD: Jensen-Shannon divergence score, SE: 
Shannon entropy, VNE: von Neumann entropy, PE: property entropy, PS: predicted structural features, PP: 
physicochemical properties, CP: catalytic residue propensity, RT: residue type, SP: sequential position, LT: 
length, and AAC: amino acid composition.
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(CL), MEscoreDT (ME), and LN on the global scale (LN(1)) are 0.840, 0.833, and 0.802, respectively. The AUCs 
of the remaining structural and sequence descriptors generally range from 0.55 to 0.85, indicating that conven-
tional features can detect catalytic signatures at different levels. In addition, we compared DT-based features 
with their distance-based counterparts. Supplementary Fig. S4 shows that the DT-based method achieves greater 
performance for degree and closeness measures but slightly weaker performance for the other measures. Overall, 
DT-based features can thus be considered as alternatives to distance-based features.

Next, we evaluated our final structural and sequence feature predictors using CSA223. As shown in Table 1, the 
performances of these two predictors are better than those obtained using the best single feature (PSSM-based) 
predictors. Both StrFeature and SeqFeature generate promising results, yielding AUCs of 0.952 and 0.949, respec-
tively. In particular, without our novel descriptors, the structural feature predictor attains an AUC of 0.941 (see 
Supplementary Table S1). Obviously, both structure- and sequence-derived features can collaboratively con-
tribute to catalytic residue prediction. We further combined these two predictors to assess whether they could 
complement each other. When we assign equal weights to the two predictors, the hybrid method SeqStrFeature 
achieves enhanced performance with an AUC of 0.960. This result indicates that the complementarity between 
structural and sequence information can be exploited to improve the prediction accuracy.

Evaluation of template predictors using the primary dataset.  Most previous algorithms have used 
feature-based strategies to recognize catalytic residues. Herein, we developed a structural template predictor 
using SPalign and a sequence template predictor using HHblits, both of which were also tested on CSA223. The 
SPscore and HHscore distributions of the best templates are shown in Fig. 5A. For the structural method, 111 
(49.7%) queries can achieve a reliable template with an SP-score of greater than 0.6, implying that the enzyme and 
its template probably share the same SCOP fold. In contrast, the sequence method exhibits a disjunctive distribu-
tion, in which 93 (41.7%) queries retrieve a good template, with HHscores of greater than 0.9. It is further shown 
in Fig. 5B that these two methods detect the same template for 64 (28.7%) proteins, most of which highly resem-
ble the template in terms of both their structural and profile perspectives. After achieving the best template, the 
putative catalytic residues of each query can be annotated based on experimentally verified residues. As shown 
in Table 1, StrTemplate yields an F1-score of 0.277 and MCC of 0.274, whereas SeqTemplate achieves an F1-score 
of 0.292 and MCC of 0.314. These results confirm that both structural and sequence template predictors can 

Methoda Recall Precision F1 ACC MCC AUC

StrFeature 0.553 (0.036)b 0.200 (0.011) 0.292 (0.013) 0.972 (0.001) 0.320 (0.015) 0.952 (0.004)

StrTemplate 0.239 (0.028) 0.329 (0.028) 0.277 (0.029) 0.987 (0.001) 0.274 (0.029) N/A

StrHunter 0.568 (0.021) 0.247 (0.017) 0.342 (0.017) 0.977 (0.001) 0.364 (0.015) 0.958 (0.004)

SeqFeature 0.545 (0.021) 0.201 (0.010) 0.293 (0.013) 0.973 (0.001) 0.320 (0.014) 0.949 (0.003)

SeqTemplate 0.212 (0.030) 0.485 (0.038) 0.292 (0.035) 0.990 (0.001) 0.314 (0.033) N/A

SeqHunter 0.551 (0.021) 0.221 (0.012) 0.316 (0.015) 0.975 (0.001) 0.339 (0.016) 0.954 (0.004)

SeqStrFeature 0.577 (0.023) 0.251 (0.015) 0.349 (0.015) 0.978 (0.001) 0.370 (0.014) 0.960 (0.002)

CRHunter 0.579 (0.028) 0.302 (0.020) 0.396 (0.021) 0.982 (0.001) 0.409 (0.021) 0.967 (0.002)

Table 1.   Performance of proposed predictors on primary dataset. aStrFeature and SeqFeature represent our 
feature predictors based on structural and sequence information, respectively. StrTemplate and SeqTemplate 
represent our template predictors based on structure and profile alignments, respectively. StrHunter (SeqHunter) 
is the combination of StrFeature (SeqFeature) and StrTemplate (SeqTemplate). SeqStrFeature is the fusion of 
SeqFeature and StrFeature. CRHunter is our final prediction algorithm. bStandard errors of various measures 
are shown in parentheses.

Figure 5.  Similarity scores of the optimal templates for the primary dataset. (A) Distribution of SPscores 
and HHscores for CSA223. (B) Comparison of SPscores and HHscores for CSA223. The red dot suggests that 
our structural and sequence template predictors detect the same template for the query protein.
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recognize catalytic residues. More interestingly, the sequence predictor yields even better performance than the 
structural predictor, suggesting that sequence profile similarity is a powerful indicator to find remote templates of 
enzymes for which no structures are available.

Evaluation of integrative predictors using the primary dataset.  The rationale behind our method 
is to simultaneously use the complementary relationship between feature- and template-based strategies as well 
as that between structural and sequence information. As shown in Table 1, compared to their component pre-
dictors, our hybrid structural and sequence predictors (StrHunter and SeqHunter) achieve better performances, 
yielding AUCs of 0.958 and 0.954, respectively. Although SeqHunter performs slightly worse than StrHunter, 
the sequence-based hybrid strategy will have broader applications, because the number of known sequences 
is increasing faster than the solving of their structures. Our final predictor CRHunter represents the further 
integration of StrHunter and SeqHunter and yields an improved AUC of 0.967. The Venn diagrams presented in 
Supplementary Fig. S5 show that CRHunter fully utilizes different catalytic signatures given by the structure- and 
sequence-based modules and by their component predictors. In Supplementary Table S1, we confirm that the 
incorporation of our novel features can moderately improve the combined algorithms. In summary, it is reasona-
ble to assume that CRHunter will serve as a useful catalytic residue detector in various scenarios.

Evaluation of proposed predictors using the alternative datasets.  We checked our approach using 
the CSA223 dataset without redundancy at the sequence level. Furthermore, we evaluated our predictors by 
conducting 10-fold cross-validation on six datasets with different levels of structural homology. Focusing on the 
three datasets (EF series) collected by Youn et al.13, we can observe that our feature predictors achieve relatively 
stable performances and yield AUCs of greater than 0.915 (Table 2). As shown in Fig. 6, the number of enzymes 
that can retrieve an effective template decreases remarkably as the homological relationships between the entries 
in the dataset become weaker. Accordingly, the template methods yield poor results for the EF_superfamily and 
EF_fold datasets, which clearly indicates the weakness of template-based prediction when effective templates 
are lacking. As expected, StrHunter and SeqHunter do not provide better performance for these two datasets. In 
contrast, an obvious improvement is observed for the EF_family dataset due to the contribution from our tem-
plate approaches. For the remaining three datasets, our template predictors retrieve reliable templates for a small 
group of all queries and correctly predict their catalytic residues, resulting in a slight improvement in the AUCs 
of StrHunter and SeqHunter compared to the feature-based methods. These results suggest that our algorithm 
has a strong adaptive capacity to the template quality of query proteins. More importantly, CRHunter continues 

Dataset Methoda Recall Precision F1 ACC MCC AUC

EF_family

Feature (Str|Seq) 0.503b (0.486)c 0.208 (0.206) 0.292 (0.289) 0.973 (0.974) 0.311 (0.305) 0.937 (0.931)

Template(Str|Seq) 0.229 (0.200) 0.303 (0.451) 0.260 (0.276) 0.986 (0.989) 0.256 (0.295) N/A

Hunter(Str|Seq) 0.489 (0.509) 0.258 (0.226) 0.336 (0.313) 0.979 (0.976) 0.345 (0.328) 0.941 (0.936)

CRHunter 0.497 0.305 0.376 0.982 0.380 0.949

EF_superfamily

Feature(Str|Seq) 0.509 (0.452) 0.211 (0.193) 0.297 (0.270) 0.973 (0.972) 0.315 (0.283) 0.938 (0.924)

Template(Str|Seq) 0.032 (0.023) 0.056 (0.149) 0.040 (0.040) 0.983 (0.988) 0.034 (0.054) N/A

Hunter(Str|Seq) 0.506 (0.536) 0.189 (0.163) 0.274 (0.250) 0.970 (0.964) 0.296 (0.282) 0.937 (0.925)

CRHunter 0.523 0.218 0.307 0.974 0.326 0.944

EF_fold

Feature(Str|Seq) 0.448 (0.363) 0.210 (0.182) 0.282 (0.241) 0.971 (0.971) 0.292 (0.243) 0.918 (0.907)

Template(Str|Seq) 0.017 (0.018) 0.030 (0.124) 0.021 (0.031) 0.981 (0.986) 0.013 (0.042) N/A

Hunter(Str|Seq) 0.505 (0.497) 0.178 (0.160) 0.259 (0.241) 0.964 (0.961) 0.283 (0.265) 0.918 (0.907)

CRHunter 0.504 0.211 0.293 0.970 0.311 0.926

HA_superfamily

Feature(Str|Seq) 0.539 (0.497) 0.198 (0.182) 0.289 (0.266) 0.974 (0.973) 0.316 (0.290) 0.944 (0.933)

Template(Str|Seq) 0.103 (0.091) 0.150 (0.326) 0.121 (0.141) 0.986 (0.990) 0.117 (0.168) N/A

Hunter(Str|Seq) 0.557 (0.556) 0.186 (0.174) 0.278 (0.265) 0.972 (0.970) 0.310 (0.299) 0.944 (0.936)

CRHunter 0.575 0.233 0.330 0.977 0.356 0.952

NN

Feature(Str|Seq) 0.475 (0.468) 0.207 (0.201) 0.286 (0.280) 0.974 (0.974) 0.301 (0.295) 0.935 (0.932)

Template(Str|Seq) 0.108 (0.088) 0.141 (0.393) 0.122 (0.139) 0.983 (0.989) 0.115 (0.177) N/A

Hunter(Str|Seq) 0.541 (0.543) 0.196 (0.178) 0.285 (0.267) 0.971 (0.968) 0.312 (0.298) 0.939 (0.934)

CRHunter 0.551 0.243 0.335 0.977 0.354 0.949

PC

Feature(Str|Seq) 0.478 (0.383) 0.214 (0.181) 0.285 (0.242) 0.972 (0.972) 0.302 (0.249) 0.936 (0.923)

Template(Str|Seq) 0.061 (0.019) 0.088 (0.075) 0.072 (0.030) 0.982 (0.988) 0.064 (0.034) N/A

Hunter(Str|Seq) 0.524 (0.469) 0.189 (0.161) 0.274 (0.234) 0.967 (0.964) 0.299 (0.257) 0.937 (0.924)

CRHunter 0.493 0.231 0.306 0.974 0.321 0.945

Table 2.   Performance of proposed predictors on alternative datasets. aFeature(Str|Seq) denotes our feature 
predictor based on structural or sequence information. Template(Str|Seq) denotes our template predictor based 
on structure or profile alignment. Hunter(Str|Seq) is the combined structural or sequence module. CRHunter 
is our final prediction algorithm. bResults generated by structure-based predictors. cResults generated by 
sequence-based predictors.
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to show optimal performance among all our predictors for different datasets and yields AUCs ranging from 0.926 
to 0.952. Therefore, CRHunter is an intelligent prediction system that can automatically exploit the advantages of 
individual predictors.

Evaluation of proposed predictors using the independent datasets.  We further evaluated our algo-
rithm with the external dataset T12414 and used the EF_fold dataset to train the prediction models. Table 3 shows 
that our sequence feature and template predictors generate similar performances with an MCC of approximately 
0.270, whereas SeqHunter achieves a greater MCC of 0.303. Our structural module StrHunter also yields an 
improved MCC of 0.334 compared to its component predictors. Finally, CRHunter achieves the best performance 
with an MCC of 0.367 and AUC of 0.946, thus again confirming the usefulness and robustness of our integrative 
methodology. We then generated the predicted structures for the T124 dataset using I-TASSER28 with relaxed 
and strict template parameters. Table 3 shows that our three structural predictors remain robust for the predicted 
structures. The performances of these predictors are improved when we use more reliable structural models. For 
instance, the AUCs yielded by StrHunter are 0.923 and 0.933 for the low and high quality models, respectively. 
Compared to sequence-based methods, structural model-based prediction does not show significant advantages. 
However, when we merge these two types of information, CRHunter exhibits enhanced performance, yielding 

Figure 6.  Distribution of the similarity scores of top-ranked templates for the alternative datasets. These six 
datasets have different levels of structural homology.

Data typea Methodb Recall Precision F1 ACC MCC AUC

Native sequence

SeqFeature 0.470 (0.035)c 0.174 (0.014) 0.254 (0.018) 0.978 (0.001) 0.277 (0.020) 0.929 (0.008)

SeqTemplate 0.172 (0.023) 0.416 (0.037) 0.243 (0.028) 0.992 (0.000) 0.263 (0.028) N/A

SeqHunter 0.475 (0.037) 0.204 (0.019) 0.286 (0.021) 0.981 (0.002) 0.303 (0.021) 0.930 (0.009)

Native structure

StrFeature 0.496 (0.030) 0.189 (0.014) 0.274 (0.017) 0.979 (0.001) 0.297 (0.018) 0.943 (0.007)

StrTemplate 0.206 (0.024) 0.262 (0.029) 0.230 (0.025) 0.989 (0.001) 0.227 (0.026) N/A

StrHunter 0.501 (0.035) 0.233 (0.021) 0.318 (0.024) 0.983 (0.001) 0.334 (0.024) 0.945 (0.008)

CRHunter 0.488 (0.037) 0.286 (0.023) 0.361 (0.024) 0.986 (0.001) 0.367 (0.024) 0.946 (0.008)

High quality model

StrFeature 0.449 (0.032) 0.176 (0.015) 0.253 (0.018) 0.979 (0.001) 0.272 (0.018) 0.931 (0.007)

StrTemplate 0.187 (0.022) 0.228 (0.026) 0.206 (0.023) 0.988 (0.001) 0.201 (0.023) N/A

StrHunter 0.443 (0.033) 0.209 (0.017) 0.284 (0.020) 0.982 (0.001) 0.296 (0.020) 0.933 (0.008)

CRHunter 0.454 (0.037) 0.275 (0.022) 0.343 (0.022) 0.986 (0.001) 0.347 (0.022) 0.942 (0.008)

Low quality model

StrFeature 0.385 (0.033) 0.160 (0.014) 0.226 (0.018) 0.979 (0.001) 0.239 (0.019) 0.919 (0.008)

StrTemplate 0.185 (0.021) 0.248 (0.027) 0.212 (0.022) 0.989 (0.000) 0.209 (0.023) N/A

StrHunter 0.396 (0.032) 0.202 (0.019) 0.268 (0.021) 0.983 (0.001) 0.275 (0.021) 0.923 (0.009)

CRHunter 0.406 (0.035) 0.267 (0.023) 0.322 (0.023) 0.986 (0.001) 0.323 (0.023) 0.940 (0.008)

Table 3.   Performance of proposed predictors on independent datasets. aHigh and low quality models 
denote the structures modelled by I-TASSER with relaxed and strict sequence identity cutoffs (90% and 30%), 
respectively. bAnnotations of different methods are the same as those in Table 1. cStandard errors of various 
measures are shown in parentheses.
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AUCs of 0.940 and 0.942 for these two datasets. This fusion makes our algorithm more powerful in the case of 
queries comprising only sequence information. Moreover, we replaced the EF_fold dataset with the CSA223 
dataset and obtained similar results, as shown in Supplementary Table S2.

Comparison with other prediction algorithms.  We systematically evaluated our method using a group 
of widely used datasets. In this way, we can compare our performance with the results reported from previous 
literature. Based on CSA223, Han et al.18 integrated the distance-based microenvironment score, distance to 
the centroid, and residue conservation to predict catalytic residues, yielding an AUC of 0.920. The FEATURE 
algorithm29 attained an AUC of 0.874 on the same dataset. Clearly, CRHunter generates superior performance, 
because it yields an AUC of 0.967. Using our alternative and external datasets, we further compared CRHunter 
with other algorithms. In Table 4, when the precisions of CRHunter are equal to those of the competing methods, 
our recalls are generally higher than the recalls of the competing methods and CRpred14. If the recalls are fixed, 
the precisions of CRHunter are also better. Similarly, we considered the performance of CRpred as the baseline 
and compared the results of CatANalyst30 and CRHunter in Supplementary Table S3. Compared to the structural 
feature-based method CatANalyst, our integrative algorithm yields greater measures when using the EF_family, 
HA_superfamily, and T124 datasets. The incorporation of template predictors probably makes an important con-
tribution to our superior performance. For the other three datasets with lower homology, these two algorithms 
achieve comparable performance. These tables also show that SeqHunter achieves competitive or better results 
at the sequence level than CRpred does. In summary, our algorithm exhibits superiority over the state-of-the-art 
algorithms due to its combination of multifaceted information.

Application to structural genomics targets.  Finally, we applied our approach to the SG2332 data-
set comprising 2332 protein structures with unknown functions. Note that all of the predictors were trained 
on CSA223, and only three entries shared more than 30% sequence identity with CSA223. As shown in 
Supplementary Fig. S6, we achieve at least one positive prediction in 1704 protein structures, which include 
6746 putative catalytic residues. We also notice that the distribution of putative catalytic residues in SG2332 
strongly correlates with the distribution of validated catalytic residues in CSA223 (Pearson’s correlation  
coefficient =​ 0.958), indicating that our predictions are generally reliable. To further show the power of our 
method, we selected the BioH protein (PDB ID: 1M33_A) as a representative structure. The original reference 
annotated a putative catalytic triad (Ser82, His235, and Asp207) in BioH by aligning this protein against active site 
templates with TESS and experimentally validated that Ser82 probably plays an important role in the enzymatic 
activity31. As revealed in Fig. 7, our component predictors all output several positive predictions in BioH, which 
generally cover the potential catalytic triad. Both StrTemplate and SeqTemplate retrieve the same template for 
BioH (SCOP ID: d1ehya_), which has high structural but low sequence similarity with this query (SPscore =​ 0.97 
and sequence identity =​ 21%). Through merging the outputs of different predictors, CRHunter eliminates the 
potential false positives and returns five possible catalytic residues (Trp22, Ser82, Leu83, Asp207, and His235). 
The possible catalytic functions of Trp22 and Leu83 are especially worthy of further study. The precompiled 
results for SG2332 are provided in the dataset page of our server.

CRHunter server.  CRHunter is freely available at http://www.bioinfo-hzau.cc/CRHunter/ and was developed 
in PHP, Perl-CGI, JpGraph, and Jmoe. We provide different prediction methods based on three types of infor-
mation (sequence, structure, and structural model) to identify putative catalytic residues in query proteins. An 
example of the results obtained from our server is presented in Supplementary Fig. S7.

Conclusions
To our knowledge, this is the first time that an integrative algorithm simultaneously uses structure- and 
sequence-based feature and template strategies to predict catalytic residues. First, several novel descriptors based 
on the Delaunay triangulation and Laplacian transformation of enzyme structures were used in our structural 
feature predictor. Compared with traditional structural attributes, these new features not only yield better perfor-
mance but also provide orthogonal information. Alternatively, our sequence feature predictor achieves compet-
itive results compared to its structural equivalent, thus demonstrating its predictive power and possible broader 

Methoda
Reported
measureb

EF
family

EF
superfamily

EF
fold

HA
superfamily NN PC

Competing method Recall (Precision) 0.570 (0.185)c 0.539 (0.169)c 0.511 (0.171)c 0.293 (0.165)d 0.560 (0.140)e 0.900 (0.070)f

CRpred Recall (Precision) 0.583 (0.195)g 0.521 (0.159)g 0.480 (0.161)g 0.497 (0.247)g 0.659 (0.180)g 0.845 (0.056)g

SeqHunter Recall (Precision) 0.614 (0.209) 0.520 (0.161) 0.409 (0.156) 0.576 (0.274) 0.662 (0.174) 0.838 (0.047)

CRHunter Recall (Precision) 0.712 (0.273) 0.687 (0.215) 0.627 (0.210) 0.696 (0.332) 0.764 (0.240) 0.921 (0.076)

Table 4.   Comparison with other prediction methods. aSeqHunter is the combination of our sequence-based 
feature and template methods. CRHunter is our final prediction algorithm. bRecall (precision) values of CRpred, 
SeqHunter, and CRHunter are reported when their precision (recall) values are equal to those of the competing 
methods. cResults on the EF_family, EF_superfamily, and EF_fold datasets reported from Youn et al.13. dResults 
on the HA_superfamily dataset reported from Chea et al.5. eResults on the NN dataset reported from Gutteridge 
et al.11. fResults on the PC dataset reported from Petrova and Wu.12. gResults on the above six datasets reported 
from Zhang et al.14.

http://www.bioinfo-hzau.cc/CRHunter/
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applications. Regarding template-based prediction, both our structural and sequence predictors can find effective 
templates for approximately 45% of all enzymes without sequence redundancy and can therefore be used to 
transfer experimentally verified catalytic residues. By using an effective combination of these methods, our hybrid 
algorithm CRHunter outperforms the structural and sequence prediction modules as well as their component 
predictors. When they are applied to datasets with different levels of structural homology, our feature predictors 
generate relatively stable performance, whereas our template predictors yield poor results as the homological 
relationships become weak. CRHunter, however, continues to achieve the best performance among all our pro-
posed predictors for these datasets. Through independent testing, we find that our predictors are robust and 
that the integrative strategy can be applied to structural model-based catalytic residue prediction as well as its 
sequence- and structure-based counterparts. Compared to other prediction methods, CRHunter is generally 
superior for various datasets. Finally, the application of this method to structural genomics targets will provide 
valuable insights into solved structures with unknown functions.
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