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Abstract

Magnetic resonance imaging (MRI) is a noninvasive imaging modality that provides excellent 

spatial and temporal resolution. The most commonly used MR probes face significant challenges 

originating from the endogenous 1H background signal of water. In contrast, fluorine MRI (19F 

MRI) allows quantitative probe imaging with zero background signal. Probes with high fluorine 

content are required for high sensitivity, suggesting nanoscale supramolecular assemblies 

containing 19F probes offer a potentially useful strategy for optimum imaging as a result of 

improved payload. We report here on supramolecular nanostructures formed by fluorinated 

peptide amphiphiles containing either glutamic acid or lysine residues in their sequence. We 

identified molecules that form aggregates in water which transition from cylindrical to ribbon-like 

shape as pH increased from 4.5 to 8.0. Interestingly, we found that ribbon-like nanostructures had 

reduced magnetic resonance signal, whereas their cylindrical counterparts exhibited strong signals. 

We attribute this drastic difference to the greater mobility of fluorinated tails in the hydrophobic 

compartment of cylindrical nanostructures compared to lower mobility in ribbon-like assemblies. 

This discovery identifies a strategy to design supramolecular, self-assembling contrast agents 

for 19F MRI that can spatially map physiologically relevant changes in pH using changes in 

morphology.
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Magnetic resonance imaging (MRI) is an invaluable clinical and research tool used to 

noninvasively produce three-dimensional images of living tissues with excellent 

spatiotemporal resolution.1 MR probes capable of detecting specific biological events, 

including changes in pH,2,3 ion concentration,4–6 and the activity of enzymes7 have been 

developed to expand MRI’s capabilities. Responsive MR agents are often based on 

modulating magnetic effects on the 1H nuclei of water.8,9 The challenge of detecting MR 

contrast agents that modulate the 1H signal in biological systems where the background 

water signal is large10 has led to the development of hyperpolarization techniques11–16 and 

improvement in contrast agent design.17,18 One of the strategies to improve MRI has been to 

develop probes based on nuclei other than 1H. 19F is particularly attractive nucleus because 

of its large gyromagnetic ratio and natural abundance, resulting in an innate MR signal 

comparable to 1H that is not obscured by endogenous proton signal of biological 

systems.19–23

Despite improvements in MR sensitivity, 19F probes must present in millimolar quantities of 

fluorine atoms to be detectable.24 Recently reported 19F probes achieve these concentrations 

by employing nanoscale chemical strategies such as design of emulsions,20,25 dendrimers,26 

and micellar structures.19,27,28 In addition to higher fluorine payloads, micellar constructs 

can be designed to respond to chemical stimuli, switching between MR signal “on” and 

“off” states.29 One specific mechanism is silencing the 19F MR signal by shortening the T2 

(spin–spin) relaxation time with aggregate formation or interaction with a paramagnetic 

species.30–32 Aggregation-based T2 quenching works by increasing local molecular 

correlation times, resulting in rapid spin–spin relaxation and signal reduction. We 

hypothesized that 19F-containing nanoscale supramolecular assemblies that are more highly 

structured than spherical micelles could have MR signal response to stimuli based on 

differences in their internal dynamics.

Peptide amphiphiles (PAs) contain a short peptide sequence covalently grafted to a 

hydrophobic tail and can be programmed to generate one-dimensional assemblies such as 

cylinders and ribbons.33–35 PAs have a modular design that has been functionalized with an 

array of biomolecular epitopes and bioactive substituents for any number of applications in 

regenerative medicine,36–38 drug delivery,39–42 and as Gd(III)-based MRI contrast 

agents.43–45 These nanostructures exhibit structural responses to thermal annealing,46 
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light,47 pH,35,48,49 and enzymatic activity.39 These structural responses to external stimuli 

introduce functions in PA biomaterials.

An important biomedical target is the development of systems that sense pH as an indicator 

of hypoxia in ischemic or cancerous tissue.50,51 In this context, it is possible to vary the 

number of charged amino acids in peptide amphiphiles in order to gain structural sensitivity 

to changes in pH.35,49,52 It follows that differences in local dynamics between different 

nanostructure geometries could result in a measurable 19F MRI signal response, but this is 

not characterized in the literature to our knowledge. The present work aims to explore 

hydrophobicity and charge to examine 19F MRI response to pH in peptide amphiphile 

aggregates. Using this design strategy, we have developed a series of peptide amphiphiles as 

responsive MR contrast agents. The series varies the hydrophobicity of the perfluoroalkyl 

tail by amidating either perfluorooctanoic acid or perfluoroheptanoic acid to the amino 

terminus of the peptide sequence and varies charge in the peptide sequence using either E2, 

K2, or K3 sequences.

RESULTS AND DISCUSSION

The fluorinated peptide amphiphiles (F-PAs) used in this study were designed to probe the 

effect of varying fluorophilic interactions and the repulsive effects of charge on NMR 

spectra and consequently on MRI signals. We expected that acidic and basic headgroups 

would exhibit NMR signals that varied as a function of pH. We designed a series of F-PAs 

with either glutamic acid or lysine headgroups to explore the responsiveness of the acidic 

and basic side chains to pH (Figure 1). β-sheet-promoting sequences like V2A2 are known to 

direct assembly into one-dimensional nanostructures.53,54 Short, C7 and C8 perfluoro chains 

were selected to balance hydrophobic collapse with solubility in organic solvents needed for 

synthesis. All of the peptides were synthesized using conventional solid-phase peptide 

synthesis techniques (see Supporting Information). Each perfluoroalkyl tail was added via 
the Schotten–Baumann reaction as the acyl chloride dissolved in chloroform with excess 

N,N-diisopropylethylamine. The final peptide amphiphiles were obtained in approximately 

50% overall yield after HPLC purification.

In order to optimize amphiphile concentration for NMR detection, we obtained the 19F 

NMR spectra of each F-PA at concentrations of 1, 1.5, 2, and 3 mM and the signal-to-noise 

ratio (SNR) was assessed. MRI is innately less sensitive than NMR spectroscopy, because 

MRI is usually performed at lower field strengths and with much greater magnet bore size. 

Therefore, we targeted SNR values greater than 100 when performing NMR to ensure MRI 

detection of a given sample.

For 19F MR contrast agents to provide quantitative imaging information, peak intensity must 

increase predictably with concentration from a few hundred micromolar to several 

millimolar.24,32 The NMR spectra (Figure 2) of the agents in Figure 1 indicate clearly that 

the SNR is sensitive to the length of the F-PA tail segment. For example, C7E2 produced 

sharp NMR peaks at each concentration tested, indicative of high tail mobility. The terminal 

CF3 group peak at −80.8 ppm maintained a peak width of 9–10 Hz at over 100 SNR at each 

concentration tested. For C8E2, the CF3 signal at −80.8 ppm and 103 SNR broadened and 
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shifted to −83.0 ppm and 11 SNR above 1.5 mM (Figure 2), indicating a transition from 

high to low mobility. This trend of high SNR for C7 and low SNR for C8 peptides held for 

all sequences studied. Comparing positively charged headgroups, C8K2 produced high 

(>100) SNR only at 1 mM, whereas C7K2 produced high SNR spectra up to 1.5 mM 

concentration. C7K3 exhibited sufficient signal for imaging (greater than 100 SNR) over the 

range of concentrations tested, whereas C8K3 produced low SNR peaks (SNR < 10) through 

the concentrations tested. Based on these observations, the C7 F-PAs are superior 19F MRI 

candidates compared to the C8 F-PAs because the C8 compounds have low SNR at the range 

of concentrations tested, while C7 compounds had high SNR. Moving forward, we 

considered only C7 compounds.

Negatively charged glutamic acid residues were compared with positively charged lysine 

residues to determine if charge had an influence on the effect of concentration on signal 

intensity. The C7E2 spectral signal was unaffected by increasing peptide concentration 

through the range tested. C7K2 experienced significant peak broadening at concentrations 

above 1.5 mM, with SNR in the NMR spectra remaining less than 15 at 2 mM. The 

increased intramolecular repulsion of adding an additional lysine residue in the C7K3 

sequence led to a nanostructure with an NMR signal that is linear with respect to 

concentration. On the basis of these concentration studies, C7E2 and C7K3 showed the most 

promise as contrast agents, and a concentration of 2 mM was chosen for all future 

experiments.

To determine pH response profiles of the F-PAs, pH titration 19F NMR experiments were 

conducted. Solutions were allowed to equilibrate overnight at room temperature before 

measurement, and were pH-adjusted between measurements by addition of dilute NaOH and 

HCl solutions (allowed to equilibrate at least 15 min between measurements; for each pH 

value a 1D 19F NMR spectra was acquired). For both C7E2 and C7K3, peak intensity could 

be modulated reversibly by pH as measured against the trifluoroethanol (TFE) internal 

standard (Figure 3A and B). Throughout these titrations, pH values corresponding to higher 

peptide charged states were expected to cause greater intramolecular repulsion, which in 

turn would increase intramolecular distance, leading to longer T2 relaxation times and 

greater integrated signal.

Because both C7K3 and C7E2 exhibited MR signal that increased as a function of pH, they 

represent the best candidate compounds as pH-responsive 19F MRI agents. The transition 

from NMR-inactive to NMR-active occurred across a narrower pH range for C7E2, rising 

from baseline to 100% entirely in the pH window 5.5–7.0 (Figure 3C). The same transition 

was more gradual and much smaller for C7K3, approximating a linear relationship between 

pH 5.5 and pH 8.5 and rising from 80% activation to 100% over that range. pH response 

reinforces C7E2 as the best candidate F-PA contrast agents since this compound exhibits 

signal enhancement in the biologically relevant pH window. Interestingly, both C7E2 and 

C7K3 exhibit an increase in signal with pH despite of their opposite charge. This unexpected 

correlation between pH and 19F signal led us to hypothesize that local tail environment, 

perhaps as a function of nanostructure morphology, was contributing to 19F NMR signal 

intensity in unexpected ways. pH titration analysis by 19F NMR for the other investigated 

compounds at 2.0 mM are shown in Figures S1–S4. Interestingly, C7K2, C8E2, and C8K2 
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were found to exhibit sharp, low intensity peaks at intermediate pH values (Figure S1, S3, 

and S4). Although this is not ideal as 19F NMR agents, because signal intensity is too low to 

be detected in most imaging experiments, it is interesting that intermediate charge states 

might produce high tail mobility nanostructures in solution. C7E2 was shown to exhibit 

similar signal variation when dissolved in Tris-buffered saline rather than saline (100 mM 

NaCl and 30 mM Tris) and pH adjusted (Figure S5A–B). The same phenomenon was not 

observed when that buffered solution was diluted 1:1 in fetal bovine serum (FBS). We 

believe that this loss of function is likely due to protein-assembly interactions that disrupt 

the nanostructures through nonspecific interactions, because the resulting NMR signal was 

broadened (Figure S5C). Future applications of these compounds in vivo will require 

optimization of application and processing techniques as well as assessment of the agent in 

solid tissue, which are beyond the scope of the current work.

In order to prove that the observed signal increase with pH for C7K3 and C7E2 did not arise 

from unassembled (i.e., monomeric) F-PA, a Nile red assay was carried out to obtain the 

critical micelle concentration (CMC) for C7E2 and C7K3 (Figure 3D). We chose pH 7.5 for 

the assay because it is relevant to biological media and both compounds show high signal 

intensity at this value. Both C7E2 and C7K3 were found to induce a blue shift in the Nile red 

florescence at a concentration below 0.1 mM, corresponding to a CMC less than or equal to 

0.1 mM for both compounds. These data support an NMR signal contribution of less than 

5% for monomers in solution, indicating the NMR signal increase observed as a result of 

greater pH is largely the result of the nanostructures formed by both compounds.

Cryogenic electron microscopy (Cryo-TEM) experiments were carried out to investigate the 

effect of the amphiphile structure on nanoscale aggregates. Sample preparation for Cryo-

TEMs used identical buffer conditions described for NMR measurements but omitted the 

use of deuterated solvent and internal standard. Results from these experiments are shown in 

Figures 4 and S5. C7E2 formed nanoribbon structures at pH 4 and 7 with widths of 25 ± 6 

nm (13 ribbons measured) and 19 ± 5 nm (20 ribbons measured), respectively, and sparse 

cylindrical nanofibers at pH 9 with diameters of 11 ± 2 nm (16 fibers measured). C7K3 

formed only very short, sparse ribbons at both pH 4 and 7, and long cylindrical fibers and 

some ribbons at pH 9 with a diameter of 14 ± 3 nm (16 ribbons measured). These 

observations across the C7 series were consistent with relatively weak hydrophobic 

interactions, resulting in structures that respond strongly to the effect of charge at the peptide 

terminus and, therefore, pH (Figure 4). Interestingly, the strongest signals at various values 

of pH for C7K3 and C7E2 were observed for cylindrical nanofibers (a larger view of C7K3 

nanostructures can be found in Figure S7). This suggests a relationship between 

nanostructure morphology and 19F MRI signal, with cylindrical nanostructures producing 

higher integration NMR signal peaks and therefore higher MRI signals.

In contrast to the C7 series, the C8 series did not exhibit pH sensitivity at the concentration 

ranges tested, and signal-to-noise for the NMR signal of these compounds proved 

prohibitively low for MR imaging. All C8 compounds, differing by only one CF2 unit from 

the C7 series, exhibited flat nanostructures that did not change with pH and were more likely 

to show nanostructure aggregation (Figure S6). C8E2 produced aggregated ribbons at pH 4, 

consistent with the viscous and turbid solutions. At pH 7, ribbon nanostructures were 
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observed, and sparse nanoribbons at pH 9. For C8K2 at pH 4, a mixture of ribbons and fibers 

was observed and at pH 7 and 9 these transitioned to only ribbon nanostructures. Consistent 

with results obtained with the C7 series, C8K2 showed broad NMR signals at low pH which 

lost intensity at high pH. To summarize, Cryo-TEM images indicate that the C7 series is 

significantly more sensitive to pH and also that cylindrical nanostructures correlate with 

enhanced NMR signals. This result indicates that a ribbon to fiber transition in these 

supramolecular aggregates may be responsible for the pH response observed.

Peptide secondary structure may play a role in restricting tail mobility and reducing the 

signal observed. To assess this possibility, a series of circular dichroism (CD) experiments 

were conducted to determine if a correlation exists between NMR signals and peptide 

secondary structure (Figures 5 and S8–S11). Each of the spectra shows the decay of a 

random coil signal appearing at 200 nm and the growth of a β-sheet signal as a negative 

peak at 220 nm as the nanostructure becomes less charged as a result of pH. For C7E2, β-

sheet character increases with decreasing pH. For C7K3, β-sheet character increases with 

increasing pH. Despite this inversion, pH increase exhibits a positive correlation with 19F 

NMR signal in both instances (Figure 4). The pH trends in peptide secondary structure for 

these samples therefore imply that peptide secondary structure does not directly result in 

higher or lower 19F NMR or 19F MRI signal.

In order to examine MRI contrast agent properties in these compounds, C7E2 and C7K3 were 

imaged at pH 4, 6, 7, 8, and 9 using the same solution conditions as the NMR studies 

(Figure 6). The NMR signal peak corresponding to the terminal CF3 group of the 

perfluorocarbon tail was selected for imaging, due to its relatively high intensity. MRI signal 

for C7E2 was shown to increase until pH 7, as predicted by data shown in Figure 3. C7K3 

was imaged, but imaging artifacts from the TFA counterions required dialysis prior to 

imaging. In these samples, measurable signals that showed pH response were observed, but 

the data did not fit the trend described in Figure 3 (Figure S12). One possible explanation is 

that the dialysis process changes the nature of the assembly and therefore the pH response 

profile.

The morphology of nanostructures formed by C7E2 and C7K3 molecules is controlled by the 

balance of repulsive and attractive intermolecular forces sensitive to the acid–base 

equilibrium of charged amino acids in each peptide sequence. Altering the peptide sequence 

by varying the nature of charged residues or hydrophobic tail structure results in loss of pH 

sensitivity. Morphologically, both C7E2 and C7K3 formed cylindrical nanofiber structures 

when producing NMR signal while molecules of the other compounds tested aggregated into 

ribbon morphologies. The implication is that the local mobility of perfluorinated tails is 

greater in cylindrical nanostructures than in nanoribbons. One hypothesis for this difference 

in dynamics between the two different types of supramolecular aggregates would be a denser 

packing of tail segments in the case of ribbon-like nanostructures, which possess less local 

curvature, and less dense packing in the hydrophobic domains of nanofibers, which possess 

more local curvature.
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CONCLUSIONS

A series of self-assembling fluorinated peptide amphiphiles were designed to optimize 19F 

MRI signals in response to pH changes by varying their content of charged amino acids and 

number of fluorine atoms in hydrophobic segments. We found that the supramolecular 

aggregates formed by some of the amphiphiles undergo a morphological transition from 

low-curvature nanoscale ribbons to cylindrical nanofibers as pH increases that results in 

enhanced MR signals. This work suggests that morphological transitions in aggregates that 

affect the mobility of fluorinated segments represent a good strategy to design stimulus-

responsive supramolecular 19F MRI contrast agents.

METHODS

Synthesis

Peptides were synthesized using standard solid-phase peptide synthesis techniques on an 

automated CSBio Synthesizer, model number CS136. Amino acids were obtained from 

Anaspec (Fremont, CA). DIC and Oxyma pure were obtained from ThermoFischer Sciences 

(Waltham, MA) and BAChem (Bubendorf, Switzerland), respectively. Dimethylformamide, 

dichloromethane, diisopropylethylamine, and 4-methylpiperidine were obtained and used 

without further purification from VWR. Synthesis was conducted on a rink amide resin on 

MBHA support (EMD Millipore, Billerica Massachusetts) at 0.5 mM scale. The 

perfluoroalkane tails were added on-resin via the Schotten-Baumann reaction. Acyl 

chlorides were obtained from Sigma-Aldrich. Acyl chloride (300 μL) was dissolved in 10 

mL of solvent system-dried chloroform along with 600 μL of diisopropyl ethyl amine. The 

solution was directly added to a fritted shaker vessel along with the peptide on-resin and 

agitated for 30–45 min. The addition was repeated until ninhydrin test was negative. The 

peptide was cleaved from resin support in a solution of 95% trifluoroacetic acid, 2.5% water, 

and 2.5% triisopropyl silane over 3 h and precipitated in cold ether stored at −20 °C. The 

precipitate was purified using reverse-phase HPLC. Overall yield was typically 40%– 50%.

Purification

All peptides were purified using reverse-phase high pressure liquid chromatography on a 

Phenomenex Gemini C18 column (5 μm particle size) using a 2%–100% acetonitrile 

gradient program. To each solution was added 0.1% saturated NH4OH solution in water (for 

glutamic acid-containing sequences) or 0.1% trifluoroacetic acid (for lysine-containing 

sequences). System eluent was analyzed with an Agilent 6510 Q-TOF MS to identify 

product peaks. Acetonitrile was removed with rotary evaporation and water was removed via 
lyophilization. The resultant white, fluffy powder was stored at −20 °C.

General Conditions

Unless otherwise specified, all F–PA samples were analyzed at 2 mM concentration in 150 

mM NaCl in Millipure water. All solutions were allowed to stand at room temperature for a 

period of not less than 16 h and not more than 24 h prior to NMR, CD, Cryo-EM, MRI, Nile 

red assay, and analytical HPLC.
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Analytical HPLC

All lysine-based sequences were analyzed in acidic mobile phase and all glutamic acid–

based sequences were analyzed in basic mobile phase. A Phenomenex Jupiter C18 and 

Phemomenex Gemini C18 column were used for acidic and basic condition separations, 

respectively, on an Agilent 6520 LC/MS system. Each column measured 1.0 × 150 mm, and 

contained a 5 μm particle size. A gradient of 5–95% acetonitrile over 30 min and 1 mL/min 

flow rate was employed. Mobile phases were doped with either 0.1% NH4OH solution (if 

basic) or 0.1% formic acid (if acidic).

Nuclear Magnetic Resonance Spectroscopy

All NMR spectra were acquired using a Varian 500 MHz NMR spectrometer at 25 °C. 

Spectra represent the average of 128 scans with a 30° flip angle and 1 s delay time. 

Precision, thin-walled Shigemi Tubes were used for NMR measurements. PA solutions were 

dissolved in 150 mM NaCl in Millipure water with 1.8 mM trifluoroethanol and 10% D2O 

as the lock solvent and aged overnight prior to measurement to promote structure stability. 

pH adjustment was conducted using a VWR SB21 pH meter between each measurement, 

using concentrated (0.1 or 0.01 M) solutions of NaOH and HCl in order to minimize 

concentration change through the pH adjustment process. Each sample at each pH point was 

equilibrated for 15 min in the scanner at 25 °C prior to spectral acquisition.

Critical Micelle Concentration Determination

Solutions of C7E2 and C7K3 were prepared as specified in the General Conditions section 

and adjusted to pH 7.5 using 0.1 M NaOH and HCl solutions. On the day of measurement, 

these solutions were serial diluted to triplicate sets of 1 mM, 0.5 mM, 0.25 mM, 0.1 mM, 

0.04 mM, and 0.008 mM concentrations using a preadjusted 150 mM NaCl solution with a 

total volume of 1 mL. A solution of Nile red was prepared at 150 μM in ethanol. A 

micropipette calibrated to the density of ethanol was used to dispense 1 μL of Nile red 

solution in each sample. These samples were then agitated briefly and allowed to incubate at 

room temperature for 2 h. The solutions were then analyzed using a Hitachi F-4500 

fluorimeter operating at a 550 nm excitation wavelength. Each acquisition was the average 

of three scans in a 5 × 5 mm quartz cuvette.

Circular Dichroism UV Spectroscopy

General conditions were used as described above. Measurements were performed with a 

AJ-715 Jasco circular dichroism spectrometer at 25 °C. Slit width was 2 nm and the scan 

speed was 100 nm/min. Samples were loaded into 0.1 mm path length plates. Each spectra is 

the average of three scans.

Cryo-TEM

Cryo-TEM samples were prepared according to General Conditions described above. 

Images were acquired using a JEOL 1230 microscope operating at 100 kV. Specimens were 

cast on plasma-cleaned 300 mesh copper grids with a lacey carbon support obtained from 

Electron Microscopy Sciences and frozen using a Vitrobot Mark IV plunging into liquid 

ethane. Images were acquired using a Gatan 831 CCD camera.

Preslar et al. Page 8

ACS Nano. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Magnetic Resonance Imaging (MRI)

MR images were acquired on a 9.4T Agilent (Varian) horizontal bore MRI scanner. For 1H 

images, a quad-volume coil of 63 mm diameter was used as both excitation and receiving 

RF device. The 1H channel was used to shim and to acquire the 1H images. After this, it was 

switched to a surface coil of 20 mm diameter for 19F images. For 19F MRI, a steady-state 

free procession (SSFP) sequence was used to selectively excite the desired 19F signal (ca. 

−85 ppm).29 19F MRI parameters: the repetition time (TR = 30 ms), the echo time (TE = 

3.01 ms), the small flip angle (FA = 50), the number of transient (NT = 4096), the SINC 

excitation pulse length (Psinc = 1.5 ms), the matrix size = 32 × 32, which was zero-filling to 

64 × 64 before Fourier transform, the field of view (FOV = 30 × 30 mm), and the slice 

thickness (THK = 11–15 mm), respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Chemical structures of peptide amphiphiles used in this report. The amino acid hydrogen 

bonding sequence V2A2 is kept constant while sequence charge (blue) and tail length (red) 

are varied. Throughout this report, compounds are referenced by their tail length (C7 or C8) 

and their charged residues (K2, K3, or E2).
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Figure 2. 
Comparison of NMR spectra for each F-PA as a function of peptide concentration: 1.0 mM 

(blue), 1.5 mM (green), 2.0 mM (orange) and 3.0 mM (red). C7E2 and C7K3 maintain sharp 

peaks at the higher concentrations needed to obtain 19F MR images. The other conjugates 

exhibited sharp spectral features only at concentrations lower than 2 mM or always exhibited 

broad features. Measurements conducted at pH 6.5.
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Figure 3. 
19F NMR pH response of (A) C7E2 and (B) C7K3. Both C7E2 and C7K3 line shapes were 

found to be robust to pH changes during titration. (C) C7K3 and C7E2 both showed an 

increase in NMR signal in response to pH starting around 5.5. C7E2 signal reached 

maximum at pH 6.5, whereas C7K3 signal increased slowly through the pH values tested. 

(D) Nile red fluorescence assay of C7E2 and C7K3. Concentration of F-PA is plotted versus 

blue shift of the Nile red florescence peak (measured at 658 nm). Dotted line is fluorescence 

maximum of Nile red in water. Both compounds exhibit detectable blue shifts (and therefore 

critical aggregation concentrations) at or below 0.1 mM. This implies that, at the 2 mM 

concentration and pH 7.5, less than 5% of compound is in the monomeric state.
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Figure 4. 
Representative Cryo-TEM images of perfluorinated peptide amphiphiles at pH 4, 7, and 9. 

Scale bar is 100 nm. C7K2 exhibits sparse, disordered structures at pH 4 (panel A), and 

ribbons at pH 7 (B) and 9 (C). C7E2 produces ribbon nanostructures at pH 4 (D) and 7 (E), 

transitioning to cylindrical fibers at pH 9 (F). Finally, C7K3 forms sparse ribbon structures at 

4 (G) and 7 (H), transitioning to cylindrical fibers at pH 9 (I).
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Figure 5. 
Circular dichroism spectra of (A) C7E2 and (B) C7K3 at different values of pH. ranges. β-

sheet component increase for C7K3 coincides with NMR signal increase, whereas the 

opposite trend is observed for C7E2. This implies that β-sheet signal is not predictive of 

NMR signal enhancement. Spectra for other compounds investigated can be found in 

Figures S7–S10.
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Figure 6. 
1H and 19F MRI solution images of C7E2 in 150 mM NaCl acquired at 9.4T and ambient 

temperature. Each image is 25 mm on edge. Sample preparation was identical to NMR 

experiments. Phantoms were imaged simultaneously with a trifluoroethanol standard to 

allow intensity comparison. Fluorine images increase in intensity as pH increases, reaching a 

maximum after pH 7. This is analogous with behavior observed in Figure 3.
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