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Abstract

Proteoglycans are major constituents of the extracellular matrices as well as the cell surfaces and 

basement membranes. They play key roles in supporting the dynamic extracellular matrix by 

generating complex structural networks with other macromolecules and by regulating cellular 

phenotypes and signaling. It is becoming evident, however, that proteolytic enzymes are required 

partners for matrix remodeling and for modulating cell signaling via matrix constituents. 

Proteinases contribute to all stages of diseases, particularly in cancer development and 

progression, and contextually participate in either the removal of damaged products or in the 

processing of matrix molecules and signaling receptors. Indeed, the dynamic interplay between 

proteoglycans and proteolytic enzymes is a crucial biological step that contributes to the 

pathophysiology of cancer and inflammation. Moreover, proteoglycans are implicated in the 

expression and secretion of proteolytic enzymes and often modulate their activities. In this review 

we present emerging biological roles of proteoglycans and proteinases with special emphasis on 

their complex interplay. We critically evaluate this important proteoglycan-proteinase interactome 

and discuss future challenges of potentially targeting this axis in the treatment of cancer.
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Proteolysis is a highly regulated and specific process. Here, we highlight recent findings, which 

suggest that PGs/GAG interplay regulates proteinases’ activity, stability, substrate specificity and 

localization. The interaction between proteinases and proteoglycans may occur either through the 

GAG chains or the core protein of PGs. Such findings introduce a new avenue for specific cancer 

therapeutics.
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INTRODUCTION

Extracellular matrix (ECM) is a highly dynamic and functional network, which is assembled 

from a variety of molecules. This network creates the scaffold where cells are hosted 

forming certain tissues and organs. ECM varies in composition among tissues and is 

continuously remodeled under physiological and pathological conditions. The changes in the 

expression of matrix molecules and the compositional alterations among them markedly 

affect the assembly of ECM and its ability to regulate a multitude of cellular functions. 

Among major ECM components are proteoglycans (PGs) as well as fibrillar proteins, like 

collagens and elastin, and other (glyco)proteins [1]. In cancer, PG expression is often altered 

in the stroma and this might contribute to disease progression or do quite the opposite. ECM 

remodeling is also a hallmark of cancer progression and in this process matrix proteinases 

play a central role [2]. Indeed, proteinases contribute to all stages of cancer development and 

progression. The intracellular proteases participate in the removal of damaged or undesirable 

products, whereas the extracellular proteases are actively involved in tumor progression and 

metastasis by degrading the majority of ECM macromolecules. Moreover, there are 

transmembrane proteases, which mostly target transmembrane receptors and signaling 

molecules [2–4]. Thus the interaction of PG and proteases is complex and often 

multifactorial, and generally operates in a cell- and tissue-contextual manner.
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PROTEINASES: STRUCTURE, FUNCTIONS AND TARGETING IN CANCER

The term “proteinase” encompasses a large family of enzymes that catalyze the hydrolytic 

breakdown of proteins into peptides or amino acids at their terminal ends (exopeptidases) or 

inside the peptide chain (endopeptidases) [5]. According to the MEROPS database, the 

human degradome contains at least 569 proteinases distributed intra- and extracellularly, and 

classified based on the chemical moiety that participates in the hydrolysis (aspartic, cysteine, 

threonine, serine, and metallo-proteinases) [6]. This is in contrast to the PG family, which 

contains less than fifty genes. Thus a single PG would be expected to interact and modulate, 

on the average, more than ten proteases.

It is well recognized that proteinases contribute to all stages of tumor progression including 

tumor growth and survival, angiogenesis, cell invasion, cell adhesion, migration, EMT, 

immune surveillance and are produced not only by the tumor cells themselves, but also by 

the tumor microenvironment [2, 7, 8]. Metalloproteinases and cathepsins are among the 

major families of proteinases implicated in cancer cell biology. These two categories in 

terms of structure, function and possibilities for their targeting are described in detail below.

Metalloproteinases

The metzincin family of metalloproteinases is characterized by the presence of the 

conservative methionine residue at the active site and the use of a zinc ion in the enzymatic 

reaction [9]. This family comprises matrix mettalloproteinases (MMPs), a disintegrin and 

metalloproteinases (ADAMs) [4] and ADAMs with thrombospondin motifs (ADAMTSs) 

[10], the bacterial serralysins, and proteases such as the astacins (including the meprins) 

[10]. The most well studied representatives of this super-family are MMPs, as well as 

ADAMs and ADAMTSs. All members of the metalloproteinases family share domain 

structure similarities. The current MMP classification, based on substrate specificity, 

sequence similarity and domain organization categorize MMPs into six groups; 

collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs (MT-MMPs) and 

other MMPs [11]. A typical MMP structure involves several conserved distinct domains 

involving a N-terminal signal peptide responsible for secretion or plasma membrane 

insertion and a propeptide (containing highly conserved PRCGVPDV sequence) that 

following its proteolytic cleavage the enzyme is activated. The catalytic domain is defined 

by a 3-His motif (HEXXHXXGXXH) to which the catalytic zinc ion is held followed by a 

hemopexin domain responsible for the substrate specificity (except in MMP-7), and the 

interactions with other MMPs and tissue inhibitors of metalloproteinases (TIMPs) [12]. 

Furthermore, most ADAMs are type I transmembrane proteins that possess disintegrin, 

cysteine-rich, and EGF domains instead of MMP hemopexin domain, whereas ADAMTSs 

are secreted proteins that contain thrombospondin I motifs instead of the EGF and 

transmembrane domain [13].

MMPs represent one of the most-well studied classes and the main group of regulating 

proteinases in ECM. MMPs are responsible for the turnover and degradation of almost all 

ECM components [14], including collagens, fibronectin and laminins etc, as well as non-

ECM cell regulators such as numerous cell-surface receptors, integrins, kinases, chemokines 

and cytokines [15, 16]. Thus, they are central regulators not only in physiological processes, 
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such as embryogenesis, remodeling, wound healing and angiogenesis, but also in 

pathological conditions.

Along with ADAMS, MMPs exert their actions in cancer progression not only by degrading 

the physical barriers that cancer cells encounter but also by increasing the availability of 

signaling effectors like growth factors and cytokines to the tumor milieu. They also act on 

ECM macromolecules such as collagen, PGs, integrins, cell surface receptors, generating 

regulatory molecules and modulating cell-cell and cell-matrix interactions [2, 17, 18]. 

However, some MMPs are anchored to the cell surface [i.e. MT-MMPs, ADAMS], following 

their intracellular activation, whereas most are produced as secreted proteins and activated 

extracellularly. As mentioned above, secreted metalloproteinases are produced as inactive 

zymogens that generally need to be proteolytically activated, involving removal of the 

propeptide by other proteinases or by autoactivation. It is well documented that pro-forms of 

metalloproteinases may be activated through allosteric interactions with other molecules 

“revealing” the active site form the propeptide. In the case of membrane bound 

metalloproteinases, a furin recognition sequence between their propeptide and catalytic 

domains allows the cleavage and activation by furin convertase enzymes in the Golgi 

apparatus [19].

ADAMTSs exert various functions such as angiogenesis inhibition, degradation of 

proteoglycans; aggrecan, versican and brevican, collagen processing, and blood coagulation, 

among others [20]. In the case of cancer, ADAMTSs may have dual effect either promoting 

or suppressing tumor growth. ADAMTS -1, -2 and -8 exert antiangiogenic effects and 

suppression of ADAMTS -1 stimulates breast cancer cell migration and invasion [20, 21]. 

Also ADAMTS -9 is down-regulated in liver metastasis of colorectal tumors [22]. On the 

other hand, ADAMTS -4 and -5 are up-regulated in gliomas [23].

Based on the critical importance of metalloproteinases in cancer progression, numerous 

metalloproteinases inhibitors have been developed with goal to target their synthesis, 

secretion, activation and enzymatic activity. Many strategies have been employed involving 

synthetic MMPIs like peptidomimetics, mimicking metalloproteinases substrates and 

functioning as competitive inhibitors, non-peptidomimetic compounds interacting with the 

catalytic zinc ion and inhibiting enzymatic activity, as well as chemical derivatives of 

tetracycline group of drugs which lack antimicrobial action to antibody-based inhibitors and 

tetracycline like derivatives. The use of natural MMPs’ inhibitors like genistein contradicted 

the high toxicity profile observed with the synthetic MMPIs. In that line, antibody-based 

MMP inhibitors, as well as novel mechanism-based inhibitors were introduced to the field. 

Last, several off-target inhibitors such as bisphosphonates are documented in the literature to 

inhibit indirectly MMPs [3, 4, 24–28]. Bisphosphonates are used in clinical practice for 

treatment of osteoporosis and bone metastasis. It has been found that zolendronic acid, a 

third generation bisphosphonate used in clinical practice, can modulate expression of ECM 

genes [29, 30].

The various targeting strategies developed though time involve at first the generation of 

wide-spectrum inhibitors reaching nowadays to more selective targeting. Batimastat (BB94) 

and Ilomastat (GM-6001) peptidomimetics, followed by improved second-generation 
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inhibitors Marimastat (BB2516), Prinomastat (AG3340), BAY12-9566) were the first 

anticancer MMP inhibitors that entered cancer clinical trials. Several clinical trials of such 

inhibitors have been carried tested alone and in combination with standard chemotherapeutic 

drugs. The outcomes were controversial resulting in the discontinuation of Phase III clinical 

trials due to lack of efficacy or severe musculoskeletal side effects in some patients [2, 25, 

31–33]. The clinical failures are attributed to the multiple and in some cases dual roles of 

metalloproteinases at different stages of cancer progression, such as tumor stage, site, 

enzyme localization and substrate profile [34]. Despite significant clinical interest, it has 

proven difficult to achieve selective inhibition of metalloproteinases due their common 

active site [35]. However, the emerging evolution of proteinases degradomics leads to novel 

inhibition strategies of metalloproteinases based on blocking exosite-mediated cell surface 

interactions and activation as well as multifunctional inhibitors able to interact with both the 

active site and exosites, unique to individual metalloproteinases [36–39]. Although 

ADAMTSs have a structure similar to MMPs, unlike the other metalloproteinases, they have 

a narrow substrate specificity [40]. This characteristic might give an advantage to 

ADAMTSs inhibitors vis-à-vis other metalloproteinase inhibitors. Although targeting of 

ADAMTSs to fight cancer is promising, more mechanistic studies need to be done to fully 

understand how each ADAMTS is implicated in cancer development and progression [41]. 

Current efforts focus on designing inhibitors of ADAMTS-4 and -5 that could fight arthritis 

[40]. Pentosan polysulfate, a chemically-sulfated xylanopyranose, is a multifaceted exosite 

inhibitor of ADAMTS-4 and -5. It interacts with the noncatalytic spacer domain of 

ADAMTS-4 and the cysteine-rich domain of ADAMTS-5, blocking their activity. It also 

mediates the formation of a high-affinity trimolecular complex with ADAMTS-5 and 

TIMP-3 improving the efficacy of TIMP-3 as an aggrecanase inhibitor [42, 43]. Notably, 

some inhibitors of ADAMs used in clinical cancer trials were interrupted because of liver 

toxicity. Despite this handicap, ADAMs inhibitors remain a promising target for cancer 

treatment. Selective inhibitors, such as INCB3619 [44] G1254023X [45] and KB-R7785 

[46], have generated promising results in pre-clinical studies.

Cathepsins

Cathepsins belong to a large family of proteases found in mammals as well as other 

organisms. Depending on their structure, their catalytic type and the proteins they cleave, 

cathepsins are classified in three different groups: (I) Aspartic proteases, including 

cathepsins D and E; (II) Serine proteases, including cathepsins A and G; and (III) Cysteine 

proteases, consisting of 11 papain-like lysosomal cathepsins (B, C, F, H, L, K, O, S, V, X 

and W) [6]. The majority of cathepsins and more specifically cysteine cathepsins are 

optimally active efficient in acidic compartments, and, thus, are often located within 

lysosomes and acidic endosomes [47, 48]. However, cathepsins are also present within 

secretory vesicles, cytosol and nuclei [49–53]. Several cathepsins. i.e., cathepsins B, H, L, 

X, are ubiquitously expressed, whereas cathepsins S, V, F, C and W are specifically 

expressed by particular tissues or cell types [54]. For instance, cathepsin K is strongly 

expressed in osteoclasts [55] and cathepsin W is mainly expressed in CD8 and natural killer 

cells [56]. As mentioned above, the structure and the mechanism of action of the cathepsins 

differ among the three groups.
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All papain-like cysteine cathepsins consist of three functional regions. The signal peptide, 

the propeptide, which contributes in several functions such as the proper folding of the active 

enzyme and finally the catalytic site of the enzyme [54]. Their catalytic mechanism is in 

common with other cysteine proteases. Through their proteolytic action, cathepsins regulate 

vital processes in both physiological and pathological conditions. Therefore, cathepsins are 

involved in processes such as the collagen turnover in bone and cartilage [57, 58], hormone 

production [59] and the regulation of antigen presentation in the immune system [60]. 

However, a variety of cathepsins play a regulatory role in several diseases. For example, 

cathepsins K, L, S and B are expressed in patients with bone and cartilage diseases such as 

rheumatoid arthritis and osteoarthritis, contributing to bone destruction [61–64]. In addition, 

cathepsins are also implicated in cardiovascular diseases, immune defects, lung diseases and 

cancer. Particularly in cancer, the role of cathepsins in the progression of the diseases has 

been reviewed [65, 66]. Although it has been suggested that a variety of cathepsins are 

implicated in cancer, most studies focus on the action of cathepsins B, S and L. Cathepsins 

demonstrate elevated expression and activity levels in many tumor cells contributing to 

cancer cell invasion, migration and metastasis, commonly through ECM degradation or by 

promoting the availability of several growth factors. For example, cathepsin B is over-

expressed in many tumor cells including breast, colon, brain, lung and prostate [67–77]. 

Among its oncogenic effects, cathepsin B leads in enhanced MMPs activity through 

degradation of TIMPs [78] and is suggested to assist in the activation of oncogenic signaling 

of TGF-β [79]. In breast cancer cells, activation of ErbB2 receptor induces cathepsin B 

expression promoting invasiveness [75]. Cathepsin B over-expression increases ECM 

degradation fostering collective cell invasion into adjacent tissue [68]. Cathepsin B and pro-

uPA are located on tumor cells surface together with their receptors in a caveolin-1 

dependent manner thus mediating cell-surface proteolytic events associated with invasion of 

colon cancer cells [69]. The importance of uPAR and cathepsin B in the regulation of 

malignant stem cell self-renewal through regulation of hedgehog signaling components, 

Bmi1 and Sox2, has been also highlighted [72]. Selective inhibition of cathepsin B leads to 

limited breast to bone metastasis [77] and reduced invasion of breast cancer cells [76]. 

Moreover, the inhibition of cathepsin S significantly reduced the migration of aggressive 

lung adenocarcinoma and melanoma cells [80].

Several inhibitors specifically targeting particular cathepsins have been developed. The 

majority of them are peptidic or peptidomimetic molecules which covalently interact with 

the active site of the cysteine cathepsins. Apart from general inhibitor of cysteine cathepsins, 

inhibitors of higher specificity need to developed and tested for their efficiency in targeting 

particular enzymes of this family. The most recent inhibitors against cathepsin K include 

balicatib and odanacatib, which are nitrile-based inhibitors, relacatib, a non-basic azepanone 

analogue, as well as ONO-5334 and MIV-711. These inhibitors have been used in preclinical 

and clinical trials inhibiting bone resorption and increasing bone mineral density [65, 81, 

82]. Targeting cathepsin B may be valuable for treatment of cancer progression. CA-074, a 

small molecule inhibitor of cathepsin B, reduces metastasis in tumor-bearing animals 

indicating a pro-metastatic role for cathepsin B in breast cancer and therefore illustrating the 

therapeutic benefits of its inhibition in vivo [77]. Similarly, CA-074 also prevents human 

melanoma growth as wells as lung metastasis [83]. The majority of cathepsins inhibitors 
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target the active site of the enzyme blocking their catalytic activity. As cathepsins are 

ubiquitously expressed, direct inhibition of a given cathepsin could affect its physiological 

action in other tissues, causing significant off-target effects. In addition, the selectivity of the 

inhibitor is crucial for the appearance of side effects. For example two cathepsin K 

inhibitors, relicatib and balicatib were excluded from clinical trial due to lack of specificity. 

Balicatib is selective for cathepsin K in enzyme assays, while it is not in whole-cells assays. 

Furthermore, balicatib may cause skin rashes and morphea-like skins incidences [84].

PROTEOGLYCANS: BIOLOGICAL ROLES, THEIR RELATIONS WITH 

PROTEINASES AND TARGETING IN CANCER

PGs are complex macromolecules, which are composed of a core protein that carries one or 

more covalently linked glycosaminoglycan (GAG) chains. GAGs are linear polysaccharides, 

which are composed of repeating disaccharides of hexosamines (N-acetyl-galactosamine or 

N-acetyl-glucosamine) and uronic acids (D-glucuronic acid or L-iduronic acid) being 

sulfated at various positions. Keratan sulfate (KS) is the only GAG to be comprised of 

repeating disaccharides containing N-acetyl-glucosamine and galactose. Notably, 

hyaluronan (HA) is the only GAG which is not covalently bound to PG protein core, and it 

has been shown that its synthesis is epigenetically regulated [85]. The number and the type 

of GAG chains as well as the specific structure of each GAG chain covalently linked to 

protein cores may greatly differ [86, 87]. These variations in the overall PG structure may be 

cell- and tissue-specific but may also depend on the differentiation stage and the action of 

various stimuli on the cells. The structural diversity of PGs determines their functional 

heterogeneity making them biological chameleons [86, 88]. According to their localization, 

PGs are categorized as ECM-secreted, cell surface associated and intracellular ones. They 

can interact with almost all proteins in ECM with different affinities. Their GAGs chains are 

mainly implicated in these interactions although their protein cores are sometimes involved. 

Apart from their participation in the organization of ECM and regulation of its mechanical 

properties, PGs interact with growth factors, cytokines and chemokines protecting them 

from degradation and form effective gradients of these components in ECM [86]. 

Furthermore, PGs act as co-receptors for these molecules promoting their signaling. The 

proven ability of PGs to form complexes with growth factor receptors results in the 

regulation of their signaling properties. PGs regulate cell behavior and phenotype. They are 

involved in cell proliferation, adhesion, migration and invasion. In this context, certain PGs 

affect the expression of bioactive molecules, their secretion, localization and activity [86, 

88]. PGs are well established as key players in the regulation of physiological and 

pathological conditions, such as cardiovascular diseases including myocardial dysfunction 

and failure as well as cancer development and progression [86, 89]. The major PG families 

involved in cancer progression and have been also related to certain proteinases are 

presented below.

Versican

Versican is a chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycan (CS/DSPG), 

which is present in ECM of many tissues. It belongs to subfamily of hyalectans, for 

hyaluronan and lectin binding proteoglycans [90]. Versican is essentially composed of three 
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modular domains: an N-terminal domain with the ability to bind hyaluronan (HA) through 

its globular domain (G1), a central domain that harbors CS or/and DS, and a C-terminal 

globular domain (G3), which exhibits lectin-like activity, located in the C-terminal. Versican 

exist as a full-length proteoglycan (named V0) and three splice variants (V1, V2 and V3). 

They differ in the central domain and carry different number of GAG chains (V0, V1 and 

V2), whereas the third splice variant V3 lacks completely the GAG attachment region and it 

should be considered as a protein and not as true PG [86, 91, 92]. Versican is highly 

expressed in most malignancies and has been associated with cancer relapse and poor patient 

outcome in breast, prostate and other cancer types [86, 88, 93–99]. Versican is 

predominantly secreted by the activated peritumoral stromal cells in malignancies in 

response to various stimuli. Its expression is up-regulated in cancer associated fibroblasts 

upon TGF-β treatment and promotes the motility and invasion of ovarian cancer cells by 

activating the NF-κB signaling pathway and by up-regulating expression of CD44, MMP-9, 

and the HA-mediated motility receptor [100]. However, some cancer cells can also secrete 

versican [86, 101–105]. Versican modulates the adhesion of cancer cells to ECM and 

increases their motility, proliferation and metastasis [86]. Versican is highly expressed in 

sporadic clear cell renal cell carcinoma [101]. Its expression is associated with the 

expression of CD26 on T-anaplastic large cell lymphoma. Abrogation of versican expression 

results in decreased levels of MT1-MMP and CD44 and marked suppression of T-cell 

adhesion and invasion [102]. Versican is substrate for ADAMTS and the use of antibodies 

against to ADAMTS specific versican cleavage site inhibits glioma cell migration [106]. 

ADAMTS are often over-expressed in various tumors and the formation of neo-epitopes of 

versican fragments within tumor stroma may be used for targeted therapy. In this context, a 

novel versican isoform V4 is highly expressed in breast cancer [107], whereas versican is 

also differentially glycosylated in breast cancer since it contains more sialic acid [108]. This 

alternative splice variant of versican or the presence of unusual glycosylation may be 

possible targets for therapeutic intervention with antibody-related agents. Furthermore, 

disruption of the HA–CD44 interaction with HA oligomers may be also used for targeting 

tumor progression. HA oligomers can block the acquisition of a HA-versican pericellular 

matrix by ovarian cancer cells that increases their metastatic potential and are promising 

inhibitors of cancer dissemination [109].

Decorin

Another important class of matrix PGs is the small leucine-rich PG (SLRP) family, with 

decorin being the most studied member of this family with well-documented implication in 

cancer [110]. Decorin is a CS/DSPG that plays an important role in tumor progression by 

affecting both the composition of the tumor stroma as well as tumor cell growth [86, 88, 94–

96, 98, 99, 111]. Specifically, decorin protein core has a potent antitumor effect by 

interfering with several signaling pathways and repressing and attenuating tumor cell 

survival, growth, migration and angiogenesis. Soluble decorin is a robust pan-RTK inhibitor 

targeting not only EGFR, but also Met, IGF-IR, VEGFR2 and PDGFR [112–117]. Indeed, 

soluble decorin can be considered a tumor repressor [118] that possesses anti-oncogenic and 

anti-metastatic [119] properties and, thus, it has been proposed to be a “guardian from the 

matrix” [120]. Decorin protein core binds to EGFR leading to rapid caveolar endocytosis 

and lysosomal degradation [121]. This interaction also promotes ERK1/2 signaling and 
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transcription of p21 leading to tumor cell growth arrest [122] as well as caspase-3 activation 

and induction of apoptosis [123]. Notably, decorin inhibits angiogenesis [120] by directly 

antagonizing the pro-angiogenic Met and simultaneous suppression of HIF-1α and VEGFA 

transcription [124, 125]. Decorin favors angiostasis by rapidly inducing the secretion of 

thrombospondin-1 [126], a key antiangiogenic factor [127, 128]. Thus, soluble decorin is an 

endogenous anti-oncogenic agent [86, 110], a notion supported by robust genetic evidence 

indicating that targeted deletion of the decorin gene is permissive for tumorigenesis [129, 

130]. Adenoviral-mediated gene delivery of decorin or systemic administration human 

recombinant decorin or decorin protein core to various tumor xenograft models (breast and 

prostate carcinomas), suppress tumor growth [131–135]. The recent discoveries that decorin 

is pro-inflammatory and interacts with Toll-like receptors [136] together with induction of 

autophagy in endothelial cells [137] and mitophagy in breast cancer cells [138] indicate that 

decorin can affect both the tumor stroma and the tumor proper in a variety of ways. As 

decorin interacts with various metalloproteases, directly or indirectly by modulating their 

production, it is likely that this important endogenous factor might be involved in the 

turnover not only of matrix molecules, but, most importantly, in the cleavage and processing 

of cell surface receptors.

Syndecans

Syndecans are type 1 transmembrane heparan sulfate (HS) PGs (HSPGs) that have important 

roles during development, wound healing, neural and glioma stem cell differentiation as well 

as in tumor progression [139–141]. There are four syndecans in mammals with different 

distribution among tissues. Syndecan-1 is expressed at early stages during development, in 

epithelial and cancer cells in adults as well as in some leukocytes. Syndecan-2 is synthesized 

in mesenchymal tissues, fibroblasts, liver and neuronal cells. Syndecan-3 is present in neural 

and musculoskeletal tissues, whereas syndecan-4 is ubiquitously distributed. Syndecan-1 

and syndecan-3 may also carry CS apart from HS chains. Syndecans interact with numerous 

ECM molecules, growth factors, chemokines and cytokines primarily via their HS chains. 

Thus, they influence cell proliferation, differentiation, adhesion and migration often in co-

operation with other cell surface receptors [139, 140].

Syndecans are expressed in various tumor types possessing diverse roles according to tumor 

type and stage of the disease, acting either as promoters or inhibitors of tumor progression 

[139]. Synstatin, a syndecan-derived peptide inhibitor, interferes with syndecan-1/αvβ3 

integrin interaction and indirectly attenuates angiogenesis and impairs mammary tumor 

growth in a mouse tumor model suggesting that syndecan-1 might be involved in regulating 

angiogenesis and tumorigenesis [142, 143]. Syndecan-1 plays important role in supporting 

α2β1 integrin-mediated adhesion to collagen. The formation of syndecan-1/α2β1 integrin 

contributes to proper organization of cortical actin and enhances the transcription of MMP-1 

in response to collagen binding [144]. Activation of K-Ras in tumor cells correlates with 

increased expression of α2β1 integrin, MT1-MMP, syndecan-1, and syndecan-4. α2β1 

integrin and MT1-MMP are positive regulators of invasion, whereas syndecans inhibit cell 

invasion into 3D collagen matrix [145]. Syndecan-1 serves as collagen receptor in squamous 

cancer cells in addition to α2β1 integrin and promotes strong cell adhesion. Lowering 

syndecan-1 levels results in enhanced cell spreading and motility on collagen I by 
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modulating RhoA and Rac activity, but does not affect cell motility on other ECM substrates 

[146]. Syndecan levels at the cell surface are regulated by a fine-tuned proteolytic cleavage, 

which is called shedding. Syndecans are cleaved by various proteases such as MMPs, 

ADAMTS and ADAMS, in their extracellular domain near the plasma membrane [139, 

147]. This process is regulated by a variety of stimuli such as growth factors, chemokines, 

oxidative stress, heparanase and others [139, 147]. Shed syndecan ectodomains are 

implicated in several steps of cancer progression. For example soluble syndecan-1 may bind 

growth factors and chemokines protecting them from inactivation and promote their 

signaling in tumor microenvironment or may sequester inhibitory signals for tumor cells [86, 

139].

Syndecans may be potential targets for tumor therapy due to their well-documented 

implication in tumorigenesis. A possibility is to directly target syndecans by using 

therapeutic antibodies in malignancies where these molecules are highly expressed [86, 139, 

148–150]. Another option is to target the formation of functional syndecan complexes with 

other receptors such as integrins and growth factor receptors by using synthetic molecules 

such as synstatin [151]. Blocking of syndecans shedding either by inhibiting heparanase 

activity using specific inhibitors or proteinase inhibitors may be also of interest [152–154]. It 

is worth noticing that many drugs used in cancer therapy can regulate the expression levels 

of syndecans and may benefit patients [29, 30, 155, 156]. Furthermore, syndecans’ function 

in cancer is regulated by miRNAs and this open a new area of research [157].

CSPG4/NG2

Neuron-glial antigen 2 (NG2) also known as chondroitin sulfate proteoglycan 4 (CSPG4) or 

melanoma associated CSPG, is a transmembrane PG, which is up-regulated in several tumor 

types and play important role in tumor cell proliferation, survival, migration and tumor 

progression [158]. Expression of CSPG4 enhances integrin-mediated cell spreading, FAK 

phosphorylation, and activation of ERK1/2 through independent mechanisms [159]. 

Furthermore, CSPG4 is implicated in the activation of pro-MMP-2 by MT3-MMP [160, 

161]. CSPG4 mediates tumor cell adhesion and spreading on collagen VI by cooperating 

with α2β1 integrin and activating PI-3K [162]. CSPG4 is an attractive target for antibody-

based cancer immunotherapy because of its proven role in tumor cell biology, its high 

expression on tumor and cancer stem cells and its restricted distribution in normal tissues 

[158, 163]. The development and use of several therapeutic antibodies give promising results 

in cancer treatment [158, 163–166]. Furthermore, T lymphocytes genetically modified with 

a CSPG4-specific chimeric antigen receptor controlled tumor growth in vitro and in vivo in 

mice engrafted with various tumor cells. This suggests that CSPG4-redirected T cells should 

provide an effective treatment modality for a variety of solid tumors [167].

Serglycin

Serglycin is an intracellular PG that is highly expressed in hematopoietic cells. It is involved 

in the proper formation of secretory granules and vesicles as well as the storage and 

secretion of several components in ECM [168]. Serglycin can carry HS, heparin, CS and DS 

chains and its glycanation depends on the cellular source of serglycin [168]. Several studies 

have demonstrated the involvement of serglycin in tumorigenesis [169–174]. Serglycin with 
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different GAG chains and sulfation patterns is expressed in several hematopoietic and non-

hematopoietic tumors [168]. The role of serglycin in malignancies is rather intriguing since 

it seems to participate in tumor development in a manner that at least partially requires 

interactions between tumor cells and their microenvironment [175]. In mast cells, serglycin 

is present in intracellular granules where is implicated in the storage of granule-localized 

proteases such as chymases, tryptases and carboxypaptidase A [176, 177]. Mast cell 

proteases exert dual roles in the regulation of inflammation and tumorigenesis. Several pro-

inflammatory chemokines and cytokines are substrates of mast cell proteases and their 

cleavage can result in either activation or inactivation of inflammatory mediators. Serglycin 

is over-expressed and is constitutively secreted in multiple myeloma carrying CS side chains 

[174, 178]. It is also localized on the cell surface where is attached through its CS-4 chains 

promoting the adhesion of myeloma cells to collagen I as well as the biosynthesis and 

secretion of MMP-9 and MMP-2 [173]. Serglycin is involved in the biosynthesis and 

secretion of proteases. For example, Madin-Darby canine kidney cells stably transfected 

with serglycin express elevated levels of MMP-9 and urokinase plasminogen activator (uPA) 

[179]. Recently it has been shown that serglycin bearing CS chains is the major PG that is 

synthesized and secreted from aggressive breast cancer tumor cells [170]. Ectopic over-

expression of serglycin in low aggressive MCF-7 breast cancer cells promotes their 

anchorage-independent growth, migration and invasion [170] via up-regulation of 

biosynthesis of proteolytic enzymes (unpublished data). The tumor promoting properties of 

serglycin are dependent on the overexpression and secretion of glycanated serglycin [170]. 

Altered biosynthesis of CS chains has been demonstrated in various cancer types [180]. 

CHST11 gene that specifically mediates 4-O sulfation of CS is highly expressed in MDA-

MB-231 breast cancer cells and breast cancer tissues together with CSPG4 another 

candidate carrier molecule for CS-4. CS-4 chains mediate the binding of breast cancer cells 

to P-selectin and facilitate the formation of metastasis [181].

INTERPLAY OF MATRIX PROTEINASES WITH PROTEOGLYCANS AND 

GAGs

Proteolysis is a highly regulated and specific process. Apart from the interactions between 

the substrate and catalytic domain, non-catalytic sites, called exosites, contribute to substrate 

cleavage by presenting the substrate to the catalytic domain [37, 39, 182]. In addition, 

proteinases can form complexes with other macromolecules, like proteins and PGs/GAG in 

allosteric sites, regulating the activity, stability, substrate specificity and localization of the 

enzymes. The interacting PGs/GAGs with certain proteinases and the biological roles 

affected by such interactions are presented in Table 1. An emerging concept is the 

compartmentalization of proteinases to secretory vesicles and cell membranes. Specifically, 

the concentrations of both the enzyme and substrate are maintained at catalytically-favorable 

levels within the pericellular space and are utilized upon cell stimuli rather than diffuse into 

the extracellular space [183].

It has been shown that MMP-7 co-localizes with HSPGs and heparin increases MMP-7 

activity [184]. It is well documented that there is a correlation between GAG sulfation and 

the regulation of MMP-7 activity. Highly-sulfated GAGs, such as heparin, chondroitin-4,6-
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sulfate (CS-E) and DS, enhance MMP-7 activity against specific substrates to a greater 

extent than low-sulfated forms of CS [185, 186]. Thus, specific GAGs may function as 

allosteric physiological activators of MMPs. Syndecan-2 can act as a docking site for pro-

MMP-7 at the cell surface, and in turn such surface localization is pivotal for its ability to 

regulate carcinogenesis [37, 187]. MMP/HSPG complexes (MMP-9/HSPG) are also 

concentrated at the leading edge of highly-metastatic cells, mediating their migration and 

invasion [188]. However, GAG chains could simultaneously interact with an active MMP 

and substrate, bringing them together to act as highly-coordinated trimeric complex. For 

example, trimeric complexes of pro-MMP-2 and MMP-16 (MT3-MMP) and cell-surface 

CSPG4 can activate MMP-2 and increase cell migration, invasion, and metastasis [160, 

161]. In addition, binding of ADAMTS-4 and MMP-17 (MT4-MMP) to syndecan-1 induces 

the activation of ADAMTS-4. Then, the activated form is located to the cell membrane 

interacting with the GAG chains of syndecan-1 [189]. Syndecan-4 binding to ADAMTS-5 

results in its activation, regulating mitogen-activated protein kinase (MAPK)-dependent 

synthesis of MMP-3 [190]. On the other hand, syndecan-2 via the HS chains may compete 

for the binding of pro-MMP-2 interfering with the proper formation of MT1-MMP/TIMP-2/

pro-MMP-2 complex that leads to its activation. In this case, syndecan-2 inhibits the 

activation of pro-MMP-2 suppressing metastasis in mice [191]. Another example of negative 

regulation is that of HSPGs and pro-ADAM-12. These interactions results in the suppression 

of ADAM-12 catalytic activity in some substrates but increase the activity of the enzyme 

against others, such as IGFBP3 [192]. This finding suggests that such inhibition is mediated 

by the binding of the GAG to basic amino acids in the pro- and catalytic domains of 

ADAM-12 creating a unique molecular switch [192].

The regulation of the activation/activity of MMPs can be achieved in various ways. The 

activation mechanism (known as the ‘cysteine switch’) involves proteolytic cleavages of the 

propeptide causing a destabilization of the cysteine zinc interaction [193]. In the latent state 

of MMPs, the propeptide “protects” the catalytic site, thereby blocking any interaction with 

the substrates. Bypassing the common mechanism of activation, the cysteine zinc interaction 

may be disrupted by an allosteric interaction between the prodomain and the GAG chains of 

a PG, leading to an active MMP and then the propeptide is either inter- or intra-molecularly 

cleaved [185]. However, the binding of MMPs to PGs occurs either through specific 

interactions with the GAG chains or the protein core of the PG. Serglycin and versican 

isolated from various sources form complexes with proMMP-9 in vivo and in vitro [194, 

195]. Both the hemopexin-like (PEX) domain and the fibronectin-like (FnII) module of 

proMMP-9 are involved in the interaction with core proteins of PGs. The formation of the 

complexes alters the mode of activation of proMMP-9 and the interaction of the enzyme 

with its substrates [194, 196]. ProMMP-9 associated with PGs is activated in the presence of 

Ca2+ and may be important for the activation of pro-enzyme in pathological situation, which 

are associated with increasing concentrations of this cation such as tumor-induced bone 

disease [197]. For MMP-13, the PEX domain is responsible for the binding to the protein 

core of syndecan-4, serglycin, and decorin in chondrocytes [198]. Serglycin interacts with 

mast cell proteases regulating their activity. Heparin present on serglycin in mast cells forms 

complexes with chymase and promotes the binding of heparin-binding substrates to the 

enzyme thus presenting them to chymase and enhancing their proteolysis [199]. Heparin 
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significantly blocks the inhibition of chymase by natural inhibitors such as α1-protease 

inhibitor, α1-antichymotrypsin, α2-macroglobulin and soybean trypsin inhibitor [200, 201]. 

Heparin is also implicated in the formation of active tryptase tetramers [202, 203]. Chymase 

can activate various MMPs, whereas both tryptase and chymase directly degrade ECM 

components. Chymase cleaves vitronectin and procollagen, while tryptase degrades collagen 

IV and both degrade fibronectin [168].

GAGs also interact with cathepsins controlling their activation, stability and activity. It has 

been shown that the ability of cathepsin K to cleave collagen is highly dependent on the 

formation of an oligomeric complex with GAGs, in particular, with CS-4. This GAG has no 

effect on the activity of cathepsin L and MMP-1 [204, 205]. Some GAGs such as KS also 

enhances cathepsin K activity, while HS and DS inhibit the activity of the protease. These 

data suggested that the activity of some cathepsins is significantly enhanced by specific 

GAG chains [206]. Complex formation with GAGs is unique for cathepsin K among other 

papain-like proteases [205, 206]. It is remarkable that monomeric cathepsin K has no 

significant collagenase activity [205]. The specific binding of CS-4 to cathepsin K is 

required to allow the formation of an oligomeric complex capable to digest triple-helical 

collagen. It is suggested that the main function of this complex is the partial unfolding of 

triple-helical collagen that increases the accessibility of the scissile bond to the active site of 

cathepsin K [207].

Recently it has been reported the presence of three positively charged clusters at the bottom 

part of the protease opposing the active site, which are involved in alternative GAG binding 

sites. These may play other roles in the formation of collagenolytically active protease 

complexes, or contribute in a yet unknown manner to the specific binding to collagen [208]. 

Therefore, any disruption of the complex formation between cathepsin K and GAGs might 

be of therapeutic value in collagen degradation-related diseases such as cancer. Contrary, 

CS-4 inhibits the action of cathepsin S and may modulate its collagenase activity in vivo 
[209]. Notably, the interaction of cathepsin B specifically with heparin or HS induces its 

activity protecting it from alkaline pH [210]. Heparin and HS accelerate the autocatalytic 

removal of the propeptide, thus activating cathepsin B [211]. In this line of evidence, heparin 

and HS specifically bind to cathepsin X enhancing its activity [212]. Cathepsin X also binds 

to cell surface HSPGs in wild-type CHO cells but not in CHO-745 cells, which are deficient 

in GAG synthesis. In addition, cathepsin X is only endocytosed in CHO cells suggesting that 

HSPGs may also regulate its cellular trafficking [212]. Although CS-4 significantly 

enhances the collagenase activity of cathepsin K, the same GAG as well as others, 

specifically inhibits the potent elastolytic activity of cathepsins V and K [213]. In another 

study, the activity of pro-cathepsin D is significantly increased in the presence of heparin, 

HS and CS-E. The regulation of the activity by heparin depends on the sulfation groups and 

the length of the GAG chain, since more sulfated groups or larger fragments exhibit 

enhanced activity [214].

Squamous cell carcinoma antigens (SCCA-1 and SCCA-2), members of the high-molecular 

weight serine proteinase inhibitor (serpin) family, bind to heparin and this significantly 

enhances the inhibition of cathepsin L-like proteolytic activity secreted from breast and 

melanoma cancer cell. This finding raises the possibility that the anticancer properties of 
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heparin may be due, at least partly, to enhanced inhibition of pro-metastatic proteases [215]. 

The above data highlight the fact that PGs/GAGs are able to control and regulate the activity 

of many cathepsins. However, this is a complex regulation, since specific GAGs can activate 

or inhibit specific cathepsins and in addition, a particular GAG may have opposite effects in 

different cathepsins. Moreover, the length of the GAG and its specific sulfation seems to be 

of significance.

CONCLUDING REMARKS

Given the central role played by matrix molecules and their processing enzymes, we propose 

that the interplay between proteoglycans and proteinases could represent a new avenue for 

specific cancer therapeutics. This hypothesis envisages a novel molecular targeting for 

treating cancer achieving allosteric inhibition of proteolytic enzyme activity and concurrent 

compartmentalization of proteinases via proteoglycan modulation. The main axis of 

regulatory interactions between proteoglycans and proteinases is summarized in Figure 1. 

Τhe use of modified GAGs or GAG mimetics utilized to modulate GAG-protein interactions 

[216] alone, or in conjunction with specific proteinases exosites may introduce a new era in 

cancer therapeutics. One such approach is targeting the exosites of particular cathepsins 

since GAG chains interact with the exosites of specific cathepsins modulating their catalytic 

activity. Thus, targeting the exosites could block the proteolytic activity against specific 

substrates of enzyme without disturbing other processes. Selent et al. [217] demonstrated 

that negatively charged molecules are able to inhibit only the collagenase activity of 

cathepsin K without affecting the overall proteolytic functions of the enzyme. The inhibitors 

are negatively charged molecules such as poly-Asp and poly-Glu with ionic properties 

similar to those of CS-4. These molecules exert their inhibitory effect mainly by interfering 

with the formation of cathepsin K/CS-4 complex. Therefore, we suggest that the targeting of 

proteinase exosites, which interact with GAGs, could be a novel mechanism of inhibition. 

Currently, our knowledge of this field is relatively sparse. Therefore, future targeted studies 

should be done especially focusing on the development of novel inhibitors, which should 

selectively inhibit specific proteinase activities and possibly bypass the detrimental side 

effects caused by present inhibitors.
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Abbreviations

ADAM a disintegrin and metalloproteinase

ADAMTS a disintegrin and metalloproteinase with thrombospondin motifs

CS chondroitin sulfate

DS dermatan sulfate
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ECM extracellular matrix

GAG glycosaminoglycan

HA hyaluronan

HS heparan sulfate

MMP matrix metalloproteinase

MT-MMP membrane type-MMP

PG proteoglycan

TIMP tissue inhibitors of MMPs
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Figure 1. Main axis of proteinases regulation by proteoglycans action
The interaction between proteinases and proteoglycans occurs either through the GAG 

chains or the core protein of PGs. One main outcome of such interactions is the 

compartmentalization of proteinases confined to secretion vesicles and especially to cell 

membrane as well as stored in confined spaces within the extracellular space. Thus, 

proMMPs (proMMP-9, proMMP-13) bind to the core protein of several PGs secreted or 

membrane bound, like serglycin, decorin, versican and SDC-4 or interact with the GAG 

chains of SDC-2 acting as a docking site (top-left panel). HSPGs also represent a binding 

site for cathepsins at the cell surface, implicating them also to their cellular trafficking in the 

case of cathepsin X. The activation and activity of proteinases is strongly regulated by GAGs 

in either positive or negative mode. CS-4 chains of cell-surface CSPG4 are able to 

simultaneously interact with active MT3-MMP and its substrate pro-MMP-2, leading to the 

formation of a coordinated trimeric complex and subsequent activation of MMP-2 (left-
middle panel). Similarly, the complex of ADAMTS-4/MT4-MMP/SDC-1 induces the 

activation of ADAMTS-4, further located to the cell membrane via interacting with the GAG 

chains of SDC-1 (left-middle panel). On the other hand, SDC-2 HS chains compete with 

MT1-MMP for the binding of pro-MMP2, which prevents the activation of the proMMP2 

via cell membrane ternary complex, which also involves MT1-MMP dimer and TIMP-2 

(middle panel). Another example of negative regulation is that of HSPGs and pro-
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ADAM-12, resulting in the specialized suppression of ADAM-12 catalytic activity against 

some substrates (right-middle panel). SDC-4 is also able to control the ADAMTS-5 

activation through direct interaction, leading also to MAPK-mediated activation of MMP-3 

expression (right panel). In the case of cathepsins, the formation of oligomeric complexes 

with GAGs for example CS-4 with cathepsin K renders cathepsin capable to unfold and 

further digest the triple-helical collagen. In coordination, HS and KS chains also enhance 

cathepsin K activity, while HS and DS inhibit it (top-right panel). Heparin, a highly sulfated 

glycosaminoglycan, enhanced the autolytic activation of proMMP-2 and proMMP-7. 

Heparin, along with HS chains, protects cathepsin B action from alkaline pH, whereas 

members of serpin family bind to heparin and this significantly enhances the inhibition of 

cathepsin L-like proteolytic activity (top-right / middle panel).
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Table 1

PGs / GAGs as binding partners for matrix proteinases

Proteinase Domain Interacting
PG/GAGs

Biological roles [Ref]

MMP-2 Pro-form and active
form

Syndecan-2 (HS) Inhibits activation of pro-
MMP-2 [191]

MMP-2 Hemopexin CSPG4 (CS-4) Activation of MMP-2,
increased cell migration and
invasion [160]

MMP-7 ? HSPGs/heparin Increase activity [184]

MMP-7 Pro-form (higher
affinity) and active
form (less affinity)

Heparin/CS-E/DS Autocatalytic activation and
increase activity [185, 186,
218]

MMP-7 Pro-form Syndecan-2 (core
protein)

Activation and cell migration
[37, 187]

MMP-9 ? HSPGs Cell migration and invasion
[188]

MMP-9 Pro-form
(hemopexin /
fibronectin-like
module)

Serglycin / Versican
(core proteins

Modulates the activation of
proMMP-9 and the binding to
substrates [194, 195]

MMP-13 hemopexin Syndecan-4,
serglycin, decorin
(core proteins)

Unknown [198]

MT3-MMP ? CSPG4 (CS-4) Cell invasion [160, 161]

ADAMTS-4 ? Syndecan-1 (HS/CS) Cell surface localization and
activation [189]

ADAMTS-5 ? Syndecan-4 Activation and MMP-3
expression [190]

ADAM-12 Pro-form and
catalytic form

HSPGs (HS) Inhibition or activation against
specific substrates [192]

Cathepsin K GAG binding sites HS / DS Inhibit the activity [206]

Cathepsin K GAG binding sites CS-4 / KS Enhance activity [206]

Cathepsins
V and K

GAG binding sites CS-4 / CS-6 / DS /
heparin

Inhibit elastolytic activity [213]

Cathepsin S GAG binding sites CS-4 Inhibits activity [209]

Cathepsin B GAG binding sites Heparin / HS Enhance activity and stability
[210]

Cathepsin X GAG binding sites Heparin / HS /
HSPGs

Enhance activity, cell surface
localization [212]

Pro
cathepsin D

GAG binding sites Heparin / HS / CS-E Enhance activity [214]
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Proteinase Domain Interacting
PG/GAGs

Biological roles [Ref]

(catalytic / pro-form)

FEBS J. Author manuscript; available in PMC 2016 September 26.


	Abstract
	Graphical Abstract
	INTRODUCTION
	PROTEINASES: STRUCTURE, FUNCTIONS AND TARGETING IN CANCER
	Metalloproteinases
	Cathepsins

	PROTEOGLYCANS: BIOLOGICAL ROLES, THEIR RELATIONS WITH PROTEINASES AND TARGETING IN CANCER
	Versican
	Decorin
	Syndecans
	CSPG4/NG2
	Serglycin

	INTERPLAY OF MATRIX PROTEINASES WITH PROTEOGLYCANS AND GAGs
	CONCLUDING REMARKS
	References
	Figure 1
	Table 1

